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Abstract

A wide variety of diseases are commonly diagnosed via the visual examination of cell mor-
phology within a peripheral blood smear. For certain diseases, such as COVID-19, morpholog-
ical impact across the multitude of blood cell types is still poorly understood. In this paper, we
present a multiple instance learning-based approach to aggregate high-resolution morphologi-
cal information across many blood cells and cell types to automatically diagnose disease at a
per-patient level. We integrated image and diagnostic information from across 236 patients to
demonstrate not only that there is a significant link between blood and a patient’s COVID-19
infection status, but also that novel machine learning approaches offer a powerful and scalable
means to analyze peripheral blood smears. Our results both backup and enhance hematological
findings relating blood cell morphology to COVID-19, and offer a high diagnostic efficacy; with
a 79% accuracy and a ROC-AUC of 0.90.

1. Introduction

Within hematology, the analysis of blood cell morphology plays a critical role in diagnosing
and understanding various diseases.1 A key tool for blood cell morphology assessment is the
light microscope, which is often applied to examine peripheral blood smears (PBS).2 In a typical
procedure, a physician will visually examine white and red blood cells within a PBS on a glass
slide at high microscope magnification (usually 100×). The nature of visual examination at
high resolution limits the observable field-of-view (FOV) to contain just few white and red
blood cells at a time, making analysis of multiple cells challenging and time consuming. Digital
microscopes3 have emerged as an effective alternative to manual analysis. By automating the
scanning process and presenting digitized images of PBSs to physicians on a computer, such
digital microscopes are quickly becoming the predominate method of PBS analysis.
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The digitization of PBS imagery has also led to new opportunities to apply advanced ma-
chine learning algorithms, such as deep learning methods, to examine blood data.4, 5, 6, 7 How-
ever, thus far, most algorithmic methods have relied on preexisting and developed understand-
ings of the morphological features of interest, to either facilitate the design of feature extraction
techniques or to specify per-cell labeling criteria. This constraint limits the application of ma-
chine learning to automate the decisions that physicians are currently able to make, rather than
providing fundamentally new capabilities or insights.

The limitations of current machine learning methods for blood cell morphology analysis
were recently highlighted during the COVID-19 pandemic. There is a growing body of evidence
that suggests COVID-19 and blood have a complex set of interactions that lead to significant
morbidity and mortality,8, 9 and there is a variety of clinically reported evidence that COVID-
19 induces morphological changes to both white and red blood cells.10, 11, 12, 13 However, our
current limited understanding and agreement regarding such morphological impact has impeded
development of effective blood-based diagnostic and prognostic screening tools.

In this work, we argue that a new way of analyzing blood, which we term Deep Optical
Blood Analysis (DOBA), circumvents the need to pre-define features of interest or label indi-
vidual cells within particular categories, and instead allows for an entirely data-driven analysis
of blood using only patient-level information. DOBA uses deep learning to develop a map-
ping between images from a patient’s PBS and their condition. In a typical digital PBS scan,
images of hundreds of white and red blood cells are captured per-patient. It is therefore de-
sirable to examine each image in detail, without requiring labels on the individual images. To
accomplish this, we adopted a Multiple Instance Learning (MIL)14 technique to link a patient’s
COVID-19 diagnosis (obtained with a standard PCR-RT laboratory test) to their blood image
data. Specifically, a recent approach15 paired an MIL attention mechanism with a convolutional
neural network to simultaneously learn how to extract information from individual images and
aggregate information across multiple images. We extended this work to form a novel hybrid
MIL network based upon model ensembling,16 and applied our new algorithm to produce accu-
rate final per-patient screening results directly from blood image data.

We chose COVID-19 as a case-study in developing DOBA due not only to the significance
of the disease, but also the growing medical consensus regarding its connections to blood.17 De-
spite this consensus, there is no convergence on a particular expression of COVID-19 in blood,
with responses ranging from Thrombocytopenia,18 to COVID-19 induced blood clots,19 to mor-
phological abnormalities.13, 12 Therefore, despite sufficient evidence to attempt to use blood cell
morphology to detect COVID-19, there is no clear starting point in examining individual cells
using standard supervised machine learning approaches (i.e. labelling each cell individually).

Our new method not only enables diagnosis of COVID-19 without requiring such labeling,
but also sheds light on how this new disease affects blood, by automatically producing a statisti-
cal summary of which specific cells and cell types are more or less important for the COVID-19
diagnostic task. Further, by applying specific perturbations to our image datasets, we have
also developed a procedure to highlight which spatial features of the acquired image data were
more or less important to enable robust screening. Apart from enhancing our understanding
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of the disease, these features also offer a window into algorithm operation to improve the ex-
plainability and reliability of our approach. We are hopeful that our new learning-based data
aggregation strategy can serve as a starting point for future algorithmic strategies to elucidate
the hematological impact of COVID-19 and other blood-related diseases.

2. Results and Discussion

2.1. Study Design
We investigated the diagnostic potential of PBS images for COVID-19 infection through a

partnership with the Duke University Medical Center. Over a five month period (April 2020
- August 2020) we collected digital PBS image data from 236 patients, 53% of whom tested
positive for COVID-19 by a separately administered PCR test. No other patient information was
collected for this cohort. In addition, we collected PBS image data from 40 additional patients
admitted to the medical intensive care unit who presented with acute respiratory illness, but
were confirmed to COVID-19 negative using the same PCR testing method. We denote these
two cohorts of patients as the Standard and Challenge groups throughout this work.
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Figure 1: Workflow of automated COVID-19 infection analysis from peripheral blood smear (PBS) image data. a)
Data collection procedure at Duke University Medical Center. Subjects randomly selected from patient population
subset whom had both a COVID-19 RT-PCR test (ground truth labels) and images from a digital PBS scan (input
data). All data was collected anonymously, retaining only the results of the RT-PCR test and digitized PBS images.
b) Summary of pre-processing pipeline, where individual images of white blood cells are extracted from the full
slide using a high-resolution oil-immersion microscope. c) Data analysis strategy. All cells from a patient are
collectively analyzed by a deep neural network to produce both a COVID-19 diagnosis and per-cell importance
score.

PBS image data was collected using a clinically approved digital slide scanner (Cellavi-
sion DM9600), which uses an oil immersion objective lens to capture multiple high resolution
images per-patient centered upon stained (Wright-Giemsa) white blood cells (WBCs), with an
average of 130 images captured per-patient. To preserve patient privacy, no additional data,
such as demographic information, was collected.
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2.2. Detecting COVID-19 from Peripheral Blood Smears

Figure 2: Overview of hybrid machine learning system. The SIL branch processes each image from a patient PBS
scan individually. The outputs are then aggregated to produce a single prediction (using the median of the single
image predictions). The MIL branch collectively analyzes all of a patient’s images simultaneously, producing
one prediction per patient. This is accomplished by first extracting learned per-image features, and then feeding
those features into an attention module. The attention module assigns weights (summing to one) to each learned
feature. The weights are used to compute a weighted sum across image features, the result of which is passed
into a classification module to produce the MIL patient prediction. These two strategies are combined through
ensembling, where the outputs of each branch are averaged to produce the final outcome.

After collecting high-resolution blood image data, our subsequent goal was to test the ac-
curacy of a novel MIL algorithm to predict patient infection status. Unlike standard supervised
machine learning problems that aim to establish a mapping between a single input image and
a known output, this problem presents a somewhat unique challenge of accurately mapping a
variable number of blood cell images to a single prediction of disease state. In a series of ini-
tial tests, we found that while predicting infection from a single image had poor performance
(ROC-AUC of ∼ 0.7), processing and averaging the predictions from multiple images of unique
cells per patient dramatically improved algorithm accuracy. Based upon this key insight, we hy-
pothesized that poor performance at the single image level stemmed from the fact that not every
image has the requisite indicators to detect, or rule out, a COVID-19 infection, and that it would
be beneficial to jointly optimize a cross-cell predictor aggregation strategy to increase diagnos-
tic accuracy. Accordingly, our final machine learning system used a hybrid of two different
multiple instance learning (MIL) methods to map a patient blood imagery to a single diagnostic
score (Figure 2). Each system branch offered unique theoretic benefits and in tandem formed
an effective classifier that holistically examines patient PBS data.

Our final system allowed us to both effectively predict COVID-19 infection status, and iden-
tify which cells were most relevant to disease state prediction. We used a Receiver Operator
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Characteristic (ROC) curve to quantify the trade-off between diagnostic sensitivity and speci-
ficity of our new network, and obtained an area under the curve (ROC-AUC) of 0.90 and 0.89 on
the standard and challenge groups respectively, shown in Figure 3. Additionally, we evaluated
the accuracy of our predictions by assigning a pre-defined threshold (0.5 confidence score) to
the outputs and calculating the percentage of subjects classified correctly. The accuracy of our
network was 79% for subjects within the standard group, and 82% within the challenge group.
To evaluate the challenge group ROC-AUC, we randomly selected an equal number of COVID-
19 positive patients from the standard group for comparison. We found that performance was
roughly equivalent across both cohorts of data, suggesting that the detection mechanism de-
termined by our automated system is not influenced by hidden variables that may change as a
function of scan time or patient cohort, but instead is correlated with the underlying disease.

(a) Performance on the standard cohort. (b) Performance on the challenge cohort.

Figure 3: Performance of COVID-19 diagnosis from blood cell morphology analysis as measured by the receiver
operator characteristic (ROC). Classification accuracy was 79% and 82% for the standard and challenge cohorts
respectively. a) Results reported are the average across the entire dataset, k-fold cross validation was used to
maintain independence between the training and test sets. b) COVID-19 positive patients were randomly selected
from the standard cohort to counterbalance the COVID-19 negative patients from the challenge cohort (ROC-AUC
calculation requires both positive and negative examples).

2.3. Cell Importance
In the process of predicting a patient’s infection status, our system’s MIL model uses an

attention mechanism to generate a per-image importance score (trained jointly with the neural
network). During a forward model pass, the importance score is used to create a weighted
sum of the feature vectors from each image, which is then processed by a classifier module to
generate a single diagnostic score per patient. Relative image importance scores may thus be
directly examined during patient infection status inference, by translating each into a percentile
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score, where a 100th percentile cell image is the most important for the system to reach its
COVID-19 diagnosis. With such an approach, we can jointly categorize cell images into their
respective cell types (e.g., monocyte, basophil, etc.), and then compute statistical distributions
of importance scores within and across cell types (Figure 4a).

From this analysis, we can draw several initial conclusions about the mechanisms used
by our machine learning algorithm for COVID-19 detection. First, it is clear that neutrophils
had a consistently higher importance value than other cell types. Second, cells classified as
monocytes, platelets, and smudged cells (cells likely destroyed during slide preparation), had
the lowest average scores and thus had less diagnostic use. Finally, the remaining cell types
are moderately important, and likely contribute to an accurate classification, but less so than
neutrophils (see example images in Figure 4b).

While these measures of importance alone are not enough to identify the exact mechanisms
that our algorithm is using to perform diagnosis, they act as a rough guide to inform us which
cells are more or less diagnostically relevant. Due to the inherently complex and non-linear
nature of deep neural networks, it is difficult to identify precisely how classification decisions
are made. However, our findings - that aspects of neutrophil morphology are important to
identify a COVID-19 infection - are well supported by existing literature. Broad findings have
recently connected COVID-19 to neutrophil-based abnormalities such as increased amounts
of activated neutrophils in the bloodstream20, 21 and elevated levels of neutrophil extracellular
traps,22 among others.23
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Figure 4: a) Box plots of cell importance by detected white blood cell type. A higher score indicates higher
importance. Neutrophils are the most consistently important cell type, where monocytes, smudged cells, and
platelets are less important. The remaining cell types are moderately important and similar to each other. b)
Examples of white blood cell images from three randomly sampled patients, split by importance level. Highly
important cells are the cells of the patient with the highest score, medium importance cells were drawn from cells
with scores closest to the 50th percentile of scores, and low importance cells were the four cells from each patient
with the lowest scores.

2.4. Perturbation Studies
To understand the spatial factors influencing our ability to detect COVID-19 from PBS

images, we conducted as set of Perturbation Studies, where we manipulated aspects of the
digital PBS image data in a controlled manner during neural network training and inference. In
the interest of computational efficiency, these studies were only performed on a representative
subset (three of the six folds used for k-fold cross-validation) of our data, and only for the
single-image branch of our system. As noted above, PBS image data for each patient consists
of 130 (on average) cropped images centered on a WBC, typically containing RBCs around the
periphery. Accordingly, we varied three unique aspects of these image datasets to help elucidate
important factors for accurate COVID-19 diagnosis: the number of unique images per-patient,
the amount of occlusion within the central image area that typically contains a white blood cell,
and the amount of occlusion of the image periphery that contains red blood cells (see Figure 5).
Occlusions were applied by zeroing pixel values in the same manner to all images within each
patient’s PBS image dataset.

While we can determine how the number of images per-patient influences performance sim-
ply by manipulating this value during inference, the latter two perturbations influence how the
neural network processes images. Therefore, to effectively understand their impact, we re-
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trained networks from scratch using occluded images to create a unique network per occlusion
experiment. To jointly evaluate how the quantity of images per-patient influenced our ability to
screen for COVID-19, we also varied the number of images available for COVID-19 diagnosis
inference by randomly selecting up to N images from each patient. This full process was re-
peated three unique experiments with unmodified, center-occluded, and outer-occluded image
data to produce the results summarized in Figure 6.

Figure 5: Visual image perturbations applied during training. Center masking occludes the white blood cell (which
is always centered within the image). Outer masking occludes the red blood cells, which are in the area surrounding
the white blood cell (towards the outside of the image).

Across all configurations, we observe that a larger number of images per-patient (i.e., mor-
phological data about a larger number of cells) leads to a higher quality screening result, with
diminishing returns. This trend supports the notion that morphological indicators for COVID-
19 infection are spread across many images (i.e., multiple blood cells). Somewhat surprisingly,
with relatively few (∼ 16) images, the original configuration (no occlusions) reaches close to
maximum performance, suggesting that while not every image has the requisite indicators to
detect COVID-19, they are moderately prevalent within our dataset.

Examining the effect of the occlusions on the accuracy of our COVID-19 diagnosis predic-
tions, we observe a negative relationship between occlusion size and prediction performance
(Figure 6). Contrary to expectations, the system continues to perform fairly well (ROC-AUCs
of ∼ 0.8) under significant occlusion, if many images are used to make a prediction. These re-
sults point to several insights of interest. First, note that red blood cells are completely occluded
for nearly all images in the extreme version of outer masking, and white blood cells are com-
pletely occluded for nearly all images in the extreme version of center masking. Accordingly, it
appears possible to at least weakly predict COVID-19 infection from either information about
the white or red blood cells alone. Second, small ”glimpses” of information that our model may
see across hundreds of images per patient enables fairly accurate diagnosis. When only a few
occluded images are available with data on a small number of cells, performance suffers greatly.
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Finally, while predictions can be made with only the red or white blood cell data, the best per-
formance is consistently achieved when information about both cell types is jointly available.

Figure 6: Results of perturbation experiments. Average ROC-AUC of screening predictions compared to number
of images (randomly selected across five trials) used to make the prediction.

These findings are reinforced by related preliminary evidence from the clinical domain. The
impact of COVID-19 infection on white blood cell morphology has been observed in a number
of studies.24, 12, 13, 25 Our finding that red blood cells can morphologically change in response to
COVID-19 infection is consistent with recent studies suggesting that red blood cell distribution
width (RDW) is a significant predictor of illness,11 and that digital holographic videos of red
blood cells can be used to assist with prediction of COVID-19 infection.26 In conclusion, our
new approach can jointly provide diagnostic predictions and lead to novel insights into how
disease processes impact blood cell morphology. By aggregating trends across many hundreds
of cells in a holistic manner, our DOBA pipeline offers a promising new direction for large-scale
analysis of hematological and potentially alternative cytopathological image data in future tasks.

3. Methods

3.1. Data Collection
We collected digital anonymized PBS images from patients at the Duke Medical Center

(IRB Protocol 00105472). We preserved patient anonymity by only collecting PBS image data
and COVID-19 infection status within the standard group of tested patients. The patients from
the challenge group were selected by collecting PBS data from patients admitted to the medical
intensive care unit with acute respiratory illness (from pneumonia or other acute respiratory
failure) who tested negative for COVID-19. While used for cohort formation, this diagnostic
information was not present during analysis. The SARS-CoV-2 infection test was performed
with a Nasopharyngeal Swab based PCR test. All PBS were imaged with a CellaVision DM9600
optical slide scanning system. The system captured high-resolution image segments (estimated
0.44µm optical resolution) over a 360× 360px image area, of which the inner 240× 240 pixels
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were used in our analysis. The images were typically centered on WBCs and almost always
contained red blood cells. An average of 130 images were captured from each PBS.

The standard cohort included 236 patients, 125 of whom tested positive for COVID-19.
Using k-fold cross-validation (k = 6) we repeatedly split patients into training and test sets
(equal proportion COVID-19 positive patients within each set). There was no cross-over of
patient data from set-to-set. Unless otherwise indicated, all performance metrics are reported as
the average test-set performance across all six folds, where multiple independent models were
trained from scratch exclusively for individual folds. This strategy enabled us to test our system
on all available data while isolating the test data during the training process.

3.2. Machine Learning System
Our machine learning system is a novel hybrid of two complementary multiple instance

learning (MIL) approaches (shown in Figure 2). In a first branch, we used DenseNet-121,27 a
convolutional neural network (CNN), to process each image from a patient PBS image set in-
dependently. A single diagnostic label per patient was distributed across all of their individual
PBS images. The CNN output a per-image confidence score, which were then combined across
all images per patient by measuring the proportion of images classified as COVID-19 positive
(0.5 threshold). This strategy may initially seem counter-intuitive, as not every image can be
used to predict COVID-19 infection. If we consider these mislabelled images as a source of
label noise, then we can reconcile the effective performance of our technique despite this phe-
nomenon with the fact that deep learning systems often succeed despite large amounts of label
noise.28 By training on individual images, the number of samples within our training dataset
increases by several orders of magnitude to minimize overfitting and generalization issues, but
at the expense of being unable learn a method to integrate information across images.

To address this latter issue, we implemented a second MIL branch that adopted an attention
based version of MIL, first shown by Ilse et al.15 In this strategy, a CNN extracts a feature
vector from each patient images and then applies an attention mechanism, implemented using a
multilayer perceptron (MLP), to combine these features together. The combined feature vector
is then propagated through a final MLP to produce a final patient-level classification. The
entire pipeline is differentiable, so we trained this using only patient-wide labels. We used the
ResNet5029 CNN architecture to generate feature vectors and MLPs with one hidden layer to
both generate attention scores and perform final classifications. While training with patient-
level data reduces the number of unique training examples (one per-patient rather than per-
image), it allows our model to learn relationships between per-patient cell images.

As a single data point contains N images instead of one within our system’s second MIL
branch, a forward pass of our model becomesN times computationally larger. To accommodate
this overhead, we adopted a simple modification: instead of inputting the entire set of images
from each patient, we input a randomly selected subset of images. Based upon our image
count findings (see Figure 6), we chose the size of this random subset to be 16. In addition
to reducing memory requirements, we believe this sampling strategy acted as a regularization
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method to prevent the model from relying on relatively few images per patient for diagnosis
formation.

Model ensembling16 was employed both within and between MIL branches. The output of
each branch is the average of three independently trained models, and the output of our total
system is the average of both branches. Ensembling substantially reduced average output error
and could be additionally scaled up in the future for additional performance gains.

3.3. Evaluation of Cell Importance
The multi-image MIL branch assigned an importance score to each image (centered on a

unique WBC) via its attention mechanism . While used collectively when predicting a patient’s
infection status, scores are functionally computed independently. To directly output per-image
importance scores for additional analysis, we created a new sub-model, consisting of a subset
of the trained multi-image branch (the feature extraction module and a portion of the atten-
tion module). All images across all patients were input into this sub-model and assigned im-
portance scores before translating the distribution of values into percentiles ranging from 0th
(lowest) to 100th (highest). To assess image importance as a function of cell type, we used
a standard cell-type classifier to sort all images into one of nine standard categories: platelets,
eosinophils, neutrophils, immature granulocytes, lymphocytes, monocytes, basophils, erythrob-
lasts, and smudged cells (see additional details in Supplementary Information).

3.4. Perturbation Experiments
Spatial perturbations were introduced by modifying all images before being input into the

neural network model. it was important to ensure perturbations were in place for the entirety of
the training process (i.e., not just applied to test data, but also included during network training).
Accordingly, all perturbation results are from independently trained models. We masked out a
fixed number of pixels either from the center of the image within a given diameter, or the
surrounding area outside of this central circle. For center masking, we used circles centered
within the image with diameters of 60px, 120px, 180px, and 240px, for the minor, medium,
major, and extreme configurations respectively. For the outer masking experiment, we followed
the opposite approach, masking out all but the center of the image within the fixed diameters
of 240px, 180px, 120px, and 60px for the minor, medium, major, and extreme configurations
respectively.

Across all perturbation studies, we examined how the number of images being used per-
patient influenced performance by reducing the number of images via random sub-selection.
For example, if we wanted to test our system performance for a quantity of 16 images, we would
randomly select 16 images from each patient to be included within the analysis, discarding
all others. To ensure statistical significance with the random image sub-selection process, we
repeated all analyses five times per model. Reported results include the average and standard
deviation across all five trials.
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4. Data Sharing

Due to the conditions and agreements under which this data was collected, no data will be
made publicly available.
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