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High grade serous ovarian cancer (HGSOC) is a highly heterogeneous disease that often presents at an advanced, metastatic state. The
multi-scale complexity of HGSOC is a major obstacle to measuring response to neoadjuvant chemotherapy (NACT) and understanding its
determinants. Here we propose a radiogenomic framework integrating clinical, radiomic, and blood-based biomarkers to measure and predict
the response of HGSOC patients to NACT, showing how quantitative imaging data can serve as the backbone of multi-scale data integration.
We developed and validated our approach in two independent highly-annotated multi-omic multi-lesion data sets. In a discovery cohort
(n=72) we found that different tumour sites present distinct response patterns, and identified volumetric response assessment as a better
predictor of overall survival (OS) than RECIST 1.1 status. We trained an ensemble machine learning approach to predict tumour volume
response to NACT from data obtained prior to treatment, and validated the model in an internal hold-out cohort (n=20) and an independent
external patient cohort (n=42). Benchmarking integrated models against models built on single data types highlighted the importance of
comprehensive patient characterisation. Our study sets the foundation for developing new clinical trials of NACT in HGSOC.
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1. Introduction 15

High grade serous ovarian cancer (HGSOC) remains a major therapeutic challenge and usually presents 16

with advanced, multi-site metastatic disease. Neoadjuvant chemotherapy (NACT) followed by delayed 17

primary surgery (DPS) is now the most frequent first line therapy for advanced HGSOC (1, 2). However, 18

39% of patients did not obtain any direct benefit from it in the large international ICON8 trial (3–5). 19

Patient care would be substantially improved if these different sub-populations could be predicted before 20

treatment started, for example by identifying likely non-responders who should receive immediate primary 21

surgery. This variability in the response is driven by the complexity of HGSOC, which spans a large range 22

of scales —from macroscopic tumour volumes observed on radiological imaging to microscopic immune 23

microenvironments and sub-microscopic genomic diversity (6–8)—, but multiple-sampling strategies across 24

different metastatic sites are not scalable. 25

Here we present an integrative radiogenomic framework to address the two fundamental challenges in 26

the treatment of heterogeneous multi-site disease. The first challenge is accurately measuring response. 27

The widely used RECIST 1.1 criteria are based on one-dimensional measurements performed on a small 28

subset of lesions (9) and are thus insufficient for complex diseases such as HGSOC (10–12). This lack 29

of accurate response measures prevents the optimisation of treatment strategies and the development 30

of clinical trials for new combination therapies (13). The second major challenge is predicting response. 31

Studies so far have focused on single data streams which can only offer a partial view of the disease, such 32

as clinical features (14, 15), CA-125 (16–18), computed tomography (CT) imaging (19, 20), and circulating 33

tumour DNA (ctDNA) (21). The superior predictive power of integrative models for complex endpoints is 34
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well documented in several cancer types (22–24), but training such models requires large, well-annotated,35

multi-omic datasets, which have not been available in HGSOC. In particular, radiological imaging is the36

only data source to capture the spatial heterogeneity of metastatic disease, but has so far been underused in37

HGSOC, where existing radiomics studies have focused only on correlations (19, 20), rather than combined38

predictive power, and none have considered NACT.39

To overcome these challenges we used two independent highly annotated data sets to develop an integrated40

radiogenomic framework for measuring and predicting the response of HGSOC patients to NACT. Our41

framework showcases the power of quantitative imaging data to characterise metastatic disease and to serve42

as the backbone of multi-scale data integration.43

2. Results44

This study is based on two data sets, the first one (n = 92) from the NeOV trial and the second one (n = 42)45

from the Barts Health NHS Trust (Materials and Methods). Patients show large variability in treatment46

regimes and response patterns (Figure 1a). The NeOv dataset was randomly divided into a training set47

(n = 72) and a hold-out internal validation set (n = 20, Figure S1a). The training data set was used for the48

exploratory analyses and to train the machine learning models. The hold-out set was kept aside and only49

used for performance assessment after all predictive models had been fully trained. The Barts data were50

used as an independent, external validation data set.51

Response patterns to NACT are heterogeneous.All primary and metastatic lesions identified on pre- and52

post-NACT CT scans were segmented and labelled by a team of experienced radiologists (Figure 1b, see53

Materials and Methods). The omentum and the ovaries/pelvis were the two most frequent tumour locations54

(Figure 1d) and accounted for the majority of the disease burden at baseline (Figure 1c). The pattern55

of response differed between anatomical sites (Figure S2). Omental disease showed significantly better56

response than pelvic disease (Figure 1e). Most of that difference was explained by the particularly good57

omental response of patients with a BRCA1/2 mutation (Figure 1g).58

Despite the overall differences between sites, RECIST 1.1 status provided significant stratification for59

lesion-wise response (Figure 1f). In addition, the volume of omental disease at baseline was higher (p = 0.05)60

in responders as assessed by RECIST (complete or partial response; median = 85 cm3) compared to61

non-responders (stable disease or progression; median = 31 cm3).62

While the number of disease locations at baseline was significantly correlated with response, disease63

volume at baseline (overall or in specific anatomic locations) was not (Table 1). This indicates that64

multivariable predictors are required to predict response to NACT rather than simple knowledge about65

disease burden and its anatomic distribution.66

ctDNA and CA-125 correlate with different types of disease burden.For all patients in the discovery67

cohort, ctDNA was assessed at baseline for the TP53 mutant allele fraction (MAF), which has been68

proposed as a biomarker for HGSOC monitoring (25, 26). We also computed the trimmed median absolute69

deviation from copy number neutrality based on shallow whole genome sequencing (t-MAD), which has70

Table 1. Spearman correlation coefficients between baseline measurements of tumour burden and different as-
sessments of treatment response.

Pre-chemotherapy
TP53
MAF

CA-125 Omentum
vol.

Pelvis/
ovaries
vol.

LN vol. Total vol. Number
lesions

Summed
diameter

Ascites Pleural
effusion

Volume change rS -0.05 -0.30 -0.07 0.12 -0.13 0.01 -0.38 -0.08 -0.15 -0.03
p 0.93 0.07 0.90 0.62 0.60 0.96 0.02 0.90 0.55 0.93

Summed diameter change rS -0.06 -0.28 0.04 0.24 -0.16 0.15 -0.34 0.02 -0.03 -0.01
p 0.93 0.08 0.93 0.16 0.55 0.55 0.04 0.93 0.93 0.96
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Fig. 1. (a) Treatment courses of all 92 patients in the NeOV cohort, ordered by decreasing volumetric tumour response following NACT. Patients analysed in the hold-out
validation set were randomly selected and are marked with a green triangle. Treatment journeys progress vertically (bottom to top) and are aligned at the time of the first
chemotherapy session. Additional biomarkers obtained at baseline are depicted at the bottom as a heatmap. (b) Sites of primary and metastatic disease in HGSOC. (c)
Distribution of the disease volumes found in the different sites for all the patients in the training cohort. (d) Fraction of patients in the training cohort with disease in the different
sites. (e) Volume changes of the omental and pelvic/ovarian disease for all patients in the training cohort. (f) Total and site-specific volume change stratified by RECIST 1.1
response status. (g) Total and site-specific volume change stratified by BRCA mutation status. These figures are restricted to the n=45 patients in the training cohort for
whom the BRCA mutation status was known. Boxes indicate the upper and lower quartiles, with a line at the median. Whiskers show the range of the data, and outliers are
shown as circles and identified via the interquantile range rule.

been shown to enhance tumour DNA detection (27). Owing to the strong correlation of t-MAD with TP53 71

MAF (p < 0.0001), only TP53 MAF was included in univariable analyses (Figure S1c). 72

Total disease burden at baseline (total volume, number of lesions, and summed RECIST 1.1 diameters) 73

correlated significantly with both CA-125 and TP53 MAF (Table 2). Neither baseline CA-125 nor TP53 74

MAF correlated significantly with response (Table 1), but they did show a significant positive correlation 75

with the summed RECIST 1.1 diameters post-chemotherapy. 76

Baseline CA-125 correlated with both omental disease and pelvic and ovarian disease measured before 77

chemotherapy. Similarly, baseline TP53 MAF correlated significantly with pelvic and ovarian disease 78

measured both before and after chemotherapy. However, it did not correlate with omental disease at either 79

time point (Table 2). This suggests that high TP53 MAF at baseline could be a specific indicator for high 80

disease burden in the ovaries or pelvis, which tends to show poorer response (Figure 1). 81
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Some families of radiomics features correlate with clinical and biological characteristics.To capture the82

radiological complexity of the disease we defined several collections of radiomics features (see Table S983

for the full list). Volumes and number of lesions were calculated for the relevant anatomical sites. Shape84

features, first-order histogram statistics and texture features (‘intensity radiomics’) were calculated for each85

lesion and averaged over the whole disease. Intra-lesion heterogeneity was assessed by contracting the lesion86

contours and calculating the ratio of radiomics features before and after the contraction (‘rim radiomics’).87

Similarly, the external context of the lesions was assessed by calculating the ratio of radiomics features88

before and after dilating the contours (‘peripheric radiomics’). Finally, we also defined a series of binary89

variables to describe additional radiological findings (‘semantic features’): ascites and pleural effusion were90

assessed manually, and we used a previously developed automated tissue-specific sub-segmentation tool to91

identify hypodense (cystic/necrotic spaces) and hyperdense (calcifications) lesion parts within the manual92

segmentations (28).93

We found that imaging features grouped into 6 distinct clusters (Figure 2). Cluster 1 was associated with94

baseline CA-125 levels (rmedian = 0.34) and contained mostly lesion volume metrics. This is consistent with95

previous work suggesting that CA-125 correlates with lesion volume (29). Clusters associated with ctDNA96

features were generally dominated by features quantifying lesion heterogeneity and context. Cluster 5 was97

primarily associated with ctDNA TP53 status (rmedian = 0.25), and contained predominantly peripheric98

radiomics features, which quantify lesion context. Cluster 6 was associated with ctDNA TP53 MAF and99

tMAD (rmedian = 0.20 and 0.19 respectively), and contained predominantly rim ratio radiomics features,100

which provide information on intra-lesion heterogeneity.101

Cluster 4 was highly correlated to stage (rmedian = 0.36), and was composed of a mixture of features102

related to shape, volume, and number of lesions, which quantify the disease burden. This is consistent with103

the definition of FIGO stage, which relies on the assessment of the extent and spread of the disease (30).104

Cluster 2 was associated mostly with age (rmedian = 0.23) and contained almost exclusively rim ratio105

radiomics features, which provide information about intra-tumour heterogeneity. The remaining group106

(cluster 3) was formed by a heterogeneous mixture of features, and did not associate with any biological or107

clinical feature.108

These results indicate that some of the information that global biomarkers such as stage, CA-125 or109

ctDNA provide can also be captured in multi-lesion radiomics features that quantify the extent, spread,110

heterogeneity and context of the disease. In addition, as shown in Figure 2, clusters 1, 2, 3, and 5 contain111

imaging features that are significantly correlated with volumetric response to treatment after multiple112

comparison correction. Crucially, the fact that cluster 3 has negligible biological or clinical associations113

Table 2. Spearman correlation coefficients between pre- and post-NACT measurements of tumour burden and
blood biomarkers measured at baseline.

Pre-chemotherapy
Omentum
vol.

Pelvis/
ovaries
vol.

LN vol. Total vol. Number
lesions

Summed
diameter

Ascites Pleural
effusion

Baseline TP53 MAF rS 0.04 0.37 0.26 0.37 0.32 0.48 0.05 0.13
p 0.77 0.005 0.06 0.005 0.02 0.0003 0.77 0.36

Baseline CA-125 rS 0.41 0.38 0.21 0.48 0.28 0.45 0.28 0.23
p 0.002 0.005 0.13 0.0003 0.04 0.0009 0.04 0.10

Post-chemotherapy
Omentum
vol.

Pelvis/
ovaries
vol.

LN vol. Total vol. Number
lesions

Summed
diameter

Ascites Pleural
effusion

Baseline TP53 MAF rS -0.04 0.30 0.13 0.29 0.19 0.41 0.03 0.13
p 0.79 0.03 0.36 0.03 0.17 0.003 0.79 0.36

Baseline CA-125 rS 0.10 0.23 0.10 0.22 0.20 0.32 -0.07 -0.16
p 0.50 0.10 0.50 0.11 0.15 0.02 0.63 0.24
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suggests that there may be additional value in the integration of all sources of data to predict treatment 114

response. 115

Volumetric response is a better prognostic marker than RECIST 1.1 status.We considered three possible 116

metrics for treatment response assessment: RECIST 1.1 response status, RECIST 1.1 summed diameter 117

ratio, and total volume ratio. The three metrics have the advantage of being defined at the end of NACT, 118

and can therefore be used as clinical trial endpoints for rapid response evaluation. The decision of which one 119

to use for predictive modelling was based on the evaluation of their prognostic power. We built univariable 120

Cox proportional hazards models for PFS and OS (Table S1). RECIST 1.1 status was not significant for 121

either PFS or OS. PFS was significantly predicted by the summed diameter ratio (p = 0.014), with the 122

total volume ratio (p = 0.077) showing a strong trend. OS was strongly predicted by the total volume ratio 123

(p = 0.026) while the summed diameter ratio was borderline significant (p = 0.051). 124

We also studied the power to discriminate very good or very poor responders by stratifying Kaplan-Meier 125

curves by the top and bottom 20th percentiles. We found that RECIST 1.1 status did not provide significant 126

separation between the groups (Figure 3), for either PFS or OS. By contrast, top responders identified 127

with the RECIST 1.1 summed diameter ratio (p = 0.03) and particularly the total volume ratio (p = 0.01) 128

both had significantly longer PFS. Similarly, the worst responders identified according to the total volume 129

ratio had significantly worse OS (p = 0.03), but no discrimination was provided by the ratio of summed 130

diameters. We therefore decided to use the total volume ratio as the response metric on which to train our 131

predictive modelling framework. 132

Integrative models predict volume response to neoadjuvant chemotherapy.We built a machine learning 133

framework to integrate the different streams of data into a set of predictive models of response to neoadjuvant 134

chemotherapy. We used three distinct datasets in the process. The NeOv cohort (n = 92) was first randomly 135

split into a training set (n = 72) and a hold-out validation set (n = 20). Model parameters were optimised 136

and fixed using the training dataset in a cross-validation setup. The hold-out validation set was used as 137

an independent test of model performance. A further external dataset, the Barts cohort, was used as an 138

independent validation set (n = 42). 139

We trained a collection of models with an incremental, cumulative number of integrated features: age and 140

FIGO stage, treatment characteristics, CA-125, radiomics features, and ctDNA, as depicted in Figure 4a. 141

The full list of features is included in Tables S8 and S9. 142

The response variable was defined as the logarithm of the post-chemotherapy total tumour volume 143

divided by the pre-chemotherapy total tumour volume, as measured on the corresponding CT scans. This 144

choice of response variable was motivated by the previous observation that volume shrinkage indicates 145

longer OS and PFS (Figure 3), and is therefore prognostically important. 146

Model predictions were obtained by averaging the outputs of three machine learning pipelines based 147

on elastic net, support vector regression, and random forest, respectively. The pipelines also included 148

collinearity reduction and feature selection steps. We optimised model hyperparameters by minimizing 149

the mean square error (MSE) in a 5-times 5-fold cross-validation scheme applied on the training cohort. 150

During the training process, we found that the cross-validated MSE was reduced by 25% as a result of the 151

successive integration of clinical, radiomic, and blood-based biomarkers. Adding ctDNA only resulted in a 152

marginal improvement from 24% to 25% reduction in MSE (Table S7). 153

The final models were obtained by fixing the optimal hyperparameters and re-fitting to the entire training 154

cohort. To assess the discriminative performance and calibration of the final models we applied them on 155

the hold-out validation cohort. We observed a similar, gradual reduction in MSE, reaching a reduction of 156

15% for the integrated model without ctDNA, and 14% after integrating ctDNA (Figure 4 and Table S7). 157

In addition, radiomics and ctDNA cumulative integration models produced response scores that were 158

significantly correlated with the observed volume response (Spearman r = 0.5, p = 0.02 in both cases, 159

Figure 4b and Table S7). Although the models were not trained to predict RECIST 1.1, we observed 160

that the predicted scores were able to correctly rank the three RECIST 1.1 response groups in both the 161
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Fig. 2. (a) Spearman correlation coefficients between imaging (rows) and clinical and biological features (columns), both clustered using a hierarchical approach. (b)
Composition and characteristics of the six identified imaging feature clusters. Polar plots indicate the relative contribution of the different classes of imaging features. Scatter
plots show the feature of each cluster with the highest Spearman correlation with volumetric treatment response. Each features is illustrated by displaying one slice from the
patient with the maximum value (left), and one from the patient with the minimum value (right).
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RECIST status Ratio of RECIST diameters Ratio of total volumes

Fig. 3. Kaplan-Meier curves for the three response metrics studied, from left to right: RECIST 1.1 status, RECIST 1.1 summed diameter ratio, and total volume ratio. The
top row represents PFS, while the bottom row represents OS.

radiomics and ctDNA cumulative integration models (p = 0.02, Figure 5). 162

We tested the generalizability of the models by applying them on an independent external cohort (Barts 163

cohort, n = 42). As this cohort of patients did not have ctDNA data available, we were able to test the 164

clinical, CA-125, and radiomics integration models only. We confirmed that integration was beneficial for 165

discrimination, as only the radiomics integration model produced significant response scores (Spearman 166

r = 0.32, p = 0.04, Figure 4b and Table S7), with a reduction in MSE of 8%. We also confirmed that the 167

predicted scores were able to correctly rank the RECIST 1.1 response groups in the radiomics integration 168

model (p = 0.005), but not the simpler ones (Figure 5). 169

We studied the relative contribution of the features used by the final models in two different ways. First, 170

we examined which features passed the feature selection step in the three different component pipelines that 171

integrate the machine learning models. Figure 6a shows the number of pipelines that selected a particular 172

feature in each of the cumulative models, a metric that we call the ‘selection frequency’. We found that 173

the treatment regimen (whether the patient received paclitaxel weekly, and whether the patient received 174

carboplatin only) and the number of cycles of chemotherapy before the second scan were consistently 175

selected across models. We also found that CA-125 was used in models that did not include radiomics, but 176

was dropped from radiomics integration models. Semantic features, in particular pleural thickening and the 177

presence of a hyperdense region in an omental lesion, were selected across all the relevant models. Mean 178

volume, number of lesions, and volume and number of infrarenal lymph nodes were also selected. A small 179

and consistent number of radiomics features were also selected, most of them belonging to the category of 180

features defined to quantify lesion context. 181

We also studied the feature importances in the elastic net and random forest component pipelines. 182

To quantify the importances we used feature coefficients in the elastic net pipeline, and impurity-based 183

Gini importances for the random forest pipeline. Figure 6b shows the averages of the normalised feature 184

importances for those two component pipelines, for each of the 9 cumulative integration models. We found 185
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Fig. 4. (a) Schematic of the machine learning framework for model training and validation. (b) Validation of the discriminative power of predictive models in the hold-out (left)
and external validation cohorts (right), for models containing, from left to right, clinical, clinical+CA-125, clinical+CA-125+radiomics, and clinical+CA-125+radiomics+ctDNA
features, respectively.

that most of the models integrating a large number of features tend to be more dense, with features sharing186

similar, lower importance levels. Features that tended to have larger importances were generally consistent187

with those that had the highest selection frequency, as can be observed by comparing the two panels in188

Figure 6.189

3. Discussion190

The clinical presentation of HGSOC is with complex, highly heterogeneous disease that is invariably191

metastatic throughout the abdomen. The accompanying genomic and cellular heterogeneity has impeded192

therapeutic progress and strongly suggests that understanding response to treatment must involve the193

integration of data from different sources and scales. To date, this has had not been systematically194

8 | Crispin-Ortuzar, Woitek et al.

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 23, 2021. ; https://doi.org/10.1101/2021.07.22.21260982doi: medRxiv preprint 

https://doi.org/10.1101/2021.07.22.21260982
http://creativecommons.org/licenses/by/4.0/


DRAFT

re
sp
on
se

st
ab
le

pr
og
re
ss
io
n

1.6

1.4

1.2

1.0

p=0.12

re
sp
on
se

st
ab
le

pr
og
re
ss
io
n

1.50

1.25

1.00

0.75

0.50

p=0.02

re
sp
on
se

st
ab
le

1.3

1.2

1.1

p=0.62

re
sp
on
se

st
ab
le

1.6

1.4

1.2

1.0

p=0.89

re
sp
on
se

st
ab
le

1.5

1.0

0.5

p=0.005

re
sp
on
se

st
ab
le

pr
og
re
ss
io
n

1.50

1.25

1.00

0.75

0.50

p=0.02

re
sp
on
se

st
ab
le

pr
og
re
ss
io
n

1.4

1.2

1.0

p=0.14

Pr
ed
ic
te
d
sc
or
e

Pr
ed
ic
te
d
sc
or
e

i) Holdout validation set ii) External validation set

Clinical +CA-125 +Radiomics Clinical +CA-125 +Radiomics+ctDNA

RECIST 1.1 RECIST 1.1

Fig. 5. Validation of the ability of predictive models to describe RECIST 1.1 response in the hold-out (left) and external (right) validation cohorts, for models containing,
respectively, clinical, clinical+CA-125, clinical+CA-125+radiomics, and clinical+CA-125+radiomics+ctDNA features. Boxes indicate the upper and lower quartiles, with a line
at the median. Whiskers show the range of the data, and outliers are shown as circles and identified via the interquantile range rule.

Age, stage
+Treatment

+CA125
+Semantic
+RECIST
+Volume

+Global Radiomics
+Ratio Radiomics

+ctDNA

A
ge

at
di

ag
no

si
s

N
um

.c
yc

le
s

be
fo

re
sc

an
2

N
um

.d
ay

s
be

tw
ee

n
sc

an
1

an
d

Tx
st

ar
t

R
ec

ei
ve

d
D

ox
or

ub
ic

in
P

w
ee

kl
y,

C
3-

w
ee

kl
y

O
nl

y
C

R
ec

ei
ve

d
P

B
as

el
in

e
C

A
12

5
A

sc
ite

s
P

le
ur

al
th

ic
ke

ni
ng

H
yp

er
de

ns
e

re
gi

on
in

om
en

ta
ll

es
io

n
M

ea
n

vo
lu

m
e

M
ax

im
um

vo
lu

m
e

O
m

en
ta

lv
ol

um
e

M
es

en
te

ry
vo

lu
m

e
Le

ft
pa

ra
co

lic
gu

tte
rv

ol
um

e
LN

in
fra

re
na

lv
ol

um
e

LN
su

pr
ar

en
al

vo
lu

m
e

O
m

en
tu

m
n.

le
si

on
s

LU
Q

n.
le

si
on

s
P

O
D

n.
le

si
on

s
LN

in
fra

re
na

ln
.l

es
io

ns
LN

su
pr

ar
en

al
n.

le
si

on
s

LN
in

gu
in

al
n.

le
si

on
s

N
.l

es
io

ns
N

.l
es

io
ns

w
ith

vo
l>

1
cc

Le
as

ta
xi

s
M

in
or

ax
is

S
ur

fa
ce

to
vo

l.
ra

tio
10

th
pe

rc
.H

U
M

ea
n

ab
so

lu
te

de
v.

M
ed

ia
n

S
ke

w
ne

ss
To

ta
le

ne
rg

y
S

um
en

tro
py

90
th

pe
rc

.H
U

C
oe

ff
va

ria
tio

n
rim

R
an

ge
rim

S
um

.V
ar

ia
tio

n
rim

V
ol

um
e

w
ith

H
U

>-
10

pe
rip

he
ric

M
ax

im
um

pe
rip

he
ric

M
in

im
um

pe
rip

he
ric

R
an

ge
pe

rip
he

ric
S

ke
w

ne
ss

pe
rip

he
ric

To
ta

le
ne

rg
y

pe
rip

he
ric

C
lu

st
er

pr
om

.p
er

ip
he

ric
C

lu
st

er
sh

ad
e

pe
rip

he
ric

D
is

si
m

ila
rit

y
pe

rip
he

ric
E

ne
rg

y
pe

rip
he

ric
In

v.
D

iff
.m

om
.p

er
ip

he
ric

In
v.

D
iff

.n
or

m
.p

er
ip

he
ric

In
v.

V
ar

ia
nc

e
pe

rip
he

ric
Jo

in
te

nt
ro

py
pe

rip
he

ric
S

um
av

er
ag

e
pe

rip
he

ric
S

um
va

ria
nc

e
pe

rip
he

ric
tM

A
D

p5
3

M
A

F

Category mix

0.2

0.4

0.6

Age, stage
+Treatment

+CA125
+Semantic
+RECIST
+Volume

+Global Radiomics
+Ratio Radiomics

+ctDNA

A
ge

at
di

ag
no

si
s

N
um

.c
yc

le
s

be
fo

re
sc

an
2

N
um

.d
ay

s
be

tw
ee

n
sc

an
1

an
d

Tx
st

ar
t

R
ec

ei
ve

d
D

ox
or

ub
ic

in
P

w
ee

kl
y,

C
3-

w
ee

kl
y

O
nl

y
C

R
ec

ei
ve

d
P

B
as

el
in

e
C

A
12

5
A

sc
ite

s
P

le
ur

al
th

ic
ke

ni
ng

H
yp

er
de

ns
e

re
gi

on
in

om
en

ta
ll

es
io

n
M

ea
n

vo
lu

m
e

M
ax

im
um

vo
lu

m
e

O
m

en
ta

lv
ol

um
e

M
es

en
te

ry
vo

lu
m

e
Le

ft
pa

ra
co

lic
gu

tte
rv

ol
um

e
LN

in
fra

re
na

lv
ol

um
e

LN
su

pr
ar

en
al

vo
lu

m
e

O
m

en
tu

m
n.

le
si

on
s

LU
Q

n.
le

si
on

s
P

O
D

n.
le

si
on

s
LN

in
fra

re
na

ln
.l

es
io

ns
LN

su
pr

ar
en

al
n.

le
si

on
s

LN
in

gu
in

al
n.

le
si

on
s

N
.l

es
io

ns
N

.l
es

io
ns

w
ith

vo
l>

1
cc

Le
as

ta
xi

s
M

in
or

ax
is

S
ur

fa
ce

to
vo

l.
ra

tio
10

th
pe

rc
.H

U
M

ea
n

ab
so

lu
te

de
v.

M
ed

ia
n

S
ke

w
ne

ss
To

ta
le

ne
rg

y
S

um
en

tro
py

90
th

pe
rc

.H
U

C
oe

ff
va

ria
tio

n
rim

R
an

ge
rim

S
um

.V
ar

ia
tio

n
rim

V
ol

um
e

w
ith

H
U

>-
10

pe
rip

he
ric

M
ax

im
um

pe
rip

he
ric

M
in

im
um

pe
rip

he
ric

R
an

ge
pe

rip
he

ric
S

ke
w

ne
ss

pe
rip

he
ric

To
ta

le
ne

rg
y

pe
rip

he
ric

C
lu

st
er

pr
om

.p
er

ip
he

ric
C

lu
st

er
sh

ad
e

pe
rip

he
ric

D
is

si
m

ila
rit

y
pe

rip
he

ric
E

ne
rg

y
pe

rip
he

ric
In

v.
D

iff
.m

om
.p

er
ip

he
ric

In
v.

D
iff

.n
or

m
.p

er
ip

he
ric

In
v.

V
ar

ia
nc

e
pe

rip
he

ric
Jo

in
te

nt
ro

py
pe

rip
he

ric
S

um
av

er
ag

e
pe

rip
he

ric
S

um
va

ria
nc

e
pe

rip
he

ric
tM

A
D

p5
3

M
A

F

Category mix
0.0

2.5

5.0

7.5

10.0

12.5

15.0

Clinical Semantic Volume Num. lesions Shape Intensity Heter. Radiomic context

(a)

(b)

ctDNA

Selection
frequency

Average
coeff.

Clinical Semantic Volume Num. lesions Shape Intensity Heter. Radiomic context ctDNA

Fig. 6. Importances of the features used by the predictive models. (a) Selection frequency. The heatmap shows the number of times that a given feature was selected in
a model. The different rows correspond to different models with increasing, cumulative numbers of input features. As the optimisation is repeated 5 times, the range of the
selection frequency is 0-15 (3 algorithms in the ensemble times 5 repetitions). (b) Averaged, normalised feature importances for the elastic net and random forest components
of the models. Importances are defined from the feature coefficients for the elastic net regression, and from impurity-based Gini importances for random forest.

Crispin-Ortuzar, Woitek et al. June 7, 2021 | vol. XXX | no. XX | 9

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 23, 2021. ; https://doi.org/10.1101/2021.07.22.21260982doi: medRxiv preprint 

https://doi.org/10.1101/2021.07.22.21260982
http://creativecommons.org/licenses/by/4.0/


DRAFT

attempted. We have shown that integrated machine learning models based on baseline multi-scale data195

predict volumetric response to NACT (p = 0.04, external validation cohort). Our approach uses radiomics,196

the only data source capable of simultaneously measuring the entire metastatic disease, as the backbone of197

the prediction. Radiomics features had the strongest effects in the prediction models, which were validated198

in an independent cohort. We also found that volumetric response was a better predictor of OS (p = 0.03)199

than RECIST 1.1 status (p = 0.3) and revealed site-specific patterns of differential response and correlation200

with ctDNA detection.201

The field of radiomics has grown exponentially in recent years, showing great promise across tumour202

sites and endpoints (31). At the same time, radiomics has been criticised for lack of robustness and203

reproducibility, as well as lack of biological interpretability (32, 33). Our study shows that both problems204

can be overcome by the right design choices. We made robustness a design priority for our predictive205

framework, which included strong feature selection, model ensembles on multiple levels, and repeated206

re-shufflings of the data to avoid biases. In addition, we trained the model on a dataset with heterogeneous207

imaging parameters (34); and we included new families of imaging features based on ratios between different208

volumes of interest, which were designed to partially cancel out such biases. We also curated an independent209

cohort from a different institution for validation, which we were able to perform successfully.210

Our feature definitions were also designed to improve interpretability: the ratio features are not only211

robust to imaging parameters, but they also helped us to explore internal heterogeneity (rim features) and212

the external context of the lesions (peripheric features). Interestingly, we found that ratio features were the213

most numerous in the final models. This result is in line with previous work that found that qualitative214

radiological features describing the edges of peritoneal disease (nodular, diffuse, or mixed) were significantly215

associated with CLOVAR subtype (35) and BRCA mutation status (36). The concept of peritumoural216

radiomics has been explored before in breast, lung, and liver cancer (37–40), but to our knowledge our217

study is the first one to apply it to ovarian cancer. Our findings motivate the development of more detailed218

studies focusing on the boundary regions of ovarian cancer lesions – and show that data-driven radiomics219

analyses can support biological hypothesis generation.220

Even if the hypothesis-motivated features had not played a significant role, the interpretability of the221

results was naturally supported by the integrative framework that the radiomics analysis was embedded222

in. For example, our study confirms previous observations that the presence of ctDNA is correlated with223

volume of disease at the start of treatment in HGSOC patients (26). The integration of clinical data into224

our models also yielded important insights, as features describing the type of NACT and its timing were225

consistently selected by our models. The ICON8 study (to which part of our discovery cohort was recruited)226

showed that PFS in patients with ovarian cancer undergoing NACT was unaffected by the administration227

regimen of paclitaxel (3-weekly as is standard or in a dose-dense weekly regimen) (41). However, the feature228

describing the mode of administration (weekly versus 3-weekly) was consistently selected by our prediction229

models. There are several possible explanations for this, including the limited size of our dataset, or a230

possible non-linear interplay with some of the other variables in the model. Alternatively, the administration231

mode could potentially be a factor that affects response to NACT but not survival. The median number of232

NACT cycles in our training cohort was lower (median of 3 cycles, with patients receiving weekly treatment233

having a median of 8 cycles) and may be more relevant for predicting response than survival. This is234

still clinically important, since disease extent after NACT affects resectability of the disease at DPS and235

therefore perioperative morbidity and operating time (42).236

Addressing the challenges of reproducibility and interpretability is only the first step. Critically, previous237

studies have focused on a single ovarian lesion per patient as a proof of principle (19), without exploiting the238

full potential of imaging data to capture metastatic disease. Instead we enriched our data set by segmenting239

the full disease burden and including radiomics of all abdominopelvic tumour locations, reaching a median of240

18 volumes of interest per scan in the training set. Our analysis showed that response to NACT in HGSOC241

varies spatially: lesions in the ovaries and/or pelvis had poorer response than those in the omentum. Ours242

is also the first study to integrate imaging features for all of the abdominopelvic disease with blood-based243
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biomarkers, including ctDNA and CA-125. We showed that global tumour burden and volume of pelvic and 244

ovarian tumors at baseline are significantly correlated with both CA-125 and ctDNA TP53 MAF. However, 245

our analysis of volumetric data also showed that the ctDNA signal was only due to the presence of disease 246

in the ovaries and/or pelvis, suggesting that the simultaneous reading of ctDNA and CA-125 at baseline 247

could play a role in helping determine disease spread and response in the diagnostic setting. 248

Some of these findings highlight the limitations of previous studies and ours. For example, even though 249

we found that change in total volume may be a better prognostic indicator than RECIST-1.1, it is still 250

treating the disease as a single entity, ignoring the subtle interplay between the pelvis/ovaries and the 251

omentum. Similarly, the importance of some data streams is driven by the specific features that were 252

included in the model. Indeed, given the correlation between ctDNA and total disease volume, and the 253

higher dimensionality of the collections of clinical and radiomics features, it is not surprising that we did 254

not find any additional value in adding ctDNA based biomarkers to our integrated models. However, our 255

study was limited to ctDNA t-MAD, TP53 MAF and TP53 mutation status; a higher-dimensional panel 256

of ctDNA sequencing data, applied on a larger dataset, and potentially measured longitudinally across 257

different time points, may find that there are other complementarities between ctDNA and imaging data. 258

Cell-of-origin analysis via mutation, methylation or fragmentomics to infer contribution from specific cell 259

types to the circulating free DNA pool could help to predict specific volume reductions. Our dataset also 260

lacked detailed quantification of BRCA1/2 status and homologous recombination deficiency, which are 261

likely to be important factors and should be incorporated into future models (43). 262

Another key limitation of the study is that manual segmentation for volumetry is still extremely time 263

consuming. However, accurate and highly adaptable deep learning models for automatic segmentation are 264

being rapidly developed across cancer types, facilitating the integration of volumetry into clinical workflows 265

as well as large-scale radiomics computation (44). 266

In conclusion, our study is a proof-of-principle for the integration of multi-scale data to describe and 267

predict the response of HGSOC patients to NACT. We demonstrate that the systematic multi-scale 268

integration of standard-of-care biomarkers provides critical predictive power and important insights into the 269

complex spatial configuration of the disease. After the necessary clinical validation in larger, prospective 270

cohorts, a framework like the one we propose could have significant impact as a stratification tool in clinical 271

and experimental settings –for example avoiding delays in surgery for patients who are unlikely to respond 272

to chemotherapy–, and could bring forward a new generation of clinical trials for HGSOC, with rapid, 273

effective endpoints that improve and expedite the discovery of new therapies. 274

4. Materials and Methods 275

Patient cohorts.Two patient cohorts were used in this study. The main cohort (the ‘NeOV’ cohort) was 276

randomly split into a training set and a hold-out set. The training set was used to train the machine 277

learning models, and as a discovery dataset for univariable analyses. The hold-out set was set aside and 278

used only to validate the model predictions. A second dataset (the ‘Barts’ cohort) was used for external 279

validation. 280

For both data sets, patients had a confirmed histopathological diagnosis of HGSOC and were treated 281

with neoadjuvant chemotherapy before delayed primary surgery. All patients within the main data set 282

were treated at Cambridge University Hospitals NHS Foundation Trust between 2009 and 2020 and were 283

recruited into a prospective clinical study approved by the local research ethics committee (REC reference 284

numbers: 08/H0306/61). All patients within the Barts data set were treated at Barts Health NHS Trust 285

between 2009 and 2018 and recruited into prospective clinical study approved by the local research ethics 286

committee (IRAS reference numbers: 243824). 287

Written informed consent was obtained from all patients prior to any study related procedures. The 288

study was performed in accordance with the principles of the 1964 Declaration of Helsinki and its later 289

amendments or comparable ethical standards. Patients were identified and included based on the availability 290

of at least two CT scans at baseline and prior to DPS. Additionally, for the main data set at least one 291
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baseline plasma sample for ctDNA assessments was required.292

Clinical data.Data regarding patient demographics, treatment, and disease were collected from the patient293

electronic medical records including notes from multidisciplinary team discussions (MDTs). PFS was defined294

as the time between histopathological diagnosis and first radiological evidence of progression or recurrence.295

Where progression date was unclear from radiology reports alone, (e.g. successive imaging studies with296

subtle/mixed changes), clinical interpretation of progression was incorporated in PFS date calling (e.g.297

documentation of breaking bad news to patients, treatment decisions for subsequent line therapy). OS was298

defined as the time from diagnosis to death. Stage was determined using the International Federation of299

Gynaecology and Obstetrics (FIGO) criteria for ovarian cancer (30).300

Management The management of all patients in the study including indications for surgery were discussed301

and decided upon within MDTs as per the UK National Health Service (NHS) guidelines. Surgeries302

were performed through a midline laparotomy by a team specialised in surgical gynae-oncology aiming to303

achieve total macroscopic tumor clearance. Overall, n = 107 patients were treated with platinum-based304

chemotherapy in combination with paclitaxel, while 23 received carboplatin as a monotherapy. Patients were305

considered to have received weekly chemotherapy if the average time interval between doses ranged between306

6 and 10 days, three-weekly if the average time interval was between 18 and 24 days, and irregular otherwise.307

Of those receiving combination therapy, 81 patients received carboplatin and paclitaxel three-weekly,308

18 patients received carboplatin three-weekly and paclitaxel weekly, 2 patients received carboplatin and309

paclitaxel weekly, and the rest received the treatment at irregular intervals. In addition, 4 patients were310

treated with Doxorubicin. Table S2 shows the breakdown for the three datasets.311

BRCA status Germline BRCA1 andBRCA2 mutational status was determined for 45 patients in the312

discovery cohort. The remaining cases reflect historical practice of not testing patients above 70.313

ctDNA.Blood samples were collected before initiation of treatment with chemotherapeutic agents. DNA was314

extracted from plasma (1.2-4ml) using QIAvac 24 Plus vacuum manifold and the QIAamp Circulating Nucleic315

Acid kit (Qiagen), or with QIAsymphony (Qiagen) as per manufacturer instructions. DNA quantification316

was performed using Qubit dsDNA broad-range or high-sensitivity assay kits and the Qubit Fluorometer317

(Thermo Fisher Scientific). Tagged-amplicon deep sequencing DNA libraries were prepared as described318

by Forshew et al. (45). Following purification with AMPure XP magnetic beads (Beckman Coulter Life319

Sciences), 10nM libraries were quantified using Agilent Bioanalyzer and Agilent DNA 1000 kit or Agilent320

TapeStation and ScreenTape D1000 (Agilent Technologies) according to manufacturer instructions, and321

pooled for sequencing on MiSeq, HiSeq 2500 or HiSeq 4000 (Illumina).322

Shallow whole genome DNA libraries (10 million reads per sample) were prepared using the ThruPLEX323

DNA-Seq kit (Takara) and purified with AMPure XP magnetic beads (Beckman Coulter Life Sciences).324

10nM libraries were quantified using Agilent D5000 ScreenTape System or Roche KAPA library quantification325

kits and pooled for sequencing on HiSeq 4000 (Illumina) in paired-end 150-base pair mode. On removing326

adapter sequences, shallow whole genome sequence reads were aligned to the 1000 Genomes Project version327

of the unmasked human reference genome GRCh37 using the BWA-MEM alignment software (46). Somatic328

copy number analysis was performed using CNAclinic (47) to generate trimmed Median Absolute Deviation329

from copy-number neutrality (t-MAD) scores as previously described (27).330

Demultiplexed TAm-Seq reads were aligned to the GRCh37 reference genome by amplicon, and mutations331

called where non-reference alleles met probability criteria in both replicates, as previously described (45).332

Samples lacking mutation calls were manually curated using the Integrative Genomics Viewer (IGV)333

Imaging protocol.Clinically requested contrast-enhanced venous phase CT scans covering the abdomen and334

pelvis (with or without the chest depending on the clinical request and imaging findings) were either acquired335

at Cambridge University Hospitals NHS Foundation Trust (CUHNHSFT) or in other institutions across336

the UK and then imported into the picture archiving and communication system (PACS) at CUHNHSFT.337
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Therefore, different manufacturers and scanning protocols were used. Baseline scans were acquired between 338

0 and 14 weeks before initiation of neoadjuvant chemotherapy and post-treatment scans were acquired for 339

response assessment after 1.6 to 5.8 months of treatment. All scans were initially identified on the local 340

PACS and then fully anonymised for further study related processing. 341

Data processing. 342

Image segmentation and labelling On axial images reconstructed with a slice thickness of typically 5 mm 343

(Table S3), and pixel spacings ranging between 0.053 and 0.095, using abdominal soft tissue window 344

settings, all cancer lesions were segmented semi-automatically by a board certified radiologist with ten 345

years of experience in clinical imaging, using Microsoft Radiomics (project InnerEye; Microsoft, Redmond, 346

WA, USA). The volumes of interest (VOIs) were annotated for their anatomic location: omentum, right 347

upper quadrant, left upper quadrant, epigastrium, mesentery, right paracolic gutter, left paracolic gutter, 348

ovaries & pelvis, infrarenal abdominal lymph nodes, suprarenal abdominal lymph nodes, inguinal lymph 349

nodes, supradiaphragmatic lymph nodes, other chest lymph nodes, parenchymal liver metastases, and 350

lung metastases. Cystic and solid tumour parts were included in these segmentations. Automated sub- 351

segmentation of hyperdense/calcified, hypodense/cystic or fatty and intermediately dense/solid tissue was 352

performed for omental lesions and lesions of the ovaries and pelvis using a previously described and validated 353

technique (28). Baseline and follow-up CT scans were evaluated according to RECIST 1.1 for response 354

assessment (9). Pleural effusions and ascites were assessed semiquantitatively (0 = none, 1 = trace, 2 = 355

less than 5 cm when measured perpendicularly to chest/abdominal wall, 3 = 5 cm or more when measured 356

perpendicularly to chest/abdominal wall. 357

Radiomics features VOIs drawn manually were split into connected components using MATLAB’s bwlabeln 358

function with a three-dimensional connectivity of 26, which assumes that voxels are connected if their 359

faces, edges, or corners touch. Voxels with intensities below -100 HU were removed from the radiomics 360

calculations. Radiomics features were extracted using the CERR Radiomics toolbox (48) (December 2018 361

version, GitHub hash: 5974376be7103d5c3831690c62aa721fc784d949), including shape, intensity-volume 362

histogram, first-order, and Haralick texture features (see Table S9 for the full list). Intensity-volume 363

histogram features, inspired by the Vx features commonly extrated in radiotherapy dose-volume histograms, 364

corresponded to the volumes spanned by voxels above a certain intensity value (denoted ‘HU>x’ in Table S9). 365

To calculate Haralick texture features for each lesion, co-occurrence matrices for 100 grey levels (up to 366

a maximum of 1000 HU) were computed independently for each direction along 2D slices and averaged. 367

To calculate the rim and peripheric radiomics features, for each VOI two copies were created by eroding 368

and dilating the contours by 0.4 cm along the 2D slices. The value of the margin was chosen in order to 369

capture slices of at least 1 cm diameter. Erosion and dilation were achieved by convolving the contour with 370

a circular mask of the desired margin. Ratio features were computed by dividing the results obtained from 371

the eroded and standard volumes (rim features), or the dilated and standard volumes (peripheric features). 372

Shape features were not included in the ratios. Once standard and ratio features were calculated for each 373

lesion, a single value was extracted for the whole patient by taking the unweighted mean of all lesions. 374

Other imaging features In contrast to the radiomics features, which we averaged across lesions, we did use 375

the volume and the number of lesions in each of the anatomic locations as individual features. We also 376

computed the mean, maximum, and total volume, as well as the number of lesions with volume bigger than 377

0, 1, 10, and 100 cm3. In addition, we defined four binary features that indicated whether or not there were 378

hypodense or hyperdense regions in either omental or pelvic/ovarian lesions. Ascites and pleural effusion 379

were used as defined by the radiologist, as explained above (section 4, Radiological image analysis). 380

Clinical features Chemotherapy regimens were extracted from the clinical records. We recorded whether 381

the patient had received any Carboplatin, Paclitaxel or Doxorubicin in three binary variables. Mean periods 382

were calculated by averaging the time intervals between sessions. We defined weekly regimen as having 383

a mean period of 6 to 10 days, both included; and three-weekly as having a mean frequency of 18 to 24 384
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days, both included. Typical combinations included weekly Paclitaxel and three-weekly Carboplatin; both385

weekly; and both three-weekly (Figure 1). These combinations were therefore encoded in binary variables.386

We also recorded whether patients had received Carboplatin only in a binary variable. FIGO stage was387

encoded by assigning ordinal numbers to in order of aggressiveness, from 1 for stage 1A to 10 for stage 4B.388

The exact mapping is listed in Table S4. CA-125 values were also extracted from the clinical records, with389

the measurement closest to the beginning of treatment being used for analysis. The full list of clinical and390

blood biomarker features can be found in Table S8.391

Statistical analysis.392

Tumour burden correlations Correlations were calculated using Spearman correlation coefficient and p393

values were corrected using the Benjamini-Hochberg procedure as implemented in the scikit-learn Python394

package (49). The total tumour burden affecting lymph nodes was calculating by combining the lesions395

found in infrarenal, suprarenal, inguinal, supradiaphragmatic, and chest lymph nodes. The difference396

between the relative volume change in the omentum and in the ovaries/pelvis was quantified using the397

Mann-Whitney U test. The difference in relative volume change for patients with different BRCA status398

was also quantified using the Mann-Whitney U test.399

Imaging clusters To identify clinically or biologically meaningful clusters of radiomics features we clustered400

their Spearman correlation coefficients used a hierarchical clustering approach. The optimal number of401

imaging clusters was obtained by maximising their correlation with any of the clinical and biological features.402

To do this, we calculated the maximum Spearman correlation coefficient between each cluster and any403

of the biological/clinical features, and averaged the result across all clusters (Figure S3a). The metric404

reached a plateau at 6 clusters, which was therefore chosen as the optimal number (Figure S3b). The most405

predictive feature in each cluster (Figure 2) was chosen in terms of its Spearman correlation with volumetric406

treatment response. p values were corrected using the Benjamini-Hochberg procedure.407

Survival modelling Cox Proportional Hazards modelling was performed with the Lifelines Python li-408

brary (50). The baseline hazard was estimated non-parametrically using Breslow’s method. Parameter409

estimates, hazard ratios and 95% confidence intervals are listed in Table S1. Kaplan-Meier curves were410

also computed using the Lifelines library. 95% confidence intervals were computed using Greenwood’s411

Exponential formula. p values were computed using the log-rank test.412

Machine learning models.413

Training We created a machine learning framework to predict response to chemotherapy, evaluated on the414

basis of relative total volume change. We used the NeOv training set to train and optimise the models.415

Once trained and frozen, we evaluated the models in the internal hold-out set and in the external validation416

set. We used an increasing number of features, in order of general availability. We started with clinical417

features (age, stage, and treatment); then added baseline CA-125; then imaging features; and finally ctDNA.418

For each combination we retrained the framework and derived a new model.419

The predictions were based on an unweighted ensemble regressor (51). The ensemble included three420

different machine learning algorithms: an elastic net, a support vector regressor with a radial basis function421

(RBF) kernel, and a random forest, all of them coded in Python using the scikit-learn package (49). Each422

algorithm was embedded in a scikit-learn pipeline with three pre-processing steps, namely collinearity423

reduction, z-score standardisation, and univariable feature selection. Collinearity reduction removed all424

features with a mutual Pearson correlation above 0.95, retaining only the one with the highest correlation425

with the response variable. The feature selection step removed all features that were not ranked within the426

top k according to their F-value. The scores produced by the three pipelines were averaged to form the427

prediction.428

We used a 5-fold cross validation setup to optimise model hyperparameters in the training set, covering429

the hyperparameter ranges shown in Table S6. The optimisation was based on a randomised search in430
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the hyperparameter space to optimise mean square error (MSE). Once the optimal hyperparameters were 431

found, we determined model parameters by re-fitting the model to the entire training set. To increase model 432

robustness, we repeated this process five times with five different cross-validation seeds. The five resulting 433

optimal models were combined to form the final ensemble, in which the prediction is simply the average of 434

the five predicted scores. In this regard, our ensemble setup has two different tiers: the randomisation tier 435

(5 seeds), and the algorithmic tier (3 regressors acting in parallel for each seed). 436

Validation We validated the models on the hold-out internal validation set (n = 20) and the external 437

validation set (n = 42). To quantify the calibration of the models, we computed the MSE. To quantify the 438

discriminative power of the models, we computed the Spearman correlation coefficient and p value between 439

the predicted and observed response scores. Finally, we evaluated whether the predicted scores were also 440

able to rank patients into the different RECIST 1.1 categories using the p value associated with the point 441

biserial correlation coefficient. 442

Feature importance We evaluated feature importances in two different steps. First we computed the 443

frequency with which features were selected after the collinearity reduction and univariable selection steps. 444

We repeated the process for each of the three algorithms and each of the five cross-validation seeds, which 445

means that features could be selected between 0 and a maximum of 15 times, as seen in Figure 6. The 446

table on Figure 6 displays only features that were chosen at least 3 out of 5 times in each cross-validation 447

loops, for robustness. Second, we computed the importance of each individual feature within the regression 448

algorithm. This was only possible for the elastic net, where we used the feature’s coefficients, and the 449

random forests, where we used impurity-based feature importances. The results were averaged across the 450

five seeds and the two algorithms, with the table on Figure 6 displaying only features that were chosen at 451

least 3 out of 5 times in the cross-validation loops, as before. 452

Data and code availability 453

The code and data can be found at https://github.com/micrisor/OvarianIntegration. 454
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A. Supplementary figures 536

n=157 NeOv patients

- At least 2 scans
- At least 1 cycle of chemotherapy
- Complete surgical record
- Scan 1 obtained pre-NACT
- Scan 2 obtained pre-surgery
- At least 1 pre-NACT ctDNA

n=92 eligible patients

n=72 Training n=20 Hold-out validation

(a)

n=57 Barts patients

n=46 External validation

- At least 2 scans
- At least 1 cycle of chemotherapy
- Complete surgical record
- Scan 1 obtained pre-chemo
- Scan 2 obtained pre-surgery
- At least 1 pre-chemo ctDNA

(b)

(c)

Three-weekly

Weekly

Weekly Three-weekly

Supplementary Fig. 1. (a) Flowchart of the datasets used in the analysis. (b) Paclitaxel and carboplatin administration frequencies for patients in the NeOv cohort. Bands
indicate the range of patients who are considered to have received either weekly, three-weekly, or other treatment frequency. (c) Scatter plots illustrating the correlations
between the blood-based biomarkers.
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Supplementary Fig. 2. Site-specific change in volume for each of the patients in the training dataset. Patients are ordered as a function of the total change in volume.
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a
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Supplementary Fig. 3. (a) Correlation between each of the imaging clusters and clinical features and blood biomarkers. Boxes indicate the upper and lower quartiles, with
a line at the median. Whiskers show the range of the data, and outliers are shown as circles and identified via the interquantile range rule. (b) Optimisation of the number of
imaging clusters.
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B. Supplementary tables537

Table 1. Cox proportional hazards model results for overall survival (OS) and progression-free survival (PFS).

Reference Outcome Parameter estimate Standard error HR 95% CI z-score p-value

RECIST 1.1 PFS 0.2681 0.2347 1.3075 -0.1920–0.7282 1.1420 0.2534
RECIST 1.1 OS 0.2548 0.2474 1.2901 -0.2301–0.7396 1.0299 0.3030

Summed diameter change PFS 1.3414 0.5459 3.8244 0.2715–2.4113 2.4574 0.0140
Summed diameter change OS 1.1173 0.5734 3.0567 -0.0065–2.2411 1.9486 0.0513

Volume change PFS 0.5540 0.3134 1.7402 -0.0603–1.1684 1.7676 0.0771
Volume change OS 0.7372 0.3308 2.0901 0.0889–1.3855 2.2287 0.0258

Table 2. Breakdown of the age, stage, response status, and treatment regimens received by patients in the
different cohorts.

Training set Hold-out set External validation set Total

Age at diagnosis 64.4 (29-90) 63.9 (47-83) 63.1 (35-85) 63.9 (29-90)
Stage

3B 0 1 0 1
3C 42 16 31 89
4A 13 0 11 24
4B 17 3 0 20

RECIST 1.1
Response 36 12 30 78
Stable 35 7 12 54
Progression 1 1 0 2

Combination therapy 52 16 39 107
Weekly Carboplatin and Paclitaxel 2 0 0 2
3-weekly Carboplatin and Paclitaxel 33 9 39 81
Weekly Carboplatin, 3-weekly Paclitaxel 13 5 0 18

Carboplatin monotherapy 17 3 3 23
Doxorubicin 3 1 0 4

Table 3. Slice thickness of the CT scans in the training and validation datasets.

Dataset Slice spacing [cm] (number of scans)

Training set 0.069 (1), 0.15 (1) , 0.25 (1), 0.3 (2), 0.375 (19), 0.5 (48)
Hold-out validation set 0.3 (1), 0.375 (4), 0.5 (15)
External validation set 0.069 (1), 0.2 (12), 0.41 (2), 0.5 (31)
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Table 4. Mapping between FIGO stages and ordinal numbers used for predictive modelling.

FIGO stage Ordinal

1A 1
1B 2
1C 3
2A 4
2B 5
3A 6
3B 7
3C 8
4A 9
4B 10

Table 5. Hyperparameter ranges used in the cross-validation model optimisation.

Algorithm Hyperparameter Range

Elastic net Penalty coefficient α 10−8 − 10 (200 log steps)
Elastic net L1 ratio 0.1–1.0 (steps of 0.1)

SVR Kernel coefficient γ 10−9 − 103 (100 log steps)
SVR Regularisation parameter C 10−3 − 103 (100 log steps)
RF Max. depth 3 or automatic
RF Num. of estimators 5, 10, 25, 50, 100
RF Max. features in split 0.05, 0.1, 0.2, 0.5, 0.7
RF Min. samples in split 2, 3, 6, 10, 12, 15

Table 6. Optimised hyperparameters used in each of the algorithms and seeds.

Algorithm Seed 1 Seed 2 Seed 3 Seed 4 Seed 5

Elastic net Penalty coefficient α 0.049 0.542 0.667 0.667 0.667
Elastic net L1 ratio 0.200 0.400 0.300 0.200 0.300

SVR Regularisation parameter C 869.749 2.154 10.000 869.749 657.933
SVR Kernel coefficient γ 0.011 0.033 0.011 0.011 0.000
RF Max. depth Automatic Automatic 3.0 3.0 3.0
RF Max. features in split 0.7 0.5 0.1 0.1 0.1
RF Min. samples in split 12.0 2.0 10.0 6.0 10.0
RF Num. estimators 10.0 50.0 5.0 5.0 10.0

Table 7. Performance results for the cross-validation training set and the two validation sets.

Training set (CV) Hold-out set External set
Model MSE change (%) MSE change (%) Spearman r Pearson r MSE change (%) Spearman r Pearson r

Clinical – – rS=0.49, p=0.03 rP =0.30, p=0.20 – rS=-0.00, p=0.98 rP =0.03, p=0.85
+ CA-125 -5.2 -1.5 rS=0.37, p=0.11 rP =0.32, p=0.17 +0.7 rS=0.04, p=0.80 rP =0.03, p=0.84

+ Radiomics -24.0 -15.4 rS=0.50, p=0.02 rP =0.50, p=0.02 -8.6 rS=0.32, p=0.04 rP =0.29, p=0.07
+ ctDNA -25.0 -14.0 rS=0.50, p=0.02 rP =0.49, p=0.03 – – –
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Table 8. List of all non-imaging features used in the predictive models, and their means, medians, standard
deviations and ranges for the training, hold-out validation and external validation sets.

Training set Hold-out validation set External validation set
Feature Mean Median σ Range Mean Median σ Range Mean Median σ Range

Stage 8.65 8.0 0.84 8-10 8.25 8.0 0.77 7-10 8.26 8.0 0.44 8-9
Age at diagnosis 64.43 66.5 12.19 29.0-90.0 63.85 66.0 10.3 47.0-83.0 63.14 65.0 12.19 35-85
Baseline CA-125 2.1e+03 972.0 2.6e+03 11-

1.2e+04
729.15 523.0 637.69 33-

2.1e+03
2.3e+03 899.5 5.1e+03 74-

3.1e+04
ctDNA tMAD 0.044 0.012 0.073 0.0047-

0.36
0.014 0.0087 0.013 0.005-

0.057
– – – –

ctDNA TP53 MAF 0.071 0.012 0.13 0.0-0.64 0.014 0.0 0.025 0.0-0.1 – – – –
ctDNA TP53 mutation status 0.57 1.0 0.5 0.0-1.0 0.4 0.0 0.49 0.0-1.0 – – – –
Num. cycles before 2nd CT 4.056 3.0 1.95 2.0-9.0 4.35 3.0 2.17 3.0-9.0 3.4 3.0 0.73 3-6
Num. days between 1st CT and
treatment start

25.0 26.0 13.2 1.0-68.0 21.55 23.5 15.61 1.0-70.0 33.048 27.0 21.94 0.0-99.0

Num. days between 1st and 2nd
CTs

80.97 80.5 18.59 48.0-156.0 76.15 75.5 19.27 48.0-143.0 84.38 78.0 27.45 45.0-173.0

Received Doxorubicin 0.042 0.0 0.2 0.0-1.0 0.05 0.0 0.22 0.0-1.0 0.0 0.0 0.0 0.0-0.0
Paclit. and Carbop. weekly 0.028 0.0 0.16 0.0-1.0 0.0 0.0 0.0 0.0-0.0 0.0 0.0 0.0 0.0-0.0
Paclit. and Carbop. 3-weekly 0.46 0.0 0.5 0.0-1.0 0.45 0.0 0.5 0.0-1.0 0.93 1.0 0.26 0.0-1.0
Paclit. weekly, Carboplat. 3-weekly 0.18 0.0 0.38 0.0-1.0 0.25 0.0 0.43 0.0-1.0 0.0 0.0 0.0 0.0-0.0
Only Carboplatin 0.24 0.0 0.42 0.0-1.0 0.15 0.0 0.36 0.0-1.0 0.071 0.0 0.26 0.0-1.0
Received Paclitaxel 0.72 1.0 0.45 0.0-1.0 0.8 1.0 0.4 0.0-1.0 0.93 1.0 0.26 0.0-1.0
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Table 9. List of all imaging features used in the predictive models, and their means, medians, standard deviations
and ranges for the training, hold-out validation and external validation sets.

Training set Hold-out validation set External validation set
Feature Mean Median σ Range Mean Median σ Range Mean Median σ Range
Mean volume 30.23 14.16 56.61 0.62-

442.94
43.45 13.79 87.025 1.5-395.66 24.78 17.18 24.85 2.62-

138.62
Max volume 320.91 142.52 435.49 2.58-

2.0e+03
298.83 134.42 520.48 8.33-

2.4e+03
341.43 249.71 269.55 14.43-

1.2e+03
Total volume 463.41 230.33 514.72 6.94-

2.1e+03
352.26 174.96 562.055 25.51-

2.6e+03
487.39 387.84 334.47 38.87-

1.3e+03
Omentum volume 173.24 48.32 339.23 0.0-

2.0e+03
35.22 20.56 41.72 0.0-180.27 10.35 0.0 64.29 0.0-421.81

RUQ volume 33.43 0.0 101.45 0.0-585.03 8.31 0.99 11.61 0.0-33.25 0.13 0.0 0.47 0.0-2.54
Epigastrium volume 0.75 0.0 3.94 0.0-23.97 0.56 0.0 2.46 0.0-11.29 0.93 0.0 2.32 0.0-10.79
Mesentery volume 1.71 0.0 6.17 0.0-46.35 0.56 0.0 1.25 0.0-4.79 0.028 0.0 0.18 0.0-1.16
Left paracolic gutter volume 2.65 0.0 5.72 0.0-28.68 0.81 0.0 1.86 0.0-6.59 1.76 0.0 7.013 0.0-45.48
Right paracolic gutter volume 6.58 0.0 20.21 0.0-96.24 0.66 0.0 2.65 0.0-12.18 1.51 0.0 5.64 0.0-34.39
Pelvis/ovaries volume 222.27 80.76 342.31 0.0-

1.8e+03
301.93 139.1 521.21 0.0-

2.4e+03
77.73 0.0 221.66 0.0-

1.1e+03
LN abdomen infrarenal volume 6.44 0.0 21.21 0.0-158.36 2.058 0.0 4.75 0.0-16.83 0.2 0.0 0.6 0.0-2.89
LN abdomen suprarenal volume 2.78 0.0 12.48 0.0-92.3 0.0 0.0 0.0 0.0-0.0 1.58 0.0 7.7 0.0-48.3
LN supradiaphragmatic volume 0.82 0.0 1.73 0.0-12.63 0.31 0.0 0.77 0.0-2.89 0.092 0.0 0.3 0.0-1.58
Omentum num. 9.18 7.0 9.47 0-67 7.75 6.0 7.82 0-29 0.048 0.0 0.21 0-1
RUQ num. 2.93 0.0 5.65 0-31 3.85 1.5 5.082 0-17 0.095 0.0 0.29 0-1
LUQ num. 1.24 0.0 2.12 0-9 0.85 0.0 1.9 0-6 0.071 0.0 0.26 0-1
Epigastrium num. 0.17 0.0 0.75 0-5 0.1 0.0 0.44 0-2 0.24 0.0 0.43 0-1
Mesentery num. 0.79 0.0 1.97 0-10 0.65 0.0 1.71 0-7 0.024 0.0 0.15 0-1
Left paracolic gutter num. 1.014 0.0 2.3 0-16 0.4 0.0 0.97 0-4 0.24 0.0 0.43 0-1
Right paracolic gutter num. 1.0 0.0 2.0 0-10 0.15 0.0 0.48 0-2 0.14 0.0 0.35 0-1
Pelvis/ovaries num. 2.81 2.0 3.17 0-20 2.75 2.0 3.28 0-15 0.19 0.0 0.39 0-1
Abd. wall num. 0.028 0.0 0.16 0-1 0.0 0.0 0.0 0-0 0.048 0.0 0.21 0-1
LN abdomen infrarenal num. 1.35 0.0 3.61 0-21 0.3 0.0 0.71 0-3 0.12 0.0 0.32 0-1
LN abdomen suprarenal num. 0.31 0.0 0.91 0-5 0.0 0.0 0.0 0-0 0.095 0.0 0.29 0-1
LN supradiaphragmatic num. 1.21 0.0 1.94 0-7 0.45 0.0 0.97 0-3 0.12 0.0 0.32 0-1
LN inguinal num. 0.17 0.0 0.55 0-3 0.05 0.0 0.22 0-1 0.071 0.0 0.26 0-1
Num. lesions vol.>0 22.9 18.5 19.66 2-136 17.3 13.5 14.17 2-56 31.55 23.0 31.41 4-192
Num. lesions vol.>1 9.042 7.0 6.67 2-37 6.65 5.5 4.6 2-21 11.64 11.0 7.87 2-39
Num. lesions vol.>10 3.22 3.0 2.029 0-10 2.15 2.0 1.062 0-5 3.33 3.0 1.75 1-10
Num. lesions vol.>100 0.88 1.0 0.91 0-4 0.6 1.0 0.58 0-2 1.071 1.0 0.55 0-2
RECIST summed diameter 108.069 92.5 65.84 13-248 117.95 110.5 63.76 24-270 189.88 177.5 85.35 62-378
Ascites 1.62 2.0 1.12 0-3 1.4 1.0 1.11 0-3 2.024 2.0 0.96 0-3
Pleural effusion 0.85 0.0 1.13 0.0-3.0 0.35 0.0 0.91 0.0-3.0 0.71 0.0 0.98 0-3
Pleural thickening enhancement 0.12 0.0 0.33 0.0-1.0 0.05 0.0 0.22 0.0-1.0 0.14 0.0 0.35 0.0-1.0
Omentum hyperdense 0.15 0.0 0.36 0-1 0.3 0.0 0.46 0-1 0.17 0.0 0.37 0-1
Omentum hypodense 0.78 1.0 0.42 0-1 0.6 1.0 0.49 0-1 0.98 1.0 0.15 0-1
Pelvis/ovaries hyperdense 0.32 0.0 0.47 0-1 0.45 0.0 0.5 0-1 0.12 0.0 0.32 0-1
Pelvis/ovaries hypodense 0.88 1.0 0.33 0-1 0.9 1.0 0.3 0-1 1.0 1.0 0.0 1-1
Compactness1 0.013 0.013 0.0029 0.0042-

0.018
0.013 0.013 0.0022 0.0091-

0.018
0.012 0.012 0.002 0.0063-

0.017
Compactness2 0.21 0.19 0.088 0.02-0.44 0.22 0.22 0.067 0.1-0.36 0.18 0.17 0.067 0.051-0.45
HU>0 59.44 31.035 104.71 2.16-

638.76
69.77 27.29 94.69 4.011-

359.64
53.69 33.74 48.87 8.57-

263.14
HU>10 55.88 28.61 98.21 2.088-

592.76
63.26 26.84 85.19 3.45-

316.35
51.12 32.89 46.78 8.12-

247.27
HU>20 50.25 26.93 87.45 1.89-

511.084
53.45 25.37 71.99 2.8-252.72 46.9 31.3 42.99 6.0-221.86

HU>30 43.05 24.68 74.33 1.33-
435.077

42.63 22.57 58.65 2.1-231.83 41.19 26.24 37.73 3.57-
187.85

HU>40 34.98 19.63 60.85 0.7-341.64 32.48 19.56 46.3 1.4-198.47 34.69 21.013 32.14 2.038-
147.0033

HU>50 26.41 14.29 47.64 0.32-
278.15

23.091 12.8 33.35 0.79-
145.33

27.75 16.2 27.13 1.14-
122.28

HU>-10 61.29 31.62 107.68 2.21-656.3 72.82 27.46 99.37 4.44-
381.94

55.11 34.42 49.81 8.7-271.23

P10 (intensity) 16.031 20.4 17.5 39.66-55.5 15.42 17.3 14.92 16.33-
38.94

15.35 18.6 18.51 33.93-
45.46
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P90 (intensity) 77.39 72.35 25.94 20.53-
212.52

74.55 74.83 12.63 51.056-
98.25

75.61 74.13 16.11 42.0-
107.37

Autocorr. (texture) 214.55 212.058 58.12 90.13-
495.58

206.0 206.33 28.14 144.97-
255.93

211.3 212.11 41.036 125.5-
278.32

Coeff. var. (intensity) 0.2 0.48 3.69 26.85-
12.096

0.58 0.5 0.33 0.2-1.79 0.38 0.49 1.27 5.82-2.2

Elongation 0.59 0.59 0.086 0.29-0.84 0.61 0.63 0.085 0.47-0.77 0.59 0.58 0.063 0.47-0.75
Filled volume 62.9 31.81 109.71 2.23-663.9 74.57 27.54 101.87 5.13-

395.66
56.88 35.22 50.096 8.89-

276.00037
Flatness 0.38 0.37 0.078 0.21-0.53 0.42 0.4 0.1 0.29-0.64 0.37 0.37 0.065 0.25-0.54
Interquartile range (intensity) 31.64 29.79 10.35 20.0-89.43 30.24 28.8 7.88 20.0-49.17 31.5 30.66 6.3 19.84-45.2
Joint avg. (texture) 14.35 14.45 1.72 9.31-20.81 14.14 14.024 1.0012 11.8-15.9 14.3 14.47 1.48 10.91-16.5
Kurtosis (intensity) 1.88 0.65 4.99 0.068-

38.93
1.84 0.69 3.2 0.17-14.13 1.058 0.67 2.0099 0.19-13.22

Least axis 22.42 20.27 11.12 8.0042-
68.24

24.79 20.63 13.76 12.25-
65.18

21.54 20.025 6.58 12.74-
41.51

Major axis 64.74 56.14 27.79 26.59-
201.61

61.34 59.9 20.98 29.75-
110.66

63.78 63.12 12.39 40.18-
89.39

Mean abs. dev. (intensity) 19.39 18.11 6.76 11.98-
61.11

18.58 17.47 5.2 12.17-
30.82

18.93 18.73 3.45 13.24-
27.54

Mean (intensity) 47.25 49.12 18.86 8.7-117.32 45.089 44.43 11.38 18.021-
64.96

46.52 48.12 16.56 8.27-70.81

Median abs. dev. (intensity) 19.24 17.97 6.47 11.96-
58.084

18.48 17.39 5.13 12.13-
30.58

18.82 18.64 3.42 12.99-
27.13

Median (intensity) 47.78 49.73 17.99 7.54-115.0 45.18 43.69 11.84 18.33-
66.43

47.92 50.29 16.72 10.28-
72.15

Minor axis 35.23 31.58 17.034 17.93-
123.51

34.92 31.86 11.82 19.82-
68.11

36.18 32.66 10.034 21.84-
65.088

RMS (intensity) 1.0e+03 1.0e+03 19.072 991.59-
1.1e+03

1.0e+03 1.0e+03 11.34 1.0e+03-
1.1e+03

1.0e+03 1.0e+03 16.54 1.0e+03-
1.1e+03

Robust mean abs. dev. (intensity) 13.35 12.54 4.34 8.45-38.42 12.78 12.12 3.33 8.44-20.72 13.25 13.0067 2.58 8.65-19.14
Robust median abs. dev. (intensity) 13.31 12.5 4.28 8.44-37.72 12.75 12.081 3.31 8.42-20.68 13.21 12.97 2.57 8.59-18.97
Skewness (intensity) 0.14 0.22 0.53 0.9-2.32 0.023 0.11 0.37 0.54-0.9 0.31 0.33 0.34 1.14-0.79
Spherical disprop. 1.99 1.94 0.37 1.45-3.71 1.89 1.88 0.26 1.41-2.36 2.099 2.054 0.28 1.61-3.022
Sphericity 0.55 0.55 0.086 0.27-0.71 0.57 0.57 0.067 0.45-0.71 0.53 0.52 0.061 0.35-0.66
Std. dev. (intensity) 25.0 23.59 9.23 15.16-

82.87
23.93 22.63 7.061 15.45-

40.19
24.019 23.72 4.13 17.68-34.9

Sum avg. (texture) 28.7 28.91 3.43 18.62-
41.62

28.29 28.048 2.0023 23.59-31.8 28.61 28.95 2.96 21.82-33.0

Sum entropy (texture) 3.88 3.86 0.35 3.28-5.29 3.85 3.81 0.37 3.33-4.66 3.87 3.86 0.26 3.25-4.4
Surface area 119.56 88.71 144.48 17.59-

881.93
107.54 77.82 87.52 20.8-

360.49
121.24 108.78 59.35 39.63-

297.97
Surface to vol. ratio 4.72 4.71 1.14 1.052-8.06 4.46 4.63 1.42 1.39-6.76 5.23 5.16 1.13 1.9-7.95
Total energy (intensity) 6.9e+07 3.6e+07 1.2e+08 2.4e+06-

7.4e+08
8.0e+07 3.1e+07 1.1e+08 5.4e+06-

4.2e+08
6.3e+07 3.9e+07 5.5e+07 9.9e+06-

3.0e+08
Volume 62.9 31.81 109.71 2.23-663.9 74.57 27.54 101.87 5.13-

395.66
56.88 35.22 50.096 8.89-

276.00037
HU>0 rim ratio 0.38 0.3 0.38 2.69-0.0 0.53 0.27 0.55 2.034-

0.031
0.33 0.21 0.31 1.4-0.057

HU>10 rim ratio 0.38 0.3 0.37 2.6-0.0 0.52 0.28 0.52 1.85-0.032 0.33 0.21 0.31 1.44-0.057
HU>20 rim ratio 0.37 0.29 0.36 2.43-0.0 0.49 0.29 0.48 1.83-0.032 0.33 0.22 0.3 1.51-0.058
HU>30 rim ratio 0.37 0.28 0.35 2.23-0.0 0.47 0.27 0.45 1.84-0.034 0.32 0.22 0.31 1.59-0.06
HU>40 rim ratio 0.36 0.27 0.34 2.14-0.0 0.44 0.26 0.42 1.85-0.035 0.32 0.24 0.32 1.7-0.061
HU>50 rim ratio 0.36 0.28 0.35 2.24-0.0 0.42 0.25 0.4 1.81-0.032 0.33 0.25 0.32 1.8-0.061
HU>-10 rim ratio 0.38 0.3 0.38 2.72-0.0 0.53 0.27 0.56 2.12-0.031 0.33 0.21 0.31 1.38-0.056
P90 (intensity) rim ratio 0.00051 8.5e-

05
0.025 0.13-0.043 0.0019 0.0034 0.06 0.22-0.11 0.0011 0.00021 0.01 0.028-0.04

Autocorr. (texture) rim ratio 0.0038 0.0014 0.022 0.12-0.041 0.00012 0.0002 0.044 0.14-0.11 0.0031 0.003 0.012 0.042-
0.021

Cluster tendency (texture) rim ratio 0.012 0.028 0.14 0.86-0.28 0.028 0.038 0.11 0.38-0.21 0.032 0.024 0.033 0.028-0.15
Coeff. var. (intensity) rim ratio 0.014 0.013 0.052 0.28-0.16 0.011 0.018 0.044 0.13-0.075 0.029 0.016 0.073 0.051-0.46
Contrast (texture) rim ratio 0.018 0.014 0.032 0.13-0.14 0.025 0.018 0.029 0.01-0.099 0.022 0.021 0.016 0.013-

0.064
Corr (texture) rim ratio 0.0085 0.0062 0.018 0.044-

0.072
0.012 0.0063 0.021 0.032-

0.056
0.0076 0.0056 0.012 0.0092-

0.04
Diff. avg. (texture) rim ratio 0.0097 0.0065 0.014 0.036-

0.072
0.012 0.0079 0.014 0.0014-

0.048
0.011 0.01 0.0084 0.0065-

0.035
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Diff. entropy (texture) rim ratio 0.0062 0.0045 0.0089 0.021-
0.049

0.0075 0.006 0.008 0.0037-
0.027

0.0068 0.0059 0.005 0.0031-
0.021

Diff. var. (texture) rim ratio 0.017 0.017 0.039 0.18-0.16 0.026 0.019 0.034 0.02-0.13 0.022 0.019 0.015 0.013-
0.059

Dissimilarity (texture) rim ratio 0.0097 0.0065 0.014 0.036-
0.072

0.012 0.0079 0.014 0.0014-
0.048

0.011 0.01 0.0084 0.0065-
0.035

Energy (texture) rim ratio 0.03 0.02 0.041 0.23-0.06 0.044 0.029 0.064 0.27-0.057 0.035 0.03 0.028 0.13-0.007
Energy (intensity) rim ratio 0.38 0.3 0.38 2.72-0.0 0.52 0.26 0.55 2.059-

0.031
0.33 0.21 0.31 1.39-0.056

Information Corr. 1 (texture) rim ratio 0.015 0.016 0.034 0.1-0.098 0.02 0.011 0.044 0.1-0.1 0.013 0.0095 0.023 0.075-
0.022

Haralick corr. (texture) rim ratio 0.011 0.013 0.047 0.23-0.13 0.017 0.016 0.087 0.28-0.22 0.017 0.014 0.018 0.011-
0.072

Interquartile range (intensity) rim ra-
tio

0.016 0.012 0.031 0.068-0.15 0.024 0.02 0.042 0.06-0.16 0.016 0.013 0.018 0.024-
0.075

Inverse diff. moment norm. (texture)
rim ratio

5.3e-
06

4.3e-
06

8.6e-
06

3.3e-05-
3.6e-05

8e-06 2.3e-
06

1.4e-
05

5.5e-05-
4.8e-06

5.9e-
06

5.9e-
06

5.1e-
06

2.3e-05-
8.2e-06

Inverse diff. moment (texture) rim ra-
tio

0.005 0.0033 0.0063 0.027-
0.012

0.0061 0.0032 0.007 0.027-
0.00098

0.0057 0.0055 0.0046 0.019-
0.0045

Inverse diff. norm. (texture) rim ratio 0.00011 8.1e-
05

0.00015 0.00064-
0.00044

0.00014 7.8e-
05

0.00019 0.00069-
3.1e-05

0.00013 0.00013 9.6e-
05

0.0004-
0.00011

Inverse diff. (texture) rim ratio 0.0036 0.0026 0.0047 0.022-
0.0089

0.0045 0.0025 0.0052 0.02-
0.00077

0.0042 0.0039 0.0034 0.014-
0.003

Inverse var. (texture) rim ratio 0.0026 0.002 0.0035 0.013-
0.0078

0.0022 0.00087 0.0047 0.016-
0.0035

0.003 0.0031 0.0028 0.008-
0.0041

Joint avg. (texture) rim ratio 0.0017 0.00077 0.01 0.055-
0.021

0.00054 0.00022 0.02 0.059-
0.059

0.0017 0.0016 0.0061 0.022-0.01

Joint entropy (texture) rim ratio 0.0067 0.0051 0.011 0.02-0.057 0.009 0.0079 0.014 0.029-
0.039

0.0077 0.0063 0.0062 0.0012-
0.03

Joint max. (texture) rim ratio 0.023 0.013 0.04 0.21-0.055 0.053 0.031 0.079 0.37-0.01 0.035 0.027 0.033 0.13-0.026
Joint var. (texture) rim ratio 0.01 0.024 0.13 0.81-0.26 0.025 0.034 0.1 0.36-0.19 0.03 0.024 0.03 0.023-0.13
Max (intensity) rim ratio 0.02 0.00036 0.065 0.45-0.0 0.016 0.0 0.035 0.16-0.0 0.022 0.0016 0.052 0.26-0.0
Mean abs. dev. (intensity) rim ratio 0.011 0.012 0.04 0.22-0.13 0.016 0.015 0.044 0.13-0.11 0.016 0.011 0.016 0.015-

0.076
Mean (intensity) rim ratio 0.0075 0.0032 0.032 0.15-0.068 0.00032 0.00082 0.068 0.21-0.18 0.0088 0.0051 0.03 0.15-0.044
Median abs. dev. (intensity) rim ratio 0.012 0.012 0.036 0.18-0.13 0.017 0.015 0.043 0.12-0.11 0.016 0.012 0.016 0.011-

0.075
Range (intensity) rim ratio 0.017 0.0016 0.055 0.37-0.0 0.013 0.0 0.024 0.1-0.0 0.016 0.0039 0.034 0.15-0.0
RMS (intensity) rim ratio 0.00033 0.00013 0.0017 0.01-

0.0031
0.0001 3.3e-

05
0.0029 0.0079-

0.0089
0.00026 0.00027 0.00087 0.0032-

0.0015
Robust mean abs. dev. (intensity)
rim ratio

0.015 0.011 0.031 0.082-0.15 0.021 0.013 0.04 0.086-0.14 0.017 0.013 0.019 0.023-
0.084

Robust median abs. dev. (intensity)
rim ratio

0.015 0.011 0.03 0.073-0.15 0.021 0.013 0.04 0.086-0.14 0.017 0.013 0.018 0.019-
0.083

Information Corr. 2 (texture) rim ratio 0.011 0.0098 0.015 0.028-
0.072

0.014 0.0065 0.018 0.022-
0.059

0.0098 0.0069 0.011 0.0038-
0.045

Std. dev. (intensity) rim ratio 0.0082 0.012 0.052 0.32-0.14 0.016 0.017 0.045 0.14-0.11 0.015 0.011 0.015 0.0078-
0.066

Sum avg. (texture) rim ratio 0.0017 0.00077 0.01 0.055-
0.021

0.00054 0.00022 0.02 0.059-
0.059

0.0017 0.0016 0.0061 0.022-0.01

Sum entropy (texture) rim ratio 0.0066 0.005 0.011 0.027-
0.056

0.009 0.0072 0.017 0.039-
0.049

0.0075 0.0057 0.0065 0.0013-
0.032

Sum var. (texture) rim ratio 0.012 0.028 0.14 0.86-0.28 0.028 0.038 0.11 0.38-0.21 0.032 0.024 0.033 0.028-0.15
Total energy (intensity) rim ratio 0.38 0.3 0.38 2.72-0.0 0.52 0.26 0.55 2.059-

0.031
0.33 0.21 0.31 1.39-0.056

Var (intensity) rim ratio 0.01 0.023 0.13 0.8-0.26 0.027 0.032 0.095 0.32-0.19 0.028 0.022 0.029 0.019-0.13
HU>0 peripheric ratio 1.012 0.65 1.16 6.54-0.28 1.73 0.71 2.63 11.48-0.21 0.98 0.46 2.095 13.59-0.2
HU>-10 peripheric ratio 0.79 0.54 0.93 4.25-0.36 1.31 0.53 1.86 7.76-0.25 0.71 0.36 1.44 9.13-0.26
Autocorr. (texture) peripheric ratio 0.74 0.59 0.67 3.88-0.01 0.68 0.5 0.77 2.73-0.37 0.77 0.72 0.51 2.46-0.11
Cluster prominence (texture) periph-
eric ratio

0.32 0.88 2.3 16.32-0.99 0.44 0.89 1.48 5.8-0.997 0.8 0.87 0.18 0.15-0.98

Cluster shade (texture) peripheric ra-
tio

0.37 0.34 3.17 18.38-3.55 0.62 0.094 3.31 3.79-13.77 2.097 0.42 11.15 2.88-73.25

Cluster tendency (texture) periph-
eric ratio

0.64 0.73 0.36 1.9-0.9 0.63 0.75 0.31 0.3-0.92 0.66 0.68 0.12 0.29-0.85

Coeff. var. (intensity) peripheric ra-
tio

0.17 0.14 3.58 16.64-
24.29

0.077 0.17 0.94 2.76-0.81 0.1 0.18 1.4 3.64-6.25
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Contrast (texture) peripheric ratio 0.34 0.36 0.23 1.17-0.68 0.38 0.37 0.16 0.051-0.67 0.34 0.34 0.12 0.11-0.61
Diff. avg. (texture) peripheric ratio 0.19 0.19 0.11 0.38-0.44 0.2 0.2 0.091 0.027-0.39 0.18 0.18 0.07 0.065-0.39
Diff. entropy (texture) peripheric ra-
tio

0.12 0.11 0.062 0.13-0.28 0.13 0.13 0.056 0.0041-
0.24

0.11 0.11 0.043 0.033-0.25

Diff. var. (texture) peripheric ratio 0.35 0.39 0.25 1.28-0.67 0.4 0.38 0.16 0.018-0.7 0.35 0.36 0.12 0.1-0.62
Dissimilarity (texture) peripheric ra-
tio

0.19 0.19 0.11 0.38-0.44 0.2 0.2 0.091 0.027-0.39 0.18 0.18 0.07 0.065-0.39

Energy (texture) peripheric ratio 1.41 1.32 0.78 3.91-0.13 1.23 1.14 0.67 3.25-0.25 1.22 1.09 0.62 4.065-0.31
Energy (intensity) peripheric ratio 0.13 0.015 0.53 2.93-0.54 0.3 0.027 0.73 2.23-0.43 0.04 0.073 0.39 1.33-0.4
Interquartile range (intensity) periph-
eric ratio

0.44 0.47 0.16 0.23-0.73 0.4 0.42 0.14 0.11-0.66 0.41 0.4 0.099 0.22-0.7

Inverse diff. moment norm. (texture)
peripheric ratio

0.00025 0.00018 0.00035 0.0024-
0.00089

0.00036 0.00016 0.0008 0.0038-
2.7e-05

0.00021 0.00018 0.00013 0.0008-
7.6e-05

Inverse diff. moment (texture) pe-
ripheric ratio

0.12 0.11 0.071 0.34-0.14 0.11 0.11 0.057 0.25-0.024 0.11 0.11 0.051 0.28-0.04

Inverse diff. norm. (texture) periph-
eric ratio

0.0031 0.0029 0.002 0.0083-
0.0068

0.0031 0.0026 0.0024 0.012-
0.00021

0.0029 0.0027 0.0011 0.006-
0.0012

Inverse diff. (texture) peripheric ratio 0.084 0.079 0.05 0.24-0.1 0.079 0.079 0.04 0.17-0.016 0.081 0.074 0.036 0.2-0.029
Inverse var. (texture) peripheric ratio 0.079 0.074 0.049 0.21-0.12 0.068 0.063 0.045 0.22-0.011 0.079 0.072 0.03 0.17-0.033
Joint avg. (texture) peripheric ratio 0.36 0.3 0.22 1.22-0.045 0.32 0.27 0.27 0.96-0.024 0.37 0.35 0.2 0.94-0.093
Joint entropy (texture) peripheric ra-
tio

0.17 0.17 0.067 0.076-0.31 0.17 0.18 0.069 0.00039-
0.29

0.16 0.16 0.05 0.037-0.32

Joint max. (texture) peripheric ratio 1.17 1.14 0.63 3.2-0.065 0.99 0.79 0.57 2.68-0.26 1.0039 0.88 0.51 2.96-0.2
Joint var. (texture) peripheric ratio 0.61 0.7 0.35 1.79-0.89 0.62 0.72 0.29 0.25-0.91 0.63 0.65 0.12 0.32-0.83
Kurtosis (intensity) peripheric ratio 2.84 0.93 7.52 47.21-8.11 3.45 0.27 7.96 31.066-

2.65
2.33 1.23 3.86 19.082-

3.75
Max (intensity) peripheric ratio 0.17 0.23 0.35 1.51-0.62 0.19 0.3 0.35 0.74-0.71 0.092 0.12 0.22 0.39-0.44
Mean abs. dev. (intensity) periph-
eric ratio

0.44 0.48 0.16 0.41-0.68 0.42 0.46 0.16 0.042-0.72 0.41 0.42 0.088 0.24-0.63

Mean (intensity) peripheric ratio 4.21 2.9 4.41 29.21-0.22 1.74 1.4 1.23 3.9-0.11 5.15 2.89 6.24 31.046-
0.57

Median abs. dev. (intensity) periph-
eric ratio

0.43 0.47 0.16 0.37-0.68 0.42 0.45 0.16 0.043-0.71 0.41 0.41 0.089 0.22-0.63

Min (intensity) peripheric ratio 0.44 0.45 0.22 0.99-0.015 0.5 0.49 0.25 1.28-0.16 0.44 0.49 0.2 0.85-0.065
Range (intensity) peripheric ratio 0.32 0.38 0.21 0.57-0.61 0.36 0.37 0.2 0.15-0.64 0.27 0.29 0.14 0.058-0.58
RMS (intensity) peripheric ratio 0.035 0.03 0.02 0.12-

0.0056
0.027 0.026 0.02 0.074-

0.014
0.034 0.035 0.015 0.07-0.009

Robust mean abs. dev. (intensity)
peripheric ratio

0.44 0.48 0.16 0.26-0.72 0.4 0.42 0.14 0.098-0.65 0.41 0.41 0.095 0.22-0.68

Robust median abs. dev. (intensity)
peripheric ratio

0.43 0.47 0.16 0.25-0.72 0.4 0.42 0.14 0.096-0.65 0.41 0.41 0.096 0.22-0.68

Skewness (intensity) peripheric ratio 0.95 1.22 5.87 41.27-
16.39

0.34 0.39 3.56 11.67-9.89 2.94 1.91 6.017 16.29-
28.85

Std. dev. (intensity) peripheric ratio 0.44 0.48 0.17 0.5-0.67 0.44 0.48 0.17 0.0042-
0.73

0.41 0.42 0.092 0.22-0.59

Sum avg. (texture) peripheric ratio 0.36 0.3 0.22 1.22-0.045 0.32 0.27 0.27 0.96-0.024 0.37 0.35 0.2 0.94-0.093
Sum entropy (texture) peripheric ra-
tio

0.18 0.2 0.067 0.08-0.3 0.18 0.19 0.073 0.0068-
0.29

0.17 0.17 0.049 0.05-0.31

Sum var. (texture) peripheric ratio 0.64 0.73 0.36 1.9-0.9 0.63 0.75 0.31 0.3-0.92 0.66 0.68 0.12 0.29-0.85
Total energy (intensity) peripheric ra-
tio

0.13 0.015 0.53 2.93-0.54 0.3 0.027 0.73 2.23-0.43 0.04 0.073 0.39 1.33-0.4

Var (intensity) peripheric ratio 0.62 0.7 0.32 1.55-0.89 0.62 0.71 0.28 0.19-0.91 0.62 0.64 0.12 0.29-0.81
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