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1. Model Training and Architecture

1.1. Training Infrastructure
To implement the neural network models used throughout this work we used PyTorch [9].

During the training process we applied data augmentation to individual blood cell images across
both branches and their respective training regimes. The images were augmented using Torchvi-
sion [8] with standard horizontal/vertical flipping, random rotations, and color jittering. We
tracked performance on the held-out validation set during model training using Weights & Bi-
ases[2], with the final model used for evaluation being the iteration of the model which per-
formed best on the validation set.

To test our system across all available data, we used repeated stratified k-fold cross vali-
dation from Scikit-Learn [10] on a patient level based their COVID-19 test result. There were
a total of 236 patients, 125 which were labelled positive for COVID-19. We first split our
data into a 83%-17% training/testing split, then split the training data again with a 80%-20%
split for our final training and validation sets. The proportion of COVID-19 positive patients
was approximately balanced within each set, and there was no cross-over of patient data from
set-to-set. We rotated through our dataset, for a total of six folds (a single fold consisting of
a unique training/validation/test set). Unless otherwise indicated, all performance metrics are
reported as the average test-set performance across all six folds, where multiple independent
models were trained from scratch exclusively on the individual folds. This strategy enabled us
to test our system on all available data while isolating the test data during the training process.

1.2. Single-Image Model
The single-image branch of our hybrid deep learning system was configured to have two

outputs for each image, representing the probabilities of the image being either COVID-19
positive or negative. We used the DenseNet-121 [4] neural network architecture provided by
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PyTorch [9], which has a 240×240×3 input size. To optimize the model we chose the stochastic
gradient descent optimizer included in PyTorch [9] with standard cross-entropy loss, paired
with a cyclic learning rate schedule (following Smith [11]), linearly oscillating between high
and low learning rates (1 and 0.0001 respectively) every 4000 gradient steps. The BatchNorm
[5] layers within the DenseNet-121 architecture allowed for high learning rates (e.g. 1) without
harming optimization. Empirically we found that when trained from random initialization, the
DenseNet-121 model performed better than its pre-trained alternatives.

Our single-image dataset was constructed by propagating labels from the patient to all indi-
vidual images (for example if a patient was COVID-19 positive then all of their data would be
labelled as COVID-19 positive). During training we used a weighted random sampling strategy
to sample an equal amount of COVID-19 positive and negative images from our dataset.

The single-image model was trained for a total of 800 epochs. To generate validation metrics
representative of our task we evaluated our model by taking the average of all outputs across a
patient’s data (i.e. running every image included within a patient’s PBS and taking the average
output as the patient prediction). The final model selected was the model which had peak
validation performance, which is evaluated at the end of every epoch.

1.3. Multi-Image Model
The multi-image branch of our system consists of three steps: feature extraction, attention

based aggregation, and classification. For the feature extraction portion of our pipeline we chose
the ResNet50 [3] neural network architecture, configured to produce feature vectors, fi ∈ R32,
for each image i. The attention mechanism used a small multilayer perceptron (MLP) with one
hidden layer of size 64 and a tanh activation to produce a single importance value per image
(ai). Each importance value is placed into a softmax function to produce a set of feature weights
W , such that wi =

eai∑N
j=1 e

aj
and

∑N
j=1wj = 1. These weights are used in conjunction with the

extracted features (fi) to create a final per-image set feature vector F =
∑N

j=1 fjwj . Finally
this feature vector is transformed into a classification with a single linear layer.

Several components of our multi-image branch were critical to successful performance. The
most important component was the use of a unique random image subset generation process for
model training, which was not used during inference. Specifically, during model training, we
randomly selected a subset of 16 images per patient (from all available per-patient images) to
form our model input. This random set of 16 training images changed at each iteration step of
model optimization. During model inference, however, we used all available images from each
patient (see Figure 2 for the distribution of image count across patients). This random sampling
strategy first helped address high memory usage encountered during network training, Second,
we hypothesize that it also had the beneficial effect of acting as a regularization strategy (akin
to image augmentation), preventing the network from utilizing relatively few images within a
patient’s PBS image set to drive predictions.

We trained our multi-image model for 2000 epochs. Similar to the single-image model
validation performance was evaluated by examining the prediction of the patient’s infections
status using all of their data, and the model weights which achieved peak performance were
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saved for final evaluation. Experimentally, we found that the multi-image branch was much
more sensitive to learning rate, with large learning rates causing divergence. To accommodate
this sensitivity, we modified our training strategy from the single image branch and used an
adaptive optimizer (AdamW [6]) with a small, fixed, learning rate (3e− 5).

Parameter Single-Image Multi-Image
CNN Architecture DenseNet-121 ResNet50

Minimum Learning Rate 1× 10−5 3× 10−5

Maximum Learning Rate 1 3× 10−5

Optimizer SGD AdamW [6]
Batch Size 32 8

Images per Sample 1 16

Table 1: Model Training and Configuration Parameters

2. Data Preprocessing and Augmentation

We applied the same kind of data preprocessing and augmentations to all images used within
this study. To prepare the data for processing by our neural networks we cropped and normalized
the images. The cropping was done by taking the inner 240 × 240px from the original 360 ×
360px image. We normalized the images by calculating a dataset wide mean and standard
deviation for each color channel (red, blue, and green), then subtracting the mean and dividing
by the standard deviation.

To augment our dataset we applied, in order, random horizontal and vertical flipping, ran-
dom rotation, and color jittering. These augmentations were implemented using TorchVision
[8] with parameters reported in Table 2. The aforementioned cropping step was done after the
augmentations had been applied. During our perturbation experiments we added a final masking
step to our augmentation pipeline, replacing content within the mask area with zeros.

Parameter Value
Random Horizontal Flipping 50% probability

Random Vertical Flipping 50% probability
Color Jitter ±[0, 5]% Brightness

±[0, 5]% Contrast
±[0, 5]% Saturation
±[0, 5]% Hue

Random Rotation Uniformly sampled from [−45, 45]
Center Crop Center 240× 240px

Table 2: Data augmentation and pre-processing parameters (see Torchvision [8] for implementation details). Trans-
formations are applied in the order they appear within the table. The same transformations were applied in both
the single and multi-image models.
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3. White blood cell classifier

Within the main body of this work we drew relationships between the attention values pro-
duced by one of our multiple instance learning (MIL) methods and categories of white blood
cells (WBCs). To develop this relationship we first needed to be able to classify each of the in-
dividual cells into predefined categories. To enable WBC classification we used a pre-existing
open-source dataset produced by Acevedo et al. [1], which used the same model of imaging
system (Cellavision DM9600) used within our work. Within their dataset they classified WBCs
into eight distinct classes: Neutrophils, Eosiophils, Basophils, Lymphocytes, Monocytes, Im-
mature Granulocytes (IG), Erythroblasts, and Platelets. However, we found that within our
dataset there were a large number of what are canonically known as Smudged Cells, these are
WBCs which are broken during the slide making process [7], these cells were not represented
within the dataset provided by Acevedo et al. [1]. To compensate for this exclusion we manu-
ally labelled 2000 images within our main dataset and included them with the 17,000 images of
the other classes.

Using this expanded dataset we trained a convolutional neural network (CNN) to predict
the classification of each cell. We followed a similar procedure to the single-image classifier
used for detecting COVID-19, using the same set of image augmentations and the ResNet50 [3]
network architecture, trained from random initialization. We used the AdamW optimizer [6]
with a fixed learning rate of 3×10−4, and trained the model for 100 epochs. We used stratified K-
Fold cross validation to ensure equal proportions of each cell type across our training, validation,
and test sets of 70%, 15%, and 15% respectively. With this training strategy our model was able
to achieve an average classification accuracy across our test set of 92%

4. Scan Data Statistics

To understand the underlying trends within our data we plotted the distribution of WBC
types (determined by our automated WBC classifier). Within Figure 1 we can see that the most
common cell is the neutrophil, constituting ∼ 35% of the images, while other cell types occur
at a medium to low frequency. We also examined the number of images per-patient, as shown in
Figure 2. Here we can see that there is no meaningful difference between image counts between
condition (COVID-19 positive vs. negative), however there is a great deal of variation across
the entire dataset.
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Figure 1: Distribution of images by white blood cell classification (using automated WBC classifier).

Figure 2: Number of images per patient across the entire standard dataset. There was a large degree of variance
between patients in image count, with an average of 134 images per patient.
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Recognition of peripheral blood cell images using convolutional neural networks. Com-
puter Methods and Programs in Biomedicine, 180:105020, 2019.

[2] Lukas Biewald. Experiment tracking with weights and biases, 2020. Software available
from wandb.com.

[3] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for
image recognition. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 770–778, 2016.

[4] Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q Weinberger. Densely
connected convolutional networks. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 4700–4708, 2017.

[5] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network
training by reducing internal covariate shift. arXiv preprint arXiv:1502.03167, 2015.

[6] Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. arXiv preprint
arXiv:1711.05101, 2017.

[7] Denis Macdonald, Harold Richardson, and Anne Raby. Practice guidelines on the report-
ing of smudge cells in the white blood cell differential count. Archives of pathology &
laboratory medicine, 127(1):105–105, 2003.
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