1	Supplemental Figures
2	Table of Contents

2	Table of Contents	
3	1 Cohort Description	2
4	1.1 Survival Outcomes of the Cohort	2
5	1.2 Survival Outcomes of Patients with High Risk Molecular Features	3
6	1.3 Baseline Molecular Assay Intersection	4
7	2 Identification of DNA Subtypes of Multiple Myeloma	5
8	2.1 Cluster Number Determination from CN Consensus Clustering	5
9	2.2 Consistency of Subtype Assignments by CN Clustering	6
10	2.3 CN Consensus Clustering Matrix	7
11	2.4 CN Density Plots for Subtype Defining Events	8
12	2.5 Survival Outcomes for HRD and NHRD Patients	9
13	2.6 Survival Outcomes for Patients with Amp1q and Del13q	10
14	3 Identification of RNA Subtypes of Multiple Myeloma	11
15	3.1 Cluster Number Determination from Gene Expression Consensus Clustering	11
16	3.2 Consistency of Subtype Assignments by RNA Expression Clustering	12
17	3.3 RNAseq Consensus Clustering Matrix	13
18	3.4 RNA Subtypes and Association with Copy Number	14
19	3.5 Relationship between CoMMpass and Zhan et al. Expression Subtypes	15
20	3.6 Relationship between CoMMpass and Broyl et al. Expression Subtypes	16
21	3.7 CCND1/2/3 and PAX5 Expression Across RNA Subtypes	17
22	3.8 Relationship between Proliferation Index and CoMMpass Subtypes	18
23	3.9 Prevalence of Bone Disease Across RNA Subtypes	19
24	3.10 NFKB Index Distribution by RNA Subtype	20
25	3.11 NINJ1 and TP53 Expression Across RNA Subtypes	21
26	3.12 Low Purity Association with Low Purity Metrics	22
27	4 Clinical and Molecular Associations with RNA Subtypes	23
28	4.1 Mechanisms of RB1 Complete Loss at Diagnosis	23
29	5 Transition to PR at Progression and Link with G1/S	24
30	5.1 Change in RNA Subtype Probabilities Over Time	24
31	5.2 Overall Survival of Patients After Transition to PR Subtype	25
32	5.3 Deletion of of CDKN2C in Patients that Transitioned to PR	26
33	5.4 Deletion of of CDKN1B in Patient that Transitioned to PR	27

34 1 Cohort Description

35 1.1 Survival Outcomes of the Cohort

36

37 Progression-free (PFS) and overall (OS) survival outcomes of the CoMMpass cohort (A-B) and the CoMMpass cohort stratified by ISS stage (C-D). (A-B) Median PFS (36 months) and OS (74 months) of 38 39 the cohort has been met, however as of the IA14 release there is insufficient cohort follow up to accurately 40 report median cohort OS within a 95% confidence interval. (C) PFS outcomes for patients classified as ISSI (50 months), ISSII (34 months), and ISSIII (21 months) at diagnosis. (D) OS outcomes for patients 41 42 classified as ISSI (74 months), ISSII (median not met), and ISSIII (54 months) at diagnosis. ISS stage 43 stratified patients into three clinically distinct classes, with patients classified as ISSII at diagnosis having 44 poor OS and PFS outcomes as compared to patients classified as ISSI (p < 0.001), and patients classified

45 as ISSIII having poor PFS outcomes as compared to patients classified as ISSII (p < 0.001).

46 1.2 Survival Outcomes of Patients with High Risk Molecular Features

47

48 49

50 PFS and OS outcomes of CoMMpass patients with high risk molecular features: del17p13, t(14;16) MAF, 51 t(14;20) MAFB, t(8;14) MAFA, or t(4;14) WHSC1/MMSET/NSD2. Median PFS for normal-risk and high-52 risk patients was 39 and 31 months respectively. Median OS for normal-risk patients was 73.6 months, 53 whereas median OS for high-risk patients was not met as of the IA14 release. Patients with high-risk

54 features had poor PFS and OS outcomes (p < 0.05) as compared to normal-risk patients.

55 1.3 Baseline Molecular Assay Intersection

RNA --> (714) | WES-Mut/LoH --> (892) WGS-STR --> (851) | WGS-CNA --> (871)

56 57

58 Venn diagram showing the number of patients in the baseline CoMMpass cohort with available RNAseq,

59 WGS structural (WGS-STR), WGS copy number (WGS-CNA), and WES mutation and loss-of-

60 heterozygosity (WES-Mut/LoH) data for bone marrow (BM) derived tumor samples. There were 592 BM-

61 derived tumor samples that were fully characterized with all data types available for analysis at diagnosis.

62 2 Identification of DNA Subtypes of Multiple Myeloma

63 2.1 Cluster Number Determination from CN Consensus Clustering

64

Consensus clustering was performed in triplicate using three different seeds and the optimum number of 65 clusters was determined using M3C. M3C calculates (A) a PAC score, (B) -log10p value, and (C) RCSI 66 score for K=2 to maxK. A lower PAC score, higher -log10p value, and higher RCSI score indicate an 67 68 optimal number of clusters. An optimal class number of K=2 is supported by both the PAC score and the 69 RCSI, with the lowest PAC score and the highest RCSI score across all three replicates, identifying the two broad HRD and NHRD genetic subtypes of myeloma. However, the p-value for K=2 is among the 70 71 lowest when compared to the other clusters. For values of K greater than 12, the PAC score and p-score 72 begin to overfit the data, indicated by the downward and upward trend respectively. Within the range of 73 K=3-12, K=8 has the lowest PAC score, most significant p value, and a consistently high RCSI score 74 across all three replicates, indicating K=8 is the optimal cluster number. The class assignments from 75 replicate 2 were used for all further downstream analyses.

2.2 Consistency of Subtype Assignments by CN Clustering

Confusion matrices showing the number of patients classified in each CN subtype across three replicates.
 CN subtype classifications were highly consistent across replicates with only 6/871 (0.7%) patients

77

- 80 having different CN subtype classifications across replicates (A) 1 and 2 and (B) 1 and 3, and (C) only
- 81 1/871 (0.1%) patients having a different CN subtype classification across replicate 2 and 3.

82 2.3 CN Consensus Clustering Matrix

83

Consensus clustering matrix with an optimal clustering solution of K=8. The M3C (Monte Carlo referencebased) consensus clustering algorithm was applied to the CN measurements of 26,771 100Kb intervals

86 across the GRCh37 reference genome for 871 WGS BM derived baseline samples. Five of the eight

87 subtypes include only samples classified as hyperdiploid.

88 2.4 CN Density Plots for Subtype Defining Events

89

Copy number (log2) density plot across CN subtypes for (A) 1q21, (B) 3q21, (C) 7q22, (D) 11p15, (E)
13q14, and (F) 15q15. The red dotted line in plots A-D indicates the 1 copy gain threshold, in plot E
indicates the 1 copy loss threshold, and in plot F indicates the 2 copy gain threshold.

93 2.5 Survival Outcomes for HRD and NHRD Patients

94

95

96 PFS and OS outcomes for hyperdiploid (HRD) versus non-hyperdiploid (NHRD) CoMMpass patients.

97 There was no significant difference in PFS for HRD (39.5 months) versus NHRD (34.6 months) patients,

98 or OS for HRD (73.6 months) versus NHRD (median OS not met) patients.

101 PFS (top left) and OS (top right) outcomes for CoMMpass patients with both amp1q and del13q (+1q21, 102 -13q14), amp1q alone (+1q21), del13q alone (-13q14), and neither amp1q or del13q (neither). Amp1q 103 was defined as a gain of 1 or more copies of 1q21, whereas del13q was defined as a loss of one copy of 104 13g14. No difference in PFS or OS outcome was observed between +1g21, -13g14 patients and +1g21 105 patients, however patients with +1q21, -13q14 had poor OS outcomes compared to patients with -13q14 106 alone (p < 0.05). In a univariate Cox proportional hazards model, both amp1g and del13g were found to 107 significantly impact OS outcome (bottom left). However in a multivariate model (bottom right), only amp1q 108 was found to have a significant impact on outcome after adjusting for del13g status.

3 Identification of RNA Subtypes of Multiple Myeloma

110 3.1 Cluster Number Determination from Gene Expression Consensus Clustering

111

112 For each of the three replicates of consensus clustering, a (A) silhouette score and (B) relative change 113 in area under the CDF curve was computed for the number of possible clusters tested (K, 2-20). (A) The 114 silhouette score is defined as the average silhouette width, s(x), of all samples in the dataset, where s(x)115 is a measure of how appropriately grouped all samples are within a cluster, and the average of all 116 silhouette widths reflects overall clustering quality. (B) The proportion increase in the CDF area as K 117 increases, ΔK . Ideally, the optimal number of clusters (K) will correspond to the K that maximizes the 118 silhouette score, s(x), while minimizing the ΔK . We evaluated the resulting grouping from K = 7-15 based 119 on the aforementioned criteria (s(x) score and ΔK) in combination with CoMMpass WGS data and groups 120 identified in previous studies to identify biologically relevant subtypes. Previous studies identified four 121 common groups: MS, CD1, CD2, and PR. In our consensus clustering trials, these classes were not 122 identified until K=11 or greater, in particular, the PR subtype which is the only group with a significant 123 difference in outcome. We ultimately selected K=12, as it had the highest s(x) while minimizing ΔK when 124 compared to other local maximums of s(x). K=9 was eliminated because one cluster only contained 2 125 patients, and similarly K=10 contained a cluster with only 1 patient, resulting in spurious groups that were 126 not informative of myeloma biology.

127 3.2 Consistency of Subtype Assignments by RNA Expression Clustering

128

129

- Confusion matrices of the number of patients classified in each RNA subtype across three replicates. (C)
 Replicate 1 and 2 produced identical cluster assignments for all 714 samples. (A-B) 20 samples (2.8%)
- 132 of the total dataset) from replicate 3 were discordant from their assignments in replicates 1 and 2.

133 3.3 RNAseq Consensus Clustering Matrix

135 Consensus matrix showing the consistency of class assignment for K=12 clustering of RNA-seq data

136 derived from 714 BM baseline samples and 4811 feature-selected genes.

134

137 3.4 RNA Subtypes and Association with Copy Number

138 139

140 Copy number states for patients by RNA subtype are shown. Diploid copy number is represented as 2 141 (white), copy loss is shaded blue, and copy gain is shaded in red. Rare copy number values exceeding 142 4 are represented as a copy number value of 4 to maintain uniformity in the heatmap scales for gain and 142 loss

143 loss.

144 3.5 Relationship between CoMMpass and Zhan et al. Expression Subtypes

145

CoMMpass RNA Subtypes

146 Index values for each of the 7 subtypes defined by Zhan et al.¹⁷ were calculated for each patient and 147 compared to the CoMMpass RNAseq native subtype assignments. The distribution of index values 148 between the Zhan et al. subtypes and each identified CoMMpass subtype was used to identify related 149 subtypes.

150 3.6 Relationship between CoMMpass and Broyl et al. Expression Subtypes

151

CoMMpass RNA Subtypes

152 Index values for each of the 10 subtypes defined by Broyl et al.¹⁸ were calculated for each patient and 153 compared to the CoMMpass RNAseq native subtype assignments. The distribution of index values 154 between the Broyl et al. subtypes and each identified CoMMpass subtype was used to identify related 155 subtypes.

157

(A) CCND1, (B) CCND2, (C) CCND3, and (D) PAX5 expression across RNA subtypes. Patients (brown dots) in the CD1, CD2a, and CD2b subtypes typically had overexpression of CCND1, CCND2, or CCND3 due to canonical immunoglobulin transolocations targeting these genes. In MMRF_2457 (red circle), a translocation involving CCND1/2/3 was not identified, however, this patient had a t(9;14) resulting in overexpression of PAX5. Notably, the CD2a and CD2b subtypes had the highest median expression of

163 PAX5 across RNA subtypes.

164 3.8 Relationship between Proliferation Index and CoMMpass Subtypes

165

166 The association with an RNAseq defined proliferation index and CoMMpass subtypes is shown. The 167 Bergsagel Proliferation Index²⁸ for each sample was determined by calculating the geometric mean 168 expression of 12 genes (TYMS, TK1, CCNB1, MKI67, KIAA101, KIAA0186, CKS1B, TOP2A, UBE2C,

169 ZWINT, TRIP13, KIF11). The PR subtype had the highest median proliferation index score.

170 3.9 Prevalence of Bone Disease Across RNA Subtypes

171

172 Proportion of patients in each RNA subtype with bone disease. The proportion of patients with 1, 2, or 3

173 or more bone lesions for each subtype is also shown. The Unknown (gray) category represents patients

174 with bone disease for whom the number of lesions was not specified.

3.10 NFKB Index Distribution by RNA Subtype 175

176

RNA Subtypes

177 The association with an RNAseq defined NFKB index and the CoMMpass subtypes is shown. The NFKB(11) index for each sample was determined by calculating the geometric mean expression of 11 178 179 genes (BIRC3; TNFAIP3; NFKB2; IL2RG; NFKB1; RELB; NFKBIA; CD74; PLEK; MALT1; and WNT10A)^{36,37}. 180

181 3.11 NINJ1 and TP53 Expression Across RNA Subtypes

184 3.12 Low Purity Association with Low Purity Metrics

RNA Subtypes

185

The low purity RNA subtype was defined based on an association of the samples in this category with multiple independent measures of sample purity. (A) An index associated with genes expressed in non B-cell tissues was used to identify samples with contamination of non-B lineage cells in the CD138⁺ enriched cell fractions. (B) Tumor purity estimated from the exome copy number or mutation data based on the absolute allele frequency of constitutional variants in deletion regions or somatic SNV allele frequency in diploid regions of the genome when no usable deletions were detected in the tumor. (C) Distribution of observed somatic SNV allele frequencies.

193 4 Clinical and Molecular Associations with RNA Subtypes

195

196 Different mechanisms of complete loss of RB1 are observed in tumors of the PR RNA subtype, but 197 generally involve a one copy deletion of 13g coupled with a second molecular event. Panels A-C show CN segmentation (blue bars) and sequencing data (WES or LI-WGS) for three tumors of the PR RNA 198 subtype at baseline. (A) Patient MMRF_1167 had complete loss of RB1 as a result of 13q copy loss (log2 199 200 CN = -1.004) and a small deletion (AR = 0.87). (B) Patient MMRF 1424 had complete loss of RB1 as a result of 13q copy loss (log2 CN = -0.9708) and an inversion where the breakpoint in the intronic region 201 between exons 2 and 3 prevents splicing. (C) Patient MMRF 1595 had complete loss of RB1 as a result 202 of 13g copy loss (log2 CN = -1.006) and a second interstitial deletion (log2 CN = -5.3759) including all 203 204 RB1 exons except exon 1.

205 5 Transition to PR at Progression and Link with G1/S

5.1 Change in RNA Subtype Probabilities Over Time

207 208

RNA subtype probabilities for the 71 serial patients with RNAseq data at two or more timepoints. All patients classified in the low purity subtype at baseline have a discernable RNA subtype other than low purity at progression, supporting the observation that this subtype is driven by sample purity. Shifts from a non-PR baseline subtype to a largely PR subtype or partial population of PR cells are evident.

5.2 Overall Survival of Patients After Transition to PR Subtype

214

OS outcome for the 13 patients that transition to the PR subtype at progression from any non-PR RNA subtype at baseline, excluding the low purity subtype. Days are landmarked to the date at which the progression visit bone marrow sample was obtained to the date of last follow up (no OS censor flag, 4 patients) or to the date of death (OS censor flag, 9 patients). Patients that transitioned to the PR subtype exhibited extremely poor survival outcomes, with median OS of 88 days (3 months) after the progression visit.

5.3 Deletion of of CDKN2C in Patients that Transitioned to PR 221

222 223

224 Two patients that transitioned to the PR subtype at progression acquired complete loss of function of 225 CDKN2C due to overlapping deletion. Panels show long-insert WGS reads from tumor samples for 226 patients MMRF 2523 (A) and MMRF 1269 (B) at baseline (non-PR) and progression (PR). (A) At 227 baseline, patient MMRF 2523 was diploid (log2 CN = -0.0747) with no evidence of a deletion spanning 228 CDKN2C however, at progression the patient had a 2-copy deletion of CDKN2C (blue bar, log2 CN = -229 3.3505) due to two unique deletions (red bars) spanning CDKN2C (green box). (B) At baseline, patient 230 MMRF 2523 had a 1 copy loss of CDKN2C (light blue bar, log2 CN = -0.3511) due to a larger deletion on chr1. There is also read evidence supporting a deletion involving CDKN2C/FAF1, suggesting that a 231 232 subclonal population with complete loss of CDKN2C was present at diagnosis in this patient. At 233 progression, when the patient transitioned to PR, the patient's tumor had a 2-copy deletion of CDKN2C 234 (dark blue bar, log2 CN = -4.6212). In this patient, the minor clone harboring the CDKN2C deletion at 235 baseline constitutes the bulk of the tumor population at progression.

5.4 Deletion of of CDKN1B in Patient that Transitioned to PR

237

One patient that transitioned to the PR subtype at progression acquired complete loss of function of CDKN1B due to copy loss and mutation. Panels A and B show WES data for patient MMRF_1889 at (A) baseline and (B) progression, when the patient transitioned to the PR subtype. (A) At baseline the patient had a one copy loss of CDKN1B due to an arm-level deletion of 12p. (B) At progression, the patient had complete loss of CDKN1B due to copy loss of 12p and a clonal frameshift mutation (AR = 0.98). There was no read evidence supporting the existence of a subclone with this mutation at diagnosis, suggesting

that this mutation was acquired.