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Abstract 12 

A plausible mechanism for the increased transmissibility of SARS-CoV-2 variants of concern 13 

(VOCs) results from VOC infections causing higher viral loads in infected hosts. However, 14 

investigating this hypothesis using routine RT-qPCR testing data is challenging because the 15 

population-distribution of viral loads changes depending on the epidemic growth rate; lower 16 

cycle threshold (Ct) values for a VOC lineage may simply reflect increasing incidence relative 17 

to preexisting lineages. To understand the extent to which viral loads observed under routine 18 

surveillance systems reflect viral kinetics or population dynamics, we used a mathematical 19 

model of competing strain dynamics and simulated Ct values for variants with different viral 20 

kinetics. We found that comparisons of Ct values obtained under random cross-sectional 21 

surveillance were highly biased unless samples were obtained at times when the variants had 22 

comparable growth rates. Conversely, comparing Ct values from symptom-based testing was 23 

largely unaffected by epidemic dynamics, and accounting for the time between symptom onset 24 

and sample collection date further reduced the risk of statistical errors. Finally, we show how 25 

a single cross-sectional sample of Ct values can be used to jointly estimate differences in viral 26 

kinetics and epidemic growth rates between variants. Epidemic dynamics should be 27 

accounted for when investigating strain-specific viral kinetics using virologic surveillance data, 28 

and findings should be corroborated with longitudinal viral kinetics studies.  29 
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Introduction 30 

One of the biggest threats to combating the SARS-CoV-2 pandemic, or indeed any virologic 31 

epidemic, is the emergence of novel variants that may be harder to control or exhibit increased 32 

disease severity [1–4]. Variants with increased growth rates, which may arise through 33 

mutations affecting infectivity or antigenicity, can quickly come to dominate existing lineages 34 

and generate new waves of infection [5–11]. Whereas existing non-pharmaceutical 35 

interventions and population immunity may be sufficient to suppress existing viruses, they may 36 

be insufficient for more transmissible variants, threatening the robustness of vaccine-induced 37 

herd immunity and exacerbating problems in settings with limited access to vaccines. 38 

Identifying measurable properties of variants that indicate increased transmission potential is 39 

therefore essential for controlling the SARS-CoV-2 pandemic, as in the case of seasonal 40 

influenza [12–14].  41 

A hypothesized mechanism for increased transmissibility relates to improved within-host 42 

replication, which may result in higher viral loads [15–17]. If viral load predicts infectivity 43 

[17,18,19], then infections with new variants that elicit higher peak viral load, shorter 44 

incubation periods or slower clearance rates could be more transmissible and for a longer 45 

period of time. Testing this hypothesis would ideally rely on longitudinal viral kinetics studies 46 

to directly compare viral loads over the course of infection [16,20,21]. However, such data are 47 

rare, and comparisons of viral loads have therefore typically been done using routinely 48 

collected RT-qPCR surveillance data from asymptomatic or symptomatic individuals [5,22]. 49 

Indeed, multiple such studies have now proposed that samples isolated from variant of 50 

concern (VOC) infections demonstrate higher viral loads than from non-VOC infections [22–51 

26]. 52 

However, comparisons of viral loads, usually proxied using RT-qPCR cycle threshold (Ct) 53 

values, from surveillance samples are potentially biased depending on the epidemiological 54 

context [27–29]. It has been shown that cycle threshold (Ct) values observed through 55 

population-level surveillance are expected to change depending on the underlying epidemic 56 

growth rate: Ct values are skewed lower when the epidemic is growing due to the abundance 57 

of recent infections, and skewed higher when the epidemic is growing due to the 58 

predominance of older infections [27,30]. Comparing Ct values from different lineages which 59 

may have different growth rates at the time of sample collection therefore has the potential for 60 

bias. Higher viral loads from VOC samples may simply reflect a growing epidemic as opposed 61 

to higher peak or more sustained viral loads, making it difficult to accurately infer differences 62 
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in underlying viral kinetics. Methods are needed to accurately quantify the contribution of 63 

virologic changes to viral load dynamics at the within-host and population levels. 64 

Here, we explore in simulation different virologic and surveillance scenarios where epidemic 65 

dynamics can confound viral load comparisons between variants. We first demonstrate how 66 

average viral loads observed at the population level from new, more transmissible variants 67 

would be expected to differ from existing viruses even with identical post-infection viral 68 

kinetics. We then demonstrate how observations of these patterns differ depending on 69 

whether samples are obtained through random cross-sectional surveillance or symptom-70 

based testing. We show that accounting for the epidemic growth rate when comparing 71 

samples from random cross-sectional surveillance or time-since-onset when comparing 72 

samples from symptom-based surveillance can lead to robust comparisons of RT-qPCR 73 

results between variants with different epidemic dynamics. Finally, we present a method for 74 

comparing growth rates from different variants using a single cross-section of Ct values whilst 75 

accounting for potential differences in underlying viral kinetics.  76 
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Results 77 

Modeling framework to compare viral loads arising in a two-strain epidemic 78 

We developed a mathematical model to simulate viral loads, observed as RT-qPCR Ct values, 79 

in a population undergoing a two-strain epidemic (Figure 1). We implemented a two-strain 80 

SEIR model to simulate incidence curves under a scenario where a more transmissible variant 81 

(referred to as the “new variant”) is introduced into the population and outcompetes a 82 

preexisting, less transmissible lineage (referred to as the “original variant”). We assumed that 83 

these strains have identical epidemiological parameters other than their basic reproductive 84 

numbers, and that infection elicits symmetric cross-protection against the other variant. We 85 

combined these incidence curves (Figure 1A) with the viral kinetics models shown in Figure 86 

1B to simulate viral loads for infected individuals over time. We compared two scenarios for 87 

underlying viral kinetics: 1) both variants have identical viral kinetics and 2) the new variant 88 

has a higher peak viral load and a slower clearance rate. To simulate observed viral loads, 89 

individuals were randomly sampled under one of two strategies: either 1) random cross-90 

sectional surveillance, where individuals are sampled from the population at random 91 

regardless of their infection status, or 2) symptom-based surveillance, where individuals are 92 

tested after some delay following the onset of symptoms. These scenarios underpin all 93 

analyses up to the section “Quantifying differences in growth rate and viral kinetics of variants 94 

using cross-sectional Ct values” unless stated otherwise. 95 

Comparing viral loads from samples with different growth rates  96 

The simulations show that the distribution of viral loads among infected individuals changes 97 

over time, reflecting the growth rate of the epidemic (Figure 1C). Because the two variants 98 

have different transmission rates and introduction dates, their viral load distributions differ at 99 

any given point in time regardless of any true difference in viral kinetics. Under random cross-100 

sectional surveillance, this difference arises because the time-since-infection distribution 101 

changes over the epidemic: randomly sampled infections are typically more recent when the 102 

epidemic is growing than when it is declining [27,30]. As a result, statistical tests comparing 103 

Ct values from samples obtained under random cross-sectional surveillance at a single point 104 

in time will reflect differences arising both from epidemic dynamics, which dictate the recency 105 

of infection, as well as underlying viral kinetics (Figure 1D). When simulated samples were 106 

obtained in this way and the new variant samples were compared to the original variant 107 

samples using a Wilcoxon rank-sum test with significance level of 5%, we found that type 1 108 

statistical errors occurred in 25% of simulations when using 25 detectable Ct values from each 109 
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of the two variants, increasing to nearly 100% when comparing 500 detectable Ct values 110 

(Figure S1). 111 

One approach to overcome these statistical biases and accurately detect underlying 112 

differences in viral kinetics is to compare samples taken from time points of comparable growth 113 

rates (Figure 2A). For example, comparing original variant samples taken during the first wave 114 

of infections to new variant samples taken during the second wave will lead to more accurate 115 

statistical tests for underlying differences in viral kinetics (Figure 2B). Comparing samples in 116 

this way resulted in type 1 errors in only 5% of trials (the nominal rate), with statistical power 117 

of at least 95% when 250 or more detectable Ct values per variant were sampled (Figure 118 

S2&S3).  119 
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120 

Figure 1. Variants with different epidemic growth rates will exhibit differences in observed 121 

average viral loads regardless of true differences in within-host kinetics. (A) Incidence curves 122 

from a two-strain susceptible-exposed-infected-recovered (SEIR) model, where a virus introduced on 123 

day 0 (vertical blue line) with R0=1.5 is outcompeted by a new variant introduced on day 180 (vertical 124 

red line) with R0=2.5, leading to two waves of infection. (B) Variants are assumed to follow either 125 

identical or different viral load kinetics, with modal viral loads (solid lines) peaking within one week post 126 

infection, coinciding with the typical time of symptom onset, and then declining to near the limit of 127 

detection at around three weeks post infection. Substantial variation in individual Ct values (individual 128 

points) are observed due to individual-level kinetics and sampling variation. (C) The median Ct value 129 

observed from individuals sampled entirely at random will reflect the growth rate of that variant at the 130 

time of sampling. Black dashed line shows the overall median Ct value. (D) Comparison of simulated 131 

Ct values obtained on day 270 using a Wilcoxon rank sum test. When the original variant is in decline 132 

and the new variant is growing, the comparison reflects a significant difference in viral load between 133 

the variants regardless of a true difference in underlying viral kinetics.  134 
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 135 

Figure 2. Comparing Ct values obtained from variants at times of comparable epidemic growth 136 

lead to accurate comparisons of viral loads. (A) Using the simulations shown in Figure 1C, median 137 

Ct values for the variants are plotted against their growth rate at time of sampling. (B) Comparison of 138 

simulated Ct values obtained from the time when each variant had a growth rate of 0.03 (i.e., the log 139 

ratio of new infections tomorrow relative to today) using a Wilcoxon Rank Sum test. (C) As in (B), but 140 

when the growth rate is -0.02.  141 
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Viral loads from symptom-based surveillance more accurately reflect underlying differences 142 

in viral kinetics 143 

In reality, most RT-qPCR results are obtained from non-random sampling. In particular, 144 

symptom-based surveillance, where individuals with recent symptom onset seek testing, is 145 

likely to comprise the majority of samples. To test whether epidemiological biases were 146 

present in Ct values obtained under symptom-based surveillance, we simulated Ct values 147 

using the same time-since-infection model in Figure 1C but assumed that individuals were 148 

sampled after some delay following the onset of symptoms. We assumed that symptomatic 149 

individuals have incubation periods drawn from a log-normal distribution with median 5.0 days 150 

and variance of 5.8 days, and are subsequently sampled after some delay drawn from a 151 

discretized gamma distribution with shape and scale parameters of 5 and 1 respectively 152 

(Figure 3A). This corresponds to a mean confirmation delay of 4.5 days and variance of 5.1 153 

days following symptom onset. Both variants were assumed to have the same incubation 154 

period and sampling delay distribution. In addition, on the individual level, the Ct value at any 155 

day was independent of the incubation period length and sampling delay. We note that the 156 

choice of these distribution parameters is arbitrary; similar patterns will be observed with 157 

different values. 158 

Although some differences remained in observed Ct values over time between the two 159 

variants, the difference was small unless the new variant had truly different underlying viral 160 

kinetics (Figure 3B). This is because the time-since-infection distributions for the two strains 161 

are comparable regardless of the underlying growth rate, as individuals are always sampled 162 

at a similar time post onset and therefore post infection (Figure 3C). Therefore, comparing Ct 163 

values between variants obtained from symptomatic surveillance largely reflects true 164 

differences in underlying viral kinetics (Figure 3D). 165 

However, statistical comparisons may still lead to flawed conclusions if the time-since-onset 166 

and sampling delay distributions are substantially different between the two variants. Even 167 

when the same distributions are assumed, some small difference in the observed time-since-168 

infection distribution will arise due to differences in the underlying epidemic growth rate (see 169 

Figure S3 and S4 from [27] for further details). For example, if an epidemic is growing, then 170 

individuals with symptom onset on a given day are more likely to have been recently infected 171 

with a short incubation period simply due to the abundance of recent infections. Our 172 

simulations show that as the number of samples being compared increases, the probability of 173 

encountering a type 1 statistical error when using the Wilcoxon rank sum test increases. This 174 

is true because of the reduced variation within groups, even though the between-variant 175 

estimated median Ct difference is the same (Figure S4).  176 
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Using a linear regression model and including days-since-onset as an explanatory variable 177 

drastically reduces the frequency of type 1 errors (Figure S5). Indeed, accounting for days-178 

since-onset becomes vital when the distribution of delays between symptom onset and 179 

sampling differs between the two variants. Figure S6 shows type 1 statistical errors are almost 180 

guaranteed when using a Wilcoxon rank sum test if the original variant has a different sampling 181 

delay distribution (assuming shape and scale parameters of 7 and 0.9 as opposed to 5 and 182 

1), but Figure S7 shows that these errors can be drastically reduced through using a 183 

regression model accounting for days-since-onset. We note that type 1 errors still arise at 184 

large sample sizes, as accounting for days-since-onset only partially accounts for the small 185 

differences in the time-since-infection distribution (i.e., it does not account for the incubation 186 

period).  187 
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 188 

Figure 3. Ct values obtained through symptom-based surveillance more accurately reflect true 189 

viral load differences. (A) Ct values simulated under the same time-since-infection model as in Figure 190 

1, but with samples taken after the onset of symptoms and some additional sampling delay. Time from 191 

infection to symptom onset was drawn from a log-normal distribution with median 5.0 days and variance 192 

5.8 days. Time from symptom onset to sample collection was drawn from a discretized gamma 193 

distribution with mean 4.5 days and variance 5.1 days. Solid line and ribbons show fitted smoothing 194 

spline and 95% CI. (B) Median Ct value observed over time from individuals sampled under symptom-195 

based surveillance. (C) Distribution of incubation periods for individuals sampled on day 270 of the 196 

simulation, stratified by variant. Note that the observed distribution on day 270 differs from the log-197 

normal distribution used for simulation through its convolution with the infection incidence curve. (D) 198 

Comparison of simulated Ct values obtained on day 270 under symptom-based surveillance using a 199 

Wilcoxon rank sum test.  200 
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Quantifying differences in growth rate and viral kinetics of variants using cross-sectional Ct 201 

values 202 

Finally, we approached the system from a different perspective: rather than testing for 203 

differences in viral kinetics between variants based on surveillance samples, we asked if we 204 

could use random cross-sectional samples taken from the same point in time to infer 205 

differences in variant-specific growth rates. Again, we generated a synthetic population of 206 

SARS-CoV-2 infections by simulating Ct values obtained through random cross-sectional 207 

surveillance at a single point in time assuming that the variants had different viral kinetics (as 208 

shown in Figure 1B). We then adapted a previously described method to estimate the growth 209 

rate and viral kinetics parameters based on single cross-sections of Ct values [27]. We tested 210 

two epidemiologic scenarios: 1) incidence of the original variant declines while the new variant 211 

increases and 2) both variants have positive growth rates at the same time, but the new variant 212 

has a higher basic reproductive number (R0=2.5 vs. 1.5).  213 

When 100 detectable Ct values for each variant were obtained through random cross-214 

sectional surveillance at a time when one variant was declining and the other was increasing 215 

in frequency (Figure 4A), we were generally able to accurately re-estimate the true growth 216 

rates of the two variants (Figure 4B). The model was also able to quantify the true difference 217 

in peak viral loads elicited by the new variant (Figure 4C); however, it was not able to identify 218 

the slower clearance rate. Similarly, in the scenario when infections from both variants were 219 

simultaneously increasing but at different rates (Figure 4D), we were able to identify that the 220 

new variant likely had a higher growth rate, although not unequivocally based on the 95% 221 

credible intervals (CrI) on the difference in growth rate (Figure 4E). Again, differences in peak 222 

Ct value were identifiable, but not in the clearance rate (Figure 4F). These results show that 223 

although lower median Ct values may be explained either by higher growth rates or differences 224 

in viral kinetics, the full distribution of Ct values may hold information that allows both 225 

processes to be identified.  226 

The results shown in Figure 4 are from a single simulation of detectable Ct values. Therefore, 227 

to explore the identifiability of these differences in growth rates and viral kinetics based on 228 

cross-sectional samples of different sizes and stochastic draws, we repeated the analyses 229 

with varying sample sizes from 25 to 500 detectable Ct values per variant, running 100 230 

simulations for each sample size. When one variant was in decline while the other was 231 

increasing in frequency (Figure S8), we generally identified the different direction of the 232 

epidemic trajectories with as few as 25 Ct values per variant (with increasing certainty at 233 

increasing sample sizes). However, when both variants were increasing at the same time but 234 

at different rates (Figure S9), we were not able to exclude the possibility of no difference in 235 
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growth rate even with 500 Ct values per variant. This appeared to be largely driven by the lack 236 

of precision in growth rate estimates for the original variant, resulting in wide credible intervals. 237 

Nonetheless, posterior mean estimates were consistently identified as different between the 238 

two variants. Differences in peak Ct value were also identifiable in both epidemiologic 239 

scenarios with as few as 25 Ct values; however, even at 500 Ct values per variant, we were 240 

unable to reliably identify the true difference in viral clearance rates (Figures S10 and S11).  241 
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 242 

Figure 4. (A) Simulated Ct values assuming that the new variant has a higher peak viral load (-5 Ct at 243 

peak) and a longer time to clearance (5 additional days from peak to second hinge). Samples were 244 

assumed to be obtained under random cross-sectional surveillance at day 270 of the simulation shown 245 

in Figure 1. Horizontal lines show median Ct. (B) Estimated epidemic trajectory inferred using the single 246 

cross section of Ct values. Solid line, dark shaded region and light shaded region show posterior mean, 247 

50% credible intervals (CrI) and 95% CrI respectively. Dashed line shows the true epidemic trajectory 248 

for each variant. (C) Inferred viral kinetics from the same model fitting procedure as in (B). Shown are 249 

the posterior estimates for the modal Ct value over time since infection. Solid line, dark shaded region 250 

and light shaded region show posterior mean, 50% credible intervals (CrI) and 95% CrI respectively. 251 

Dashed line shows the true modal Ct curve. (D), (E), and (F) are identical to (A), (B) and (C) respectively, 252 

but with Ct values obtained from a simulation where both variants are seeded at the same time, but 253 

with the new variant assumed to have a higher basic reproductive number.  254 
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Discussion 255 

Given the relationship between epidemic growth rate and the distribution of viral loads in a 256 

population [27], care must be taken when directly comparing viral loads between variants 257 

using surveillance samples to avoid drawing incorrect conclusions of differences in strain 258 

virulence. Infections from variants with positive growth rates will typically be more recent than 259 

infections from co-circulating variants with negative growth rates, resulting in higher average 260 

viral loads. These findings provide a conceptually similar caution to analyses assessing the 261 

association between mutations and transmissibility [14,31]: just as mutations may be 262 

associated with increased growth rates simply due to founder effects or chance, infections 263 

with new variants may be associated with increased viral loads simply because they are 264 

experiencing higher epidemic growth rates. 265 

We found that comparing Ct values between variants using samples obtained entirely at 266 

random from the population are far more likely to lead to incorrect conclusions regarding 267 

differences in underlying viral kinetics than samples obtained from recently symptomatic 268 

individuals. This is because of how these sampling strategies reflect the underlying time-since-269 

infection distribution: cross-sectional surveillance samples individuals at a random time point 270 

in their infection, whereas symptom-based surveillance systematically tests people at a similar 271 

time after infection. Because viral loads [32], and therefore Ct values, are dictated by the time 272 

post infection, comparing Ct values from samples with similar time-since-infection distributions 273 

will reflect differences in viral kinetics and not epidemic growth rates. Accounting for 274 

differences in the time-since-infection distribution between datasets, which may be achieved 275 

using samples taken from times of comparable growth rates or by including time-since-onset 276 

or time-since-infection in a regression model, will improve the reliability of statistical tests 277 

comparing Ct values between variants. However, these results assume that the variants have 278 

similar delays between exposure and symptom onset. If, for example, newer variants have 279 

systematically shorter symptom onset delays, then new variant samples obtained under 280 

symptom-based surveillance would reflect a shorter time-since-infection distribution. 281 

At the time of writing, the SARS-CoV-2 literature has a mixture of studies that either do not 282 

acknowledge the potential for biases in Ct value comparisons [6,26], discuss the potential for 283 

this bias [33,34], or take clear steps to account for differences in the time-since-onset or time-284 

since-infection distribution when comparing Ct values [5,22]. For example, an analysis of P.1 285 

samples (Gamma variant) in Manaus, Brazil found that Ct values declined over time as the 286 

prevalence of P.1 infections increased. An initial comparison of values found a statistically 287 

significant association between P.1 infection and lower Ct value; however, after accounting 288 
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for the delay between symptom onset and sample collection, the significance of this 289 

relationship was lost, similar to our simulation results [5]. Another analysis comparing Ct 290 

values between two variants in Washington State, USA also initially performed a direct 291 

comparison of Ct values between a variant with a 614G substitution [22]. Again, the authors 292 

found that 614G was associated with lower Ct values than 614D. In contrast to the analysis 293 

by [5], this significant difference in Ct value remained after accounting for a number of potential 294 

confounders such as days after symptom onset and patient age. In this study, epidemic 295 

dynamics were likely not important in dictating Ct value distributions, as Ct values did not 296 

appear to be associated with time of sample collection and the time-since-onset distribution 297 

was similar between the two variants. 298 

Although epidemic dynamics have the potential to bias viral load comparisons, particularly 299 

using random cross-sectional samples, many study designs are unlikely to be affected. 300 

Comparing samples from recently symptomatic individuals, particularly when the distribution 301 

of delays between symptom onset and sample collection date are similar between the variants 302 

or are included in a regression model, is likely to lead to reliable conclusions. Such 303 

comparisons will be even more reliable if the timing of symptom onset is dependent on viral 304 

load (i.e., symptom onset occurs as a result of viral loads reaching their peak as opposed to 305 

independently). It is worth noting that differences in sampling delay distributions will likely vary 306 

independently of the epidemic growth rate simply due to the logistics of sample collection, 307 

limitations on testing capacity and changes in policy dictating who is tested. Accounting for 308 

time-since-onset is therefore advisable regardless. Other instances where epidemic dynamics 309 

will not affect viral load comparisons are when samples are obtained longitudinally from the 310 

same individuals, allowing the comparison of the full viral kinetics curve [20,35], or obtained 311 

near the time of exposure such that all samples have a similar time-since-infection [36]. 312 

There are a number of additional factors affecting viral load distributions that we did not 313 

consider here. First, we assumed in our simulations that Ct values were comparable across 314 

all samples. In reality, Ct values from different lineages may not be comparable across primers 315 

and platforms, such that Ct value comparisons reflect technological limitations rather than 316 

differences in viral load [37]. In such cases, conversion to a common scale such as viral load 317 

using calibration curves may be advisable [17]. We also did not consider how patient-level 318 

factors affect viral loads. Some limited evidence exists to suggest that children exhibit 319 

systematically lower viral loads than adults, with observations also affected by external factors 320 

such as swab quality or viral location within the respiratory tract [16,38,39]. Clinical severity 321 

may also affect viral load kinetics, with symptomatic patients exhibiting slower clearance rates 322 

than asymptomatic infections [32,40]. If samples being compared between variants represent 323 
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different underlying populations, which is likely when the age distribution of cases shifts over 324 

time, then viral load differences may reflect differences in the tested population rather than 325 

viral kinetics. Such shifts in clinical severity and age distributions have been seen in countries 326 

with high vaccine coverage, as vaccination of the elderly and at-risk groups shifts the relative 327 

prevalence of infections into younger populations [41]. Additionally, vaccination not only 328 

affects the composition of the population testing positive for SARS-CoV-2, but infections in 329 

vaccinated individuals may also exhibit lower viral loads [42]. Overall, care should be taken to 330 

either compare sample sets from similar populations, or meta-data on relevant demographic 331 

factors should be accounted for when comparing Ct values between variants. 332 

Finally, we adapted a previous method, which is ultimately a generalized linear regression 333 

model, to use Ct values obtained from a single point in time to simultaneously estimate 334 

differences in growth rates alongside differences in viral kinetics [27]. In reality, these two 335 

mechanisms may not be uniquely identifiable; however, understanding the combination of viral 336 

kinetics and transmissibility differences that can explain the data may still be valuable to detect 337 

variants of concern early and to quantify transmission advantages. This approach may be 338 

particularly useful in settings where sequencing capacity is limited, as sequencing-339 

independent means of stratifying samples by lineage (e.g., variant-specific primers, single 340 

gene failure etc.) can be used to then compare Ct values between variants [43]. However, we 341 

emphasize that this approach currently requires samples obtained through random cross-342 

sectional surveillance, or nearly random samples such as non-COVID patient hospital testing.  343 
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Materials and methods 344 

SEIR model 345 

We used a deterministic, two-strain, susceptible-exposed-infected-recovered (SEIR) model to 346 

simulate incidence curves for two competing strains in a fully susceptible population [44]. We 347 

assumed that two strains were seeded in the population: an “original variant” with 𝑅0 = 1.5, 348 

and a “new variant” with 𝑅0 = 2.5. The “original variant” was seeded on day 0 of the simulation, 349 

and the “new variant” was either seeded on day 180 or on day 0 as specified in the Results. 350 

We assumed that both strains had a 3-day mean latent period and 7-day mean infectious 351 

period, and that individuals became permanently immune to the strain they were infected with 352 

upon recovery. We also assumed that infection with one strain elicited strong cross-immunity 353 

(75% reduced infection probability) to the other. Overall, this is a simplified implementation of 354 

the model presented by [44] with no seasonality, no waning immunity and no births or deaths. 355 

The model was solved using daily time steps, and daily growth rates were calculated as 𝑔(𝑡) =356 

log⁡(
𝑦(𝑡+1)

𝑦(𝑡)
) where 𝑦(𝑡) is the incidence of new infections on day t. Full model equations and a 357 

table of parameters are shown in the Supplementary Material: SEIR model equations and 358 

Table S1. 359 

Viral kinetics model 360 

We used an existing model describing the average and distribution of viral loads as a function 361 

of time-since-infection with SARS-CoV-2 [27]. Briefly, the model assumes that the modal Ct 362 

value follows a piecewise linear function following infection, 𝐶𝑚𝑜𝑑𝑒(𝑎). After an initial 1-day 363 

period of no viral growth, the modal Ct value decreases monotonically to a peak value at day 364 

5 post infection. We assumed the peak Ct value was 20 for the original variant, or 15 for the 365 

new variant in scenarios assuming different viral kinetics. Ct values then increase to a plateau 366 

at a value of 38, which occurred on day 13 post peak for the original variant and day 18 post 367 

peak for the new variant with different viral kinetics. Thereafter, individuals have a daily 368 

probability of becoming fully undetectable, modeled as a Bernoulli process with probability 369 

𝑝𝑎𝑑𝑑𝑙. 370 

To capture the substantial variation across individuals and samples in Ct values observed on 371 

a given day post-infection, we assumed that Ct values follow a Gumbel distribution with a 372 

scale parameter 𝜎(𝑎) that begins at 5 but decreases to 4 towards the end of infection. This 373 

decreasing scale parameter captures the fact that samples taken early in infection are affected 374 

by variation from both individual-level heterogeneity in kinetics in addition to sampling 375 

variation, whereas samples taken towards the end of infection largely represent consistent, 376 
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small quantities of residual viral RNA. We assumed that the maximum Ct value was 40, and 377 

all samples from undetectable or uninfected individuals were excluded from the analyses. We 378 

also note that although we describe the model on the scale of Ct values, analogous results 379 

would hold for viral loads, as Ct values are linearly related to log viral loads. Full model 380 

equations and a table of parameters are shown in the Supplementary Material: viral kinetics 381 

model and Table S2. 382 

Simulated surveillance samples and Ct values 383 

We combined the SEIR and viral kinetics models to simulate Ct values among the infected 384 

population over time. In brief, we used the SEIR model to simulate when individuals are 385 

infected with either variant over time and used the viral kinetics model to simulate their 386 

observed Ct value when sampled on a particular day post infection. Observations were 387 

simulated using two surveillance strategies described below. For the analyses underpinning 388 

Figures S1-S7, we generated 1000 simulated datasets for each sample size of 25, 50, 100, 389 

250 or 500. We simulated datasets on day 270 of the epidemic in scenarios where the new 390 

variant had a later seed date, or day 50 when the strains were seeded on the same day.  391 

First, we considered random cross-sectional sampling, where individuals are tested entirely 392 

at random regardless of their time since infection. In this case, we simulated the distribution 393 

of detectable Ct values 𝑋𝑣,𝑡 for variant v on a given day of the epidemic t as 𝑋𝑣,𝑡~𝑓𝑣,𝑡(𝑥). 𝑓𝑣,𝑡(𝑥) 394 

is the probability density function (PDF) for detectable Ct values on day t of the epidemic, 395 

calculated by convoluting the variant-specific incidence curve (which describes the distribution 396 

of times since infection) and viral kinetics model (which describes the distribution of observed 397 

Ct values on each day after infection): 398 

𝑓𝑣,𝑡(𝑥) =
∑ 𝑝𝑎(𝑥)⁡𝜙𝑎𝜋𝑣,𝑡−𝑎
𝐴𝑚𝑎𝑥
𝑎=0

∑ 𝜙𝑎𝜋𝑣,𝑡−𝑎
𝐴𝑚𝑎𝑥
𝑎=0

 399 

where 𝐴𝑚𝑎𝑥 is the maximum time-since-infection for which individuals may still be PCR 400 

detectable (set to 35 days); 𝑝𝑎(𝑥)⁡is the Gumbel probability density function scaled to only 401 

take values between 0 and 𝐶𝐿𝑂𝐷 with location parameter 𝐶𝑚𝑜𝑑𝑒(𝑎) and scale parameter 𝜎(𝑎); 402 

𝜙𝑎 is the probability of being PCR detectable on day a post infection; and 𝜋𝑣,𝑡 gives the 403 

probability of infection with variant v on day t of the epidemic. Individual observations were 404 

generated by simulating from this PDF. Note that this PDF can be modified to generate PCR-405 

negative observations, but we are only interested in the distribution of PCR-positive 406 

observations here. 407 
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Second, we simulated Ct values under symptom-based surveillance, where individuals are 408 

tested following the onset of symptoms. Again, we simulated from the PDF for Ct values on 409 

day t of the epidemic as 𝑋𝑣,𝑡~𝑔𝑣,𝑡(𝑥), but this time convoluting the incubation period and 410 

sampling delay distributions as well as the incidence and viral kinetics models. Note again that 411 

we assume that only PCR-positive Ct values were observed:  412 

𝑔𝑣,𝑡(𝑥) =
∑ ∑ 𝑝𝑑+𝑜(𝑥)⁡𝜙𝑑+𝑜𝑠(𝑑)𝑤(𝑜)𝜋𝑣,𝑡−(𝑑+𝑜)

𝑂𝑚𝑎𝑥
𝑜=0

𝐷𝑚𝑎𝑥
𝑑=0

∑ ∑ ⁡𝜙𝑑+𝑜𝑠(𝑑)𝑤(𝑜)𝜋𝑣,𝑡−(𝑑+𝑜)
𝑂𝑚𝑎𝑥
𝑜=0

𝐷𝑚𝑎𝑥
𝑑=0

 413 

where d is the sampling delay in days; o is the incubation period in days; 𝑠(𝑑) is the PDF for 414 

the discretized gamma sampling delay distribution; and 𝑤(𝑜) is the PDF for the discretized 415 

log-normal incubation period distribution. 416 

Simulating Ct values for the analyses shown in Figure S5 and Figure S7 is slightly more 417 

involved because each individual needs both an observed Ct value and corresponding 418 

sampling delay. Although the principle of simulating from the PDF is the same, we simulated 419 

individual-level line list data for these analyses as described in the Supplementary Material: 420 

simulating samples under symptom-based surveillance. 421 

Statistical methods 422 

Direct statistical comparisons of Ct distributions from the two variants were two-sided, two-423 

sample Wilcoxon rank sum tests (Mann-Whitney test) at a significance level of 5%. In the 424 

analyses controlling for days-since-onset when comparing Ct values, we fit linear regression 425 

models of the form 𝐸[𝑥𝑖|𝑑𝑖, 𝑣_𝑖] = ⁡𝛽0 +⁡𝛽1𝑑𝑖 +⁡𝛽2𝑣𝑖, where 𝑑𝑖 gives the days between 426 

symptom onset and sample collection for individual i, and 𝑣𝑖  gives the variant infecting that 427 

individual. Hypothesis tests in the regression models were conducted for the null hypothesis 428 

𝐻0:⁡𝛽2 = 0 using an asymptotic t-test. Power was defined as the proportion of simulations 429 

under a given scenario and sample size where the null hypothesis (the distribution of Ct values 430 

for both variants are equal or there is no effect of variant on Ct value) was correctly rejected 431 

in simulations where the variants have different viral kinetics. Type 1 errors were defined as 432 

tests which incorrectly rejected the null hypothesis in simulations where the variants have 433 

identical viral kinetics. 434 

Estimating growth rates and viral kinetics from cross-sectional samples 435 

Using the simulated random cross-sectional samples of detectable Ct values, we jointly 436 

estimated the posterior distributions of viral kinetics parameters and the exponential growth 437 

rate that are consistent with the observed data. We repeated this process for each of the 100 438 
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simulated datasets of sample sizes of 25, 50, 100, 250 and 500 detectable Ct values per 439 

variant. Model fitting was carried out using the virosolver R package [45]. In brief, model fitting 440 

involves: (1) defining the likelihood of observing Ct values conditional on the viral kinetics 441 

model parameters and incidence curve, assuming that incidence follows exponential growth 442 

with an unknown growth rate parameter; (2) defining priors for all model parameters as 443 

described in Table S2; and (3) estimating the posterior distribution of all model parameters 444 

conditional on the Ct data using Markov chain Monte Carlo (MCMC). For each model fit, three 445 

chains were run for 100,000 iterations each with the first 50,000 iterations discarded as burn 446 

in. Convergence was assessed based on the trace plots and obtaining effective sample sizes 447 

>200 and 𝑅̂ < 1.1 for all estimated parameters.  448 

For the most part, we followed the method exactly as described in [27]. However, because we 449 

are interested in jointly estimating the viral kinetics and epidemic growth rates for two co-450 

circulating strains (whereas [27] is defined for only one strain), we made the following 451 

modifications: (1) the peak Ct value parameter for the new variant was defined relative to the 452 

peak Ct value for the original variant (i.e., 𝐶′𝑝 = 𝜌𝐶𝑝); (2) the second hinge point of the Ct 453 

model for the new variant was defined relative to the original variant (i.e., 𝑡′𝑠 = 𝜂𝑡𝑠); and (3) 454 

each variant has its own exponential growth rate parameter (𝛽𝑣).  455 
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 2 

1. SEIR model equations 14 

Shown below are the ordinary differential equations for the two-strain susceptible-exposed-15 

infected-recovered model. Each equation shows the transition rate for a given state pair. For 16 

example, {𝑆1𝑆2} gives the population who are susceptible to both strain 1 and 2, {𝑆1𝐸2} gives 17 

the population who are susceptible to strain 1 and exposed to strain 2 etc. For concision, all 18 

individuals infected with a given strain are denoted 𝑰𝒗, where 𝑰𝟏 = {𝐼1𝑆2} + {𝐼1𝐸2} + {𝐼1𝐼2} +19 

{𝐼1𝑅2} and 𝑰𝟐 = {𝑆1𝐼2} + {𝐸1𝐼2} + {𝐼1𝐼2} + {𝑅1𝐼2}. Note that epidemic seeding is also included 20 

here, where |𝑠𝑒𝑒𝑑 < 𝑡 ≤ 𝑠𝑒𝑒𝑑 + 7|𝜅 indicates that exposed individuals are generated at rate 21 

𝜅 within a 7-day window following seeding. Parameters are described in Table S1. Note that 22 

𝑅0 =
𝛽

𝛾
. 23 

𝑑{𝑆1𝑆2}

𝑑𝑡
=  −𝛽1{𝑆1𝑆2}𝑰𝟏 − 𝛽2{𝑆1𝑆2}𝑰𝟐 − |𝑠𝑒𝑒𝑑1 < 𝑡 ≤ 𝑠𝑒𝑒𝑑1 + 7|𝜅1 − |𝑠𝑒𝑒𝑑2 < 𝑡24 

≤ 𝑠𝑒𝑒𝑑2 + 7|𝜅2 25 

𝑑{𝐸1𝑆2}

𝑑𝑡
=  𝛽1{𝑆1𝑆2}𝑰𝟏 − 𝜐{𝐸1𝑆2} − (1 − 𝜒)𝛽2{𝐸1𝑆2}𝑰𝟐 + |𝑠𝑒𝑒𝑑1 < 𝑡 ≤ 𝑠𝑒𝑒𝑑1 + 7|𝜅1 26 

𝑑{𝐼1𝑆2}

𝑑𝑡
=  𝜐{𝐸1𝑆2} − 𝛾{𝐼1𝑆2} − (1 − 𝜒) 𝛽2{𝐼1𝑆2}𝑰𝟐 27 

𝑑{𝑅1𝑆2}

𝑑𝑡
= 𝛾{𝐼1𝑆2} − (1 − 𝜒) 𝛽2{𝑅1𝑆2}𝑰𝟐 28 

𝑑{𝑆1𝐸2}

𝑑𝑡
=  𝛽2{𝑆1𝐸2}𝑰𝟐 − 𝜐{𝑆1𝐸2} − (1 − 𝜒) 𝛽1{𝑆1𝐸2}𝑰𝟏 + |𝑠𝑒𝑒𝑑2 < 𝑡 ≤ 𝑠𝑒𝑒𝑑2 + 7|𝜅2 29 

𝑑{𝐸1𝐸2}

𝑑𝑡
=  −2𝜐{𝐸1𝐸2} + (1 − 𝜒)𝛽1{𝑆1𝐸2}𝑰𝟏 + (1 − 𝜒)𝛽2{𝐸1𝑆2}𝑰𝟐 30 

𝑑{𝐼1𝐸2}

𝑑𝑡
=  𝜐{𝐸1𝐸2} − 𝜐{𝐼1𝐸2} − 𝛾{𝐼1𝐸2} + (1 − 𝜒)𝛽2{𝐼1𝑆2}𝑰𝟐 31 

𝑑{𝑅1𝐸2}

𝑑𝑡
= −𝜐{𝑅1𝐸2} + 𝛾{𝐼1𝐸2} + (1 − 𝜒)𝛽2{𝑅1𝑆2}𝑰𝟐 32 

𝑑{𝑆1𝐼2}

𝑑𝑡
=  𝜐{𝑆1𝐸2} − 𝛾{𝑆1𝐼2} − (1 − 𝜒) 𝛽1{𝑆1𝐼2}𝑰𝟏 33 

𝑑{𝐸1𝐼2}

𝑑𝑡
=  𝜐{𝐸1𝐸2} − 𝜐{𝐸1𝐼2} − 𝛾{𝐸1𝐼2} + (1 − 𝜒) 𝛽1{𝑆1𝐼2}𝑰𝟏 34 

𝑑{𝐼1𝐼2}

𝑑𝑡
=  𝜐{𝐸1𝐼2} + 𝜐{𝐼1𝐸2} − 2𝛾{𝐼1𝐼2} 35 

𝑑{𝑅1𝐼2}

𝑑𝑡
= 𝛾{𝐼1𝐼2} − 𝛾{𝑅1𝐼2} + 𝜐{𝑅1𝐸2} 36 

𝑑{𝑆1𝑅2}

𝑑𝑡
=  𝛾{𝑆1𝐼2} − (1 − 𝜒) 𝛽1{𝑆1𝑅2}𝑰𝟏 37 

𝑑{𝐸1𝑅2}

𝑑𝑡
=  𝛾{𝐸1𝐼2} − 𝜐{𝐸1𝑅2} + (1 − 𝜒) 𝛽1{𝑆1𝑅2}𝑰𝟏 38 

𝑑{𝐼1𝑅2}

𝑑𝑡
=  𝜐{𝐸1𝑅2} + 𝛾{𝐸1𝐼2} − 𝛾{𝐼1𝑅2} 39 

𝑑{𝑅1𝑅2}

𝑑𝑡
= 𝛾{𝑅1𝐼2} + 𝛾{𝐼1𝑅2} 40 

  41 
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2. Viral kinetics model 42 

To describe modal Ct values 𝐶𝑚𝑜𝑑𝑒(𝑎) in an individual on each day post infection 𝑎, we used 43 

a previously described viral kinetics model (main text reference [27]). We reproduce the 44 

equations here for completeness. Overall, the model is a two-hinge function that describes the 45 

timing and Ct value of several switch points in the viral kinetics process. After a short period 46 

𝑡𝑒 of viral loads remaining unchanged at 𝐶0, the modal Ct value decreases to a minimum of 47 

𝐶𝑝 over a period of 𝑡𝑝 days. Ct values then increase over 𝑡𝑠 days to plateau at 𝐶𝑠. From this 48 

time onward the distribution of Ct values among detectable individuals remains unchanged; 49 

however, to account for individuals fully recovering and becoming PCR negative, we modeled 50 

a Bernoulli process with a daily probability 𝑝𝑎𝑑𝑑𝑙 of becoming undetectable on each day after 51 

the final hinge point (𝑎 < 𝑡𝑒 + 𝑡𝑝 + 𝑡𝑠).  52 

𝐶𝑚𝑜𝑑𝑒(𝑎) =  

{
  
 

  
 

𝐶0, 𝑎 ≤ 𝑡𝑒

𝐶0 +
𝐶𝑝 − 𝐶0
𝑡𝑝

(𝑎 − 𝑡𝑒), 𝑡𝑒 < 𝑎 ≤ 𝑡𝑒 + 𝑡𝑝

𝐶𝑝 + 
𝐶𝑠 − 𝐶𝑝
𝑡𝑠

(𝑎 − 𝑡𝑒 − 𝑡𝑝),

𝐶𝑠,

𝑡𝑒 + 𝑡𝑝 < 𝑎 ≤ 𝑡𝑒 + 𝑡𝑝 + 𝑡𝑠
𝑡𝑒 + 𝑡𝑝 + 𝑡𝑠 < 𝑎

 53 

To capture variation in observed Ct values arising from sampling variation and individual-level 54 

variation in viral kinetics, we assumed that observed Ct values follow a Gumbel distribution 55 

with location parameter set by the above model:  𝐶(𝑎)~𝐺𝑢𝑚𝑏𝑒𝑙(𝐶𝑚𝑜𝑑𝑒(𝑎), 𝜎(𝑎)). The scale 56 

parameter 𝜎(𝑎) was assumed to shrink over time given by: 57 

𝜎(𝑎) =  

{
 

 
𝜎𝑜𝑏𝑠, 𝑎 < 𝑡𝑒 + 𝑡𝑝 + 𝑡𝑠

𝜎𝑜𝑏𝑠 [1 −
1 − 𝑠𝑚𝑜𝑑
𝑡𝑚𝑜𝑑

(𝑎 − 𝑡𝑒 − 𝑡𝑝 − 𝑡𝑠)] , 𝑡𝑒 + 𝑡𝑝 + 𝑡𝑠 ≤ 𝑎 < 𝑡𝑒 + 𝑡𝑝 + 𝑡𝑠 + 𝑡𝑚𝑜𝑑

𝜎𝑜𝑏𝑠𝑠𝑚𝑜𝑑 , 𝑡𝑒 + 𝑡𝑝 + 𝑡𝑠 + 𝑡𝑚𝑜𝑑 ≤ 𝑎

 58 

A key part of the model is the description of the proportion of individuals who remain PCR 59 

positive on each day post infection. Individual samples can be undetectable in one of two 60 

ways: (1) having a Ct value drawn from the Gumbel distribution above the limit of detection 61 

𝐶𝐿𝑂𝐷 or (2) fully clearing the infection following the Bernoulli process described above. The 62 

probability of being detectable on day 𝑎 post infection is therefore given by: 63 

𝜙𝑎 = {
𝑃[𝐶(𝑎) < 𝐶𝐿𝑂𝐷], 𝑎 ≤ 𝑡𝑒 + 𝑡𝑝 + 𝑡𝑠

𝑃[𝐶(𝑎) < 𝐶𝐿𝑂𝐷](1 − 𝑝𝑎𝑑𝑑𝑙)
𝑎−𝑡𝑒−𝑡𝑝−𝑡𝑠 , 𝑎 > 𝑡𝑒 + 𝑡𝑝 + 𝑡𝑠

 64 

  65 
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3. Simulating samples under symptom-based surveillance 66 

To generate complete line lists for the simulated data underpinning Figure S5 and Figure S7, 67 

we used the SEIR model, viral kinetics model, incubation period distribution and sampling 68 

delay distribution to generate a population of size N where each individual has a binary 69 

infection state, an infection time, a binary symptomatic state, an incubation period, a sampling 70 

delay, and an observed Ct value. All time-related variables are in days. Note that the incidence 71 

curve is generated only by the SEIR model before individual symptom onset dates are 72 

simulated—individual symptomatic states do not impact transmission dynamics. 73 

First, we generated an infection state (1 or 0) for each variant for each individual from a 74 

Bernoulli distribution with probability 𝑝 = ∑ 𝑦𝑣(𝑢)
𝑡𝑚𝑎𝑥
𝑢=0 𝑁⁄  where 𝑦𝑣(𝑡) is the incidence of new 75 

infections with variant v at time t. We then simulated an infection time for each infected 76 

individual with each variant 𝑡𝑣,𝑖: 77 

𝑡𝑣,𝑖~
𝑦𝑣(𝑡)

∑ 𝑦𝑣(𝑢)
𝑡𝑚𝑎𝑥
𝑢=0

 78 

Next, we generated a symptomatic state for each infected individual from a Bernoulli 79 

distribution with probability 𝑝 = 0.35. Symptomatic individuals then have an incubation period 80 

drawn from: 81 

𝑜𝑖~𝑑𝑙𝑜𝑔𝑁𝑜𝑟𝑚𝑎𝑙(𝜇, 𝜎) 82 

Where 𝑑𝑙𝑜𝑔𝑁𝑜𝑟𝑚𝑎𝑙 is the discretized log-normal distribution with mean 𝜇 and standard 83 

deviation  𝜎. We set 𝜇 = 1.621 and 𝜎 = 0.418 based on previous estimates (main text 84 

reference [46]). Individuals then have a sampling delay drawn from: 85 

𝑑𝑖~𝑑𝑔𝑎𝑚𝑚𝑎(𝑎, 𝑠) 86 

Where 𝑑𝑔𝑎𝑚𝑚𝑎 is the discretized gamma distribution with shape parameter 𝑎 and scale 87 

parameter 𝑠. We set 𝑎=5 or 7 and 𝑠=1 or 0.9 as described in the main text. Infected individuals 88 

have a recovery time after which they are guaranteed to be PCR negative, drawn from a 89 

negative binomial distribution: 90 

𝑡−~ 𝑛𝑏𝑖𝑛𝑜𝑚(𝑝𝑎𝑑𝑑𝑙) + 𝑡𝑒 + 𝑡𝑝 + 𝑡𝑠 91 

Where 𝑛𝑏𝑖𝑛𝑜𝑚 is the negative binomial distribution, and the other parameters are described 92 

in Table S2. Finally, we simulate an observed Ct value for each individual i observed on day 93 

𝑡𝑣,𝑖 + 𝑜𝑖 + 𝑑𝑖 under the model: 94 

𝑥𝑖~ {
𝑝𝑑𝑖+𝑜𝑖(𝑥), 𝑑𝑖 + 𝑜𝑖 < 𝑡

−

𝐶𝐿𝑂𝐷, 𝑑𝑖 + 𝑜𝑖 ≥ 𝑡
− 95 

Where 𝑝𝑑𝑖+𝑜𝑖(𝑥) is the Gumbel probability density function with location parameter 𝐶𝑚𝑜𝑑𝑒(𝑑𝑖 +96 

𝑜𝑖 ) and scale parameter 𝜎(𝑑𝑖 + 𝑜𝑖 ). All 𝑥𝑖 > 𝐶𝐿𝑂𝐷 are set to 𝐶𝐿𝑂𝐷. 97 
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To compare Ct values on a given day of the simulation 𝑡𝑠𝑎𝑚𝑝, we found all individuals in the 98 

line list with detectable Ct values where 𝑡𝑠𝑎𝑚𝑝 − 3.5 < 𝑡𝑣,𝑖 + 𝑜𝑖 + 𝑑𝑖 ≤ 𝑡𝑠𝑎𝑚𝑝 + 3.5 (i.e., all 99 

individuals who were sampled in a 7 day window around the chosen time), and then resampled 100 

from these Ct values with replacement to obtain a sample of the specified size (25, 50, 100, 101 

250 or 500).   102 
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 103 

Figure S1. Accuracy and power when comparing Ct values from variants obtained through 104 

random cross-sectional surveillance at day 270 of the simulation shown in Figure 1. All statistical 105 

tests are two-sided Wilcoxon rank sum tests. (A) Boxplots show the interquartile range (IQR, 75th to 106 

25th percentile) and median across 1000 simulations for the difference in Ct values when comparing 107 

the original variant (V1), the new variant (V2) with identical kinetics, or the new variant (V2) with different 108 

kinetics. Whiskers show 1.5 times the largest and smallest values within 1.5 times the IQR. Dots show 109 

individual simulations outside 1.5 times the IQR. Horizontal dashed green lines show the true difference 110 
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 7 

in median Ct values between the original variant and the new variant with identical kinetics. Horizontal 111 

dashed orange line shows the difference in peak Ct value assumed for the new variant with different 112 

kinetics relative to the original variant. For an entirely accurate test, the green dots should all align on 113 

the green horizontal line, and the orange and black dots should be identical and negative. (B) 114 

Assessment of empirical power to detect a true difference in Ct values at different sample sizes. (C) 115 

Probability of type 1 error (incorrectly infer a difference in Ct value) at different sample sizes.  116 
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 117 

Figure S2. Accuracy and power when comparing Ct values from variants obtained through 118 

random cross-sectional surveillance when samples are obtained when both variants have a 119 

growth rate of 0.03 using the simulation shown in Figure 1. All statistical tests are two-sided 120 

Wilcoxon rank sum tests. (A) Boxplots show the interquartile range (IQR, 75th to 25th percentile) and 121 

median across 1000 simulations for the difference in Ct value when comparing the original variant (V1), 122 

the new variant (V2) with identical kinetics, or the new variant (V2) with different kinetics. Whiskers 123 

show 1.5 times the largest and smallest values within 1.5 times the IQR. Dots show individual 124 
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simulations outside 1.5 times the IQR. Horizontal dashed green lines show the true difference in median 125 

Ct values between the original variant and the new variant with identical kinetics. Horizontal dashed 126 

orange line shows the difference in peak Ct value assumed for the new variant with different kinetics 127 

relative to the original variant. For an entirely accurate test, the green dots should all align on the green 128 

horizontal line, and the orange and black dots should be identical and negative. (B) Assessment of 129 

empirical power to detect a true difference in Ct values at different sample sizes. (C) Probability of type 130 

1 error (incorrectly infer a difference in Ct value) at different sample sizes.  131 
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 132 

Figure S3. Accuracy and power when comparing Ct values from variants obtained through 133 

random cross-sectional surveillance when samples are obtained when both variants have a 134 

growth rate of -0.02 using the simulation shown in Figure 1. All statistical tests are two-sided 135 

Wilcoxon rank sum tests. (A) Boxplots show the interquartile range (IQR, 75th to 25th percentile) and 136 

median across 1000 simulations for the difference in Ct value when comparing the original variant (V1), 137 

the new variant (V2) with identical kinetics, or the new variant (V2) with different kinetics. Whiskers 138 

show 1.5 times the largest and smallest values within 1.5 times the IQR. Dots show individual 139 
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simulations outside 1.5 times the IQR. Horizontal dashed green lines show the true difference in median 140 

Ct values between the original variant and the new variant with identical kinetics. Horizontal dashed 141 

orange line shows the difference in peak Ct value assumed for the new variant with different kinetics 142 

relative to the original variant. For an entirely accurate test, the green dots should all align on the green 143 

horizontal line, and the orange and black dots should be identical and negative. (B) Assessment of 144 

empirical power to detect a true difference in Ct values at different sample sizes. (C) Probability of type 145 

1 error (incorrectly infer a difference in Ct value) at different sample sizes.  146 
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 147 

Figure S4. Accuracy and power when comparing Ct values from variants obtained through 148 

symptom-based surveillance when samples are obtained at day 270 of the simulation shown in 149 

Figure 3. All statistical tests are two-sided Wilcoxon rank sum tests. (A) Boxplots show the interquartile 150 

range (IQR, 75th to 25th percentile) and median across 1000 simulations for the difference in Ct value 151 

when comparing the original variant (V1), the new variant (V2) with identical kinetics, or the new variant 152 

(V2) with different kinetics. Whiskers show 1.5 times the largest and smallest values within 1.5 times 153 

the IQR. Dots show individual simulations outside 1.5 times the IQR. Horizontal dashed green lines 154 

show the true difference in median Ct values between the original variant and the new variant with 155 

identical kinetics. Horizontal dashed orange line shows the difference in peak Ct value assumed for the 156 

new variant with different kinetics relative to the original variant. For an entirely accurate test, the green 157 

dots should all align on the green horizontal line, and the orange and black dots should be identical and 158 

negative. (B) Assessment of empirical power to detect a true difference in Ct values at different sample 159 

sizes. (C) Probability of type 1 error (incorrectly infer a difference in Ct value) at different sample sizes.  160 
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 161 

Figure S5. Accuracy and power when comparing Ct values from variants obtained through 162 

symptom-based surveillance when samples are obtained at day 270 of the simulation shown in 163 

Figure 3. All statistical tests are simple linear regression models as described in Materials and methods. 164 

(A) Boxplots show the interquartile range (IQR, 75th to 25th percentile) and median across 1000 165 

simulations of the mean regression coefficient estimate for the effect of variant on difference in Ct value 166 

when comparing the original variant (V1), the new variant (V2) with identical kinetics, or the new variant 167 

(V2) with different kinetics. Whiskers show 1.5 times the largest and smallest values within 1.5 times 168 

the IQR. Dots show individual simulations outside 1.5 times the IQR. Horizontal dashed green lines 169 

show the true difference in median Ct values between the original variant and the new variant with 170 

identical kinetics. Horizontal dashed orange line shows the difference in peak Ct value assumed for the 171 

new variant with different kinetics relative to the original variant. For an entirely accurate test, the green 172 

dots should all align on the green horizontal line, and the orange and black dots should be identical and 173 
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negative. (B) Assessment of empirical power to detect a true difference in Ct values at different sample 174 

sizes. (C) Probability of type 1 error (incorrectly infer a difference in Ct value) at different sample sizes.  175 
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 176 

Figure S6. Identical to Figure S4, but assuming that the sampling delay distribution of original 177 

variant has a slightly higher mean and standard deviation than the new variant (shape parameter 178 

and shape parameters of 7 and 0.9 respectively vs. 5).  179 
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 180 

Figure S7. Identical to Figure S5, but assuming that the sampling delay distribution of original 181 

variant has a slightly higher mean and standard deviation than the new variant (shape parameter 182 

and shape parameters of 7 and 0.9 respectively vs. 5).  183 
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 184 

Figure S8. Estimated growth rates and variant differences compared to true simulated values, 185 

assuming that samples are obtained at day 270 of the simulation shown in Figure 1. The original 186 

variant is in epidemic decline, whereas the new variant is in epidemic growth. Rows show 187 

increasing sample sizes. Each point-range plot shows the posterior mean (dot), 50% CrI (dark line) and 188 

95% CrI (faint line) for a distinct simulation. Dashed red line shows true value in the simulation.  189 
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 190 

Figure S9. Estimated growth rates and variant differences compared to true simulated values, 191 

assuming that samples are obtained from a simulation where both variants are increasing 192 

simultaneously. The original variant has R0=1.5, whereas the new variant has R0=2.5. Rows show 193 

increasing sample sizes. Each point-range plot shows the posterior mean (dot), 50% CrI (dark line) and 194 

95% CrI (faint line) for a distinct simulation. Dashed red line shows true value in the simulation.195 
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 196 

Figure S10. Posterior estimates for differences in viral kinetics between the two variants, 197 

assuming that samples are obtained at day 270 of the simulation shown in Figure 1. The original 198 

variant is in epidemic decline, whereas the new variant is in epidemic growth. Rows show 199 

increasing sample sizes. Each point-range plot shows the posterior mean (dot), 50% CrI (dark line) and 200 

95% CrI (faint line) for a distinct simulation. Dashed red line shows true value in the simulation. 201 
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 202 

Figure S11. Posterior estimates for differences in viral kinetics between the two variants, 203 

assuming that samples are obtained at day 270 of the simulation shown in Figure 1. The original 204 

variant has R0=1.5, whereas the new variant has R0=2.5. Rows show increasing sample sizes. Each 205 

point-range plot shows the posterior mean (dot), 50% CrI (dark line) and 95% CrI (faint line) for a distinct 206 

simulation. Dashed red line shows true value in the simulation.  207 
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Table S1: Description of SEIR model parameters 208 

Parameter Description Assumed value 

β1 Original variant transmission rate 1.5/γ 

β2 New variant transmission rate 2.5/γ 

κ1 Original variant importation rate 1/100000 

κ2 New variant importation rate 1/100000 

1/ν Latent period in days 3 

1/γ Infectious period in days 7 

χ Cross immunity between strains 0.75 

seed1 Time of original variant seeding (days) 0 

seed2 Time of new variant seeding (days) 0 or 180 

N Population size 1 (model is solved per capita) 

  209 
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Table S2: Description of viral kinetics model parameters 210 

Parameter Description Point estimate Prior 

Viral kinetics model 

te Time from infection to initial viral growth 1.00 days Fixed 

C0 Ct value at time of infection 45.0 Fixed 

tp Days from initial viral growth to peak viral load 5.00 days Fixed 

Cp Modal Ct value at peak viral load 19.7 Normal(19.7, 2.00) 

ts Time from peak viral load to plateau phase 13.3 days Normal(13.3, 3.00) 

Cs Modal Ct value at a = teclipse + tpeak + tswitch 38.0 Normal(38.0, 1.00) 

paddl Daily probability of detectability loss after tswitch 0.103 Beta(10.5, 91.2) 

CLOD Limit of detection of Ct value 40.0 Fixed 

σobs Initial scale parameter for the Gumbel distribution 
until a=te+tp+ts 

5.00 Normal(5.00, 0.50) 

smod Multiplicative factor applied to scale parameter for 
the Gumbel distribution starting at a = 
teclipse+tpeak+tswitch+tscale 

0.789 Fixed 

tmod Time from secondary waning phase until Gumbel 
distribution reaches its minimum scale parameter 

14.0 days Fixed 

New variant viral kinetics 

ρ Peak Ct value of new variant relative to original 
variant 

0.747 (5 Ct 
values lower) 

Log-normal(0, 0.5) 
(on linear scale) 

η Time from peak to plateau phase for new variant 
relative to original variant 

1.38 (5 days 
longer) 

Log-normal(0, 0.5) 
(on linear scale) 

Exponential growth model 

β1 Original variant exponential growth rate NA Normal(0, 0.1) 

β2 New variant exponential growth rate NA Normal(0, 0.1) 

 211 
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