TITLE

Recruitment of highly functional SARS-CoV-2-specific CD8⁺ T cell receptors mediating cytotoxicity of virus-infected target cells in non-severe COVID-19

SUPPLEMENTS

Supplement	ary Table 1. Lis	t of selected SAF	RS-CoV-2de	erived 9-mer epitopes
Predicted	Peptide name	Sequence	IEDB	Response Frequency
HLA class I				Responder/non-responder
restriction				
HLA-A0101	ORF1_DTD	DTDFVNEFY	1311144	7/3 (70%)
HLA-A0101	ORF1_GTD	GTDLEGNFY	1311156	5/5 (50%)
HLA-A0101	ORF1_AMD	AMDEFIERY	-	0/10 (0%)
HLA-A0101	ORF1_LTN	LTNIFGTVY	-	1/9 (10%)
HLA-A0101	ORF3_FTS	FTSDYYQLY	1309115	10/0 (100%)
HLA-A0101	S_LTD	LTDEMIAQY	1310623	5/5 (50%)
HLA-A0101	S_WTA	WTAGAAAYY	1327824	1/7 (13%)
HLA-A0101	S_CVA	CVADYSVLY*	7247	2/6 (25%)
HLA-A0201	ORF1_KLW	KLWAQCVQL*	32240	10/2 (83%)
HLA-A0201	ORF3_LLY	LLYDANYFL	1311180	8/4 (67%)
HLA-A0201	N_LQL	LQLPQGTTL*	38881	0/23 (0%)
HLA-A0201	N_ILL	ILLNKHIDA*	27182	0/23 (0%)
HLA-A0201	N_LLL	LLLDRLNQL*	37473	1/22 (4,3%)
HLA-A0201	S_VLN	VLNDILSRL*	69657	0/23 (0%)
HLA-A0201	S_VVF	VVFLHVTYV*	71663	2/21 (8,6%)
HLA-A0201	S_ALN	ALNTLVKQL*	2801	1/22 (4,3%)
HLA-A0201	S_KVG	KVGGNYNYL	-	0/23 (0%)
HLA-A0201	S_KIA	KIADYNYKL	1319519	7/16 (30%)
HLA-A0201	S_YLQ	YLQPRTFLL	1309147	11/1 (92%)
HLA-A0301	ORF1_KLF	KLFDRYFKY	1312859	5/6 (45%)
HLA-A0301	ORF1_VTN	VTNNTFTLK	1311232	5/6 (45%)
HLA-A0301	ORF1_ASM	ASMPTTIAK	1310291	1/10 (9,1%)
HLA-A0301	ORF1_KTI	KTIQPRVEK	1311176	6/3 (67%)
HLA-A0301	N_KTF	KTFPPTEPKK*	33668	2/7 (22%)
HLA-A0301	S_RLF	RLFRKSNLK	1075031	0/12 (0%)
HLA-A0301	S_KCY	KCYGVSPTK	1311170	6/3 (67%)
HLA-A0301	S_GVY	GVYFASTEK	1312627	3/6 (33%)

HLA-A1101	ORF1_STF	STFNVPMEK	1311591	2/2 (50%)
HLA-A1101	ORF1_KLF	KLFDRYFKY	1312859	3/1 (75%)
HLA-A1101	ORF1_VTN	VTNNTFTLK	1311232	3/1 (75%)
HLA-A1101	ORF1_ASM	ASMPTTIAK	1310291	3/1 (75%)
HLA-A1101	ORF1_TTI	ΤΤΙΚΡντγκ	1313808	0/4 (0%)
HLA-A1101	M_LSY	LSYFIASFR	1321267	0/4 (0%)
HLA-A1101	N_ATE	ATEGALNTPK*	4936	3/1 (75%)
HLA-A1101	N_KTF	KTFPPTEPKK	33668	3/1 (75%)
HLA-A1101	S_RLF	RLFRKSNLK	1075031	2/2 (50%)
HLA-A2402	ORF1_NYM	NYMPYFFTL	1310703	0/8 (0%)
HLA-A2402	ORF1_YFM	YFMRFRRAF	1334348	0/8 (0%)
HLA-A2402	ORF1_WSW	WSMATYYLF	1313970	0/8 (0%)
HLA-A2402	ORF1_VYI	VYIGDPAQL*	72048	2/6 (25%)
HLA-A2402	ORF3_VYF	VYFLQSINF	1310934	4/4 (50%)
HLA-A2402	M_SYF	SYFIASFRL	1313718	0/8 (0%)
HLA-A2402	N_LSP	LSPRWYFYY*	39576	1/7 (13%)
HLA-A2402	S_PYR	PYRVVVLSF*	50166	0/8 (0%)
HLA-A2402	S_GYQ	GYQPYRVVVL*	23436	0/8 (0%)
HLA-A2402	S_VYS	VYSTGSNVF	1313944	0/8 (0%)
HLA-A2402	S_QYI	QYIKWPWYI	1310756	5/3 (63%)
HLA-A2402	S_NYN	NYNYLYRLF	1313269	5/3 (63%)
HLA-A2402	S_KWP	KWPWYIWLGF	1311572	1/7 (13%)
HLA-A2402	S_YFP	YFPLQSYGF	1075121	1/7 (13%)
HLA-B0702	ORF1_KPN	KPNELSRVL	1319902	1/13 (7,1%)
HLA-B0702	ORF1_KPV	KPVETSNSF	-	0/14 (0%)
HLA-B0702	ORF1_VPM	VPMEKLKTL	1310914	0/14 (0%)
HLA-B0702	N_SPR	SPRWYFYYL*	60242	11/0 (100%)
HLA-B0801	ORF1_FVK	FVKHKHAFL	1310425	1/2 (33%)
HLA-B0801	ORF1_SLS	SLSHRFYRL	-	0/3 (0%)
HLA-B0801	ORF1_YLK	YLKLRSDVL	-	0/3 (0%)
HLA-B1501	N_AQF	AQFAPSASA*	3956	5/3 (63%)
HLA-B3501	ORF1_VPF	VPFWITIAY	1326965	1/1 (50%)
HLA-B3501	ORF1_FAV	FAVDAAKAY	1331939	0/2 (0%)
HLA-B3501	ORF1_LVA	LVAEWFLAY	1321432	1/1 (50%)
HLA-B3501	ORF1_NVL	NVLEGSVAY	-	0/2 (0%)
HLA-B3501	ORF1_HSI	HSIGFDYVY	-	1/1 (50%)
HLA-B3501	S_QPT	QPTESIVRF	1323461	1/1 (50%)

HLA-B3501	S_LPF	LPFNDGVYF	1321049	2/0 (100%)
HLA-B4010	M_SEL	SELVIGAVIL	1075044	2/0 (100%)
HLA-B4010	N_MEV	MEVTPSGTWL*	190494	2/0 (100%)
HLA-B4410	N_MEV	MEVTPSGTWL*	190494	6/3 (67%)
HLA-B4410	ORF1_SEF	SEFSSLPSY*	57432	2/7 (22%)
HLA-C0702	N_QRN	QRNAPRITF	1309136	1/12 (7,7%)

*100% homology with SARS-CoV-1

Bold print peptides were part of initial 9-mer peptide pool.

Supplementary Table 2. Clinical information study cohorts

Study cohort		Gender	Age	SARS-COV-2
				PCR+
Mild symptomatic	Female:	32 (60%)		
(N=53)	Male:	19 (36%)	40,5 ± 10,6	yes
	Unknown	: 2 (4%)		
Seropositive	Female:	18 (64%)	38,4± 13,5	no
(N=28)	Male:	10 (36%)		
Seronegative	Female:	23 (62%)	38,8± 13,6	no
(N=37)	Male:	14 (38%)		
Unexposed pre-pandemic	Female:	12 (55%)	42,96±12,9	no
(N=28)	Male:	10 (45%)		

Supplementary Table 3. SARS-CoV-2 TCR sequences

	IFN-γ						
TCR	cluster	TRAV	TRAJ	TRA_1_cdr3	TRBV	TRBJ	TRB_1_cdr3
13	positive	TRAV13-1	TRAJ47	CAAFGNKLVF	TRBV16	TRBJ1-5	CASSHSNSNQPQHF
18	negative	TRAV21	TRAJ56	CAVDTGANSKLTF	TRBV12-3	TRBJ2-5	CASSLMTIQETQYF
28	positive	TRAV12-1	TRAJ31	CVVRNNNARLMF	TRBV9	TRBJ2-1	CASSVDGSSYNEQFF
32	positive	TRAV12-2	TRAJ9	CAPLGGRRGFKTIF	TRBV7-8	TRBJ2-1	CASSGGTSGSHNEQFF
43	positive	TRAV12-2	TRAJ17	CAVSGGRAAGNKLTF	TRBV7-9	TRBJ2-6	CASSAGSGANVLTF
82	negative	TRAV8-2	TRAJ12	CVVSRMDSSYKLIF	TRBV13	TRBJ2-2	CASSSSGGQTLTGELFF
3398	positive	TRAV20	TRAJ35	CAVQAEGFGNVLHC	TRBV2	TRBJ2-2	CASSEPTSGELFF
3399	negative	TRAV36/DV7	TRAJ42	CAVETYGGSQGNLIF	TRBV13	TRBJ1-1	CASSAQGAGTEAFF
3409	negative	TRAV5	TRAJ5	CAENRTGRRALTF	TRBV20-1	TRBJ1-1	CSGEAALNTEAFF
3456	positive	TRAV38-2/DV8	TRAJ38	CAYIYAGNNRKLIW	TRBV7-6	TRBJ2-1	CASSSDGGGFNEQFF

SUPPLEMENTARY FIGURE LEGENDS

Supplementary Fig. 1. *Ex vivo* SARS-CoV-2 specific T cell responses are at detection limit in convalescent donors. PBMCs were isolated from mild COVID-19 individuals 4-6 weeks after infection. 5×10^6 PBMCs were stimulated with 1 µg/µl Peptivator S pool (15-mer) or in-house designed 9-mer peptide pool for 4 h and stained for IFN- γ cytokine release. Representative raw data (A) and quantification (B) of SARS-CoV-2-specific T cells (IFN- γ^+) are depicted. IFN- γ -reacting cells were pre-gated on CD3⁺. Responder were identified respective to the non-stimulated negative control and background subtraction.

Supplementary Fig. 2. Detection of SARS-CoV-2 specific CD8⁺ T cells after in vitro expansion in mild COVID-19 individuals. 5×10^6 PBMCs from mild COVID-19 individuals were stimulated with 9-mer peptide pool-pulsed autologous PBMCs (10 µg/µl) and expanded for 12 days prior to re-challenge (1 µg/µl). Exemplary raw data (A) and quantification (B) of IFN- γ release after 4 h re-stimulation with 9-mer peptide pool in CD8⁺ and CD8⁻ T cells at day 0 and day 12 of expansion. Statistical analyses were performed via paired-parametric test (** p value < 0.01).

Supplementary Fig. 3. Comparison of CD8⁺ and CD8⁻ T cell responses after stimulation with SARS-CoV-2 9-mers. 5 x 10⁶ PBMCs from four indicated cohorts were stimulated with 9-mer peptide pool-pulsed autologous PBMCs (10 μ g/ μ l) and expanded for 10-12 days prior to re-challenge (1 μ g/ μ l). IFN- γ release of CD8+ and CD8- cells, pre-gated on CD3+ living lymphocytes, was assessed after 4 h re-stimulation. Statistical analyses were performed via paired-unparametric Wilcoxon test (* p value < 0.05, ** p value < 0.01, *** p value < 0.001).

Supplementary Fig. 4. Frequency of HLA class I molecules among the study cohorts. A) Frequency of HLA class I molecules in cohort of mild COVID-19 (red) and pre-pandemic healthy individuals (grey) determined via next generation sequencing. **B)** Frequency of HLA class I molecules in cohort of asymptomatic seropositive (blue) and seronegative (orange). assessed via antibody staining, due to limited sample accessibility and according to commercial availability.

Supplementary Fig. 5. CD8⁺ T cell responses to SARS-CoV-2 peptide subpools. 5 x 10^6 PBMCs from mild COVID-19 individuals were stimulated with 9-mer pool-pulsed autologous PBMCs ($10 \mu g/\mu l$) and expanded for 10-12 days. Expanded PBMCs were restimulated with $1 \mu g/\mu l$ peptide sub-pools (each containing 8-10 peptides) for 4 h and reactivity

was measured as percentage of IFN- γ -releasing CD8⁺ T cells. Heat map shows the percentage of CD8⁺ T cells producing IFN- γ in response to peptide subpool stimulation (red gradient scale).

Supplementary Fig. 6. IFN- γ responses to individual peptide stimulation. 5 x 10⁶ PBMCs from mild COVID-19 individuals were stimulated with 9-mer pool-pulsed autologous PBMCs (10 µg/µl) and expanded for 10-12 days. Expanded PBMCs were re-stimulated with 1 µg/µl individual peptides for 4 h and stained for IFN- γ release. Depicted are raw data showing reactivity of CD8⁺ and CD8⁻ T cells to the 19 immunogenic SARS-CoV-2 epitopes of the initial in-house designed peptide pool from different donors. For flow-cytometry analyses, reactive cells were pre-gated on CD3⁺ living lymphocytes.

Supplementary Fig 7. Response rate to SARS-CoV-2 CD8⁺ T cell epitopes according to HLA class I genotype A) Bar graph showing the percentage of individuals with detectable SARS-CoV-2-specific CD8⁺ T cells according to HLA class I molecules. HLA-coverage of initial peptide selection (top graph; Table 1, bold print) and HLA-coverage after inclusion of recently published SARS-CoV-2 immunogenic epitopes (bottom graph). Responses to individual SARS-CoV-2 epitopes predicted for the same HLA class I molecule were pooled. B) Heat map showing the percentage of CD8⁺ T cells producing IFN- γ in response to individual peptide stimulation (orange-black gradient scale) and the number of reactive epitopes per donor (blue gradient scale) for peptides of the follow-up selection and recently published epitopes (Table 1, regular print) in mild COVID-19 cohort. Responder and non-responder were defined according to IFN- γ response to initial peptide selection (Table 1, bold print).

Supplementary Fig. 8. Gating strategy for flow cytometry-based cell sorting for scRNAseq. After 12 days *in vitro* expansion on SARS-CoV-2 9-mer peptide pool, PBMCs from mild COVID-19 individuals were re-stimulated with 1µg/µl crude A1/ORF1_VTN or A3/ORF3a_FTS epitopes for 4 h. Cells were stained for CD3, CD8 and IFN- γ and sorted on an MoFlo Astrios EQ . For each donor, 2.500 CD8⁺IFN- γ ⁺ and 10.000 CD8⁺IFN- γ ⁻T cells were sorted. HLA-A*01:01 donors 32 and 22, and HLA-A*03:01 donors 22 and 34 were sorted in the same well prior processing for scRNA-seq.

Supplementary Fig. 9. Strategy for sample demultiplexing and donor assignment. A) Principal component analyses on single-nucleotide-polymorphisms (SNPs) colored by the clusters identified with scSplit. **B**) Donor identification from clusters according to Y chromosome genes. Cluster 0_0 was defined as male gender due to enrichment in the male gene score. **C**) Donor identification from clusters according to HLA annotation. HLA predictions from hla-genotyper for each cluster were compared to the original HLA type of the pooled

donors to generate the HLA score. **D)** UMAPs showing the distribution of cells of the UMAP for the individual donors. The gray background represents the total dataset, the color corresponds to the Leiden clustering. **E)** UMAPs depict the individual donors. Highlighted are the re-expressed TCRs from each donor.

Supplementary Fig. 10. Functional assessment for IFN- γ^{-} cluster-derived TCRs. PBMCs from the same donors the transgenic TCRs were isolated from were pulsed with 10 μ g/ μ l SARS-CoV-2 9-mer pool for 2 h and co-cultured with TCR-engineered T cells for 4 h, prior intracellular staining of IFN- γ and IL-2.

Supplementary Fig. 11. Identification of signatures for peptide reactivity and functionality of antigen-specific TCRs. A) Volcano plot shows the differentially expressed genes between reactive and non-reactive TCRs to SARS-CoV-2 epitopes. Selected genes for the reactivity score are colored black. B) Results for linear regression analysis between EC_{50} values of functional TCRs and single genes. Genes selected for the functionality score are colored black. Dashed lines represent the selection criteria for genes to be included in the functionality score. C) Linear regression for the individual genes selected from (B) for all TCRs (upper panel) and only functional TCRs (lower panel). The gray Area in (C) depicts the 95% confidence interval. * p value < 0.05, ** p value < 0.01, *** p value < 0.001, **** p value < 0.001. Two-sided p-values for a hypothesis test (null hypothesis: slope is zero) have been calculated in (j-l), using Wald Test with t-distribution of the test statistic.

Supplementary Fig. 12. Demultiplexing of samples according to HTO-antibodies. UMAPs were generated according to HTO counts for each cell. The heatmap corresponds to Leiden clustering or counts of one individual HTO-antibody.

SUPPLEMENTARY MATERIALS AND METHODS

KEY RESOURCES TABLE

REAGENT or RESOURCE	SOURCE	IDENTIFIER
Antibodies for flow cytometry		
CD19-ECD (J3-119)	Beckman Coulter	A07770
CD8-PE (3B5)	Life Technologies	MHCD0804
CD8-eF450 (OKT8)	Life Technologies	48-0086-42
CD8-FITC (B9.11)	Beckman Coulter	A07756
CD3-BV421 (SK7)	BD Biosciences	56797
CD3-PC7 (UCHT.1)	Beckman Coulter	737657
mTRBC-PE (h57-597)	Biolegend	109208
mTRBC-APC/Fire750 (H57-597)	Biolegend	109246
IEN-v EITC (25723 11)	BD Biosciences	340449
HI A-A*02-FITC	BD Biosciences	551285
HI A-B*07-PE	Biolegend	372404
	Miltenvi	130-115-795
	Miltenvi	130-000-5010
Strentavidin APC	eBioscience	17 /317 82
Total Sog C 0251 (10x Hachtag 1)	Biologond	304661
	Diologond	204662
Total Seq-C 0252 (10X Hashtag 2)	Dielegend	394003
Total Seq-C 0253 (10X Hashtag 3)	Biolegend	394005
Total Seq-C 0254 (10x Hashtaq 4)	Biolegend	394667
Total Seq-C 0255 (10x Hashtaq 5)	Biolegend	394669
Total Seq-C 0256 (10x Hashtaq 6)	Biolegend	394671
IFN-γ catch	Miltenyi	130-090-433
Cell Culture Reagents		
RPMI 1640 Gibco	Sigma	R0883
DMEM	Life Technologies	10938025
Pancoll human (1.077g/ml)	PAN Biotech	P04-601000
Fetal calf serum	Biochrom	
Human serum	In house	
β-mercaptoethanol	Life Technologies	31350010
Gentamicin	Life Technologies	15750-037
HEPES	Life Technologies	15630056
L-Glutamine	Sigma	G8540-100G
Penicillin/Streptomycin	Life Technologies	10378016
Recombinant human IL-2	Peprotech	200-02
Recombinant human IL-7	Peprotech	200-07
Recombinant human IL-15	Peprotech	200-15
Phorbol myristate acetate	Sigma	P1585
Ionomycin	Sigma	19657
Fibronectin	Sigma	F2006
Chemicals, Peptides, Enzymes, Kits		
Propidium Iodide (PI)	Life Technologies	P1304MP
Ethidium Monoazide Bromide (EMA)	Life Technologies	E1374
Cytofix/Cytoperm	BD Biosciences	554714
GolaiPlua	BD Biosciences	555029
DMSO	Merck	D8418
DBCO-PEG4-Biotin	Jena Bioscience	CLK-A105P4-10
Retronectin	TaKaRa	T100B
BigDye®Terminator v3 1 Cycle Sequencing	Applied Biosystems	1100B
RR-100		
Q-solution	Qiagen	
Agencourt CleanSeq magnetic beads	Beckman Coulter	
Alt-R® S.p. HiFi Cas9 Nuclease V3	IDT	1081061
Alt-R® Cas9 Electroporation Enhancer	IDT	1075916
Alt-R® CRISPR-Cas9 crRNA	IDT	

5'-AGAGTCTCTCAGCTGGTACA-3' for TRAC		
Alt-R® CRISPR-Cas9 crRNA	IDT	
5'-GGAGAATGACGAGTGGACCC-3' for		
TRBC		
Alt-R® CRISPR-Cas9 tracrRNA	IDT	1072532
Agencout AMPure XP	Beckman Coulter	A63881
High sensitivity DNA Kit	Agilent	5067-4626
Qubit dsDNA hs assay kit	Life Technologies	Q32851
RPT filter tips	Starlab	S1183-1710, SS1180-
		8710, S1182-1730
DNA LoBind tubes	Sigma	EP0030108051,
		EP0030108078,
		EP0030124359
P3 Primary Cell Kit	Lonza	V4XP-3024
		V4SP-3096
PepTivator SARS-CoV-2 Protein S	Miltenyi	130-126-701
SARS-CoV-2 individual peptides	IBA	
	peptides & elephants	

Reference sequences	NCBI ID
SARS-COV-2 (Wuhan-Hu-1)	NC_045512
SARS-CoV	NC_004718
MERS-CoV	NC_019843
HCoV-OC43	NC_006213
HCoV-HKU1	NC_006577
HCoV-NL63	NC_005831
HCoV-229E	NC_002645

Serology	Source	Identifier
iFlash SARS-CoV-2 lgG (2019-nCov lgG)	SHENZHEN YHLO BIOTECH CO	C86095G

Experimental Models: Cell Lines & Virus	
RD114	In house
K562-HLA-A*01:01 BFP	In house production
K562-HLA-A*03:01 BFP	In house production
A549-ACE2-RFP-HLA-A*01:01	In house production
A549-ACE2-RFP-HLA-A*03:01	In house production
SARS-CoV-2 GFP	In house production

Hardware	
Äkta pureSuperdeso 200 10/300GL	GE
SimpliAmp Thermocycler	Applied Biosystems, Darmstadt, Germany
3130xl Genetic Analyzer	Applied Biosystems, Darmstadt, Germany
Biomek NXP pipetting roboter	
4D-Nucleofector	Lonza
CytoFlex S Cell Analyzer	Beckman Coulter
MoFlo Astrios EQ	Beckman Coulter
2100 Bioanalyzer	Agilent
NovaSeq 6000	Illumina
Incucyte S3 Live-Cell Analysis System	Sartorius

Software and Algorithms	
NETMHC4.0	NetMHC 4.0 Server (dtu.dk)

Netstab1.0	NetMHCstab 1.0 Server (dtu.dk)
NETCTL1.2	NetCTL 1.2 Server (dtu.dk)
PickPocket1.1	PickPocket 1.1 Server (dtu.dk)
NetMHCpan4.1	NetMHCpan 4.1 Server (dtu.dk)
IEDB T cell epitope prediction tools	T Cell Tools (iedb.org)
FloJo V10	FlowJo LLC
GraphPad Prism 9	Graphpad
Microsoft Excel	Microsoft
Affinity Designer 1.9	Serif
IncuCyte S3 Software, Version 2019B Rev2	Essen, Bioscience
uType software	Invitrogen/ThermoFisher
Scanpy 1.4.3	Wolf et al (https://doi.org/10.1186/s13059-017-1382-
	0)
Scirpy 0.3	Sturm et al.
	(https://doi.org/10.1093/bioinformatics/btaa611)
scSplit 1.0	Xu et al, https://doi.org/10.1186/s13059-019-1852-7
Souporcell 2.0	Heaton et al (https://doi.org/10.1038/s41592-020-
	0820-1)
Hla-genotyper 0.4	https://pypi.org/project/hla-genotyper/
Cell Ranger 3.0.2/5.0.0	https://support.10xgenomics.com/single-cell-gene- expression/software/pipelines/latest/installation

Supplementary Fig. 1

Pre-gated on CD3⁺ living lymphocytes

Supplementary Fig. 2

Supplementary Fig. 3

Supplementary Fig. 4

Supplementary Fig. 5

CD8⁺

FSC

IFN-γ

Pre-gated on CD3+ living lymphocytes

Supplementary Fig. 6

8

Supplementary Fig 7

Supplementary Fig. 8

Supplementary Fig. 9

Supplementary Fig. 10

Supplementary Fig. 11

Supplementary Fig. 12