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Abstract 31 

Introduction: We assessed the usefulness of SARS-CoV-2 RT-PCR cycle thresholds (Ct) values trends 32 

produced by the LHUB-ULB (a consolidated microbiology laboratory located in Brussels, Belgium) for 33 

monitoring the epidemic’s dynamics at local and national levels and for improving forecasting 34 

models. 35 

Methods: SARS-CoV-2 RT-PCR Ct values produced from April 1, 2020, to May 15, 2021, were 36 

compared with national COVID-19 confirmed cases notifications according to their geographical and 37 

time distribution. These Ct values were evaluated against both a phase diagram predicting the 38 

number of COVID-19 patients requiring intensive care and an age-structured model estimating 39 

COVID-19 prevalence in Belgium. 40 

Results: Over 155,811 RT-PCR performed, 12,799 were positive and 7,910 Ct values were available 41 

for analysis. The 14-day median Ct values were negatively correlated with the 14-day mean daily 42 

positive tests with a lag of 17 days. In addition, the 14-day mean daily positive tests in LHUB-ULB 43 

were strongly correlated with the 14-day mean confirmed cases in the Brussels-Capital and in 44 

Belgium with coinciding start, peak and end of the different waves of the epidemic. Ct values 45 

decreased concurrently with the forecasted phase-shifts of the diagram. Similarly, the evolution of 46 
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14-day median Ct values was negatively correlated with daily estimated prevalence for all age-47 

classes. 48 

Conclusion: We provide preliminary evidence that trends of Ct values can help to both follow and 49 

predict the epidemic’s trajectory at local and national levels, underlining that consolidated 50 

microbiology laboratories can act as epidemic sensors as they gather data that are representative of 51 

the geographical area they serve. 52 

Keywords: COVID-19, SARS-CoV-2, forecast, epidemic trend, Ct values 53 
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Leveraging of SARS-CoV-2 PCR cycle thresholds values (Ct) to forecast COVID-56 

19 trends 57 

Introduction 58 

The coronavirus disease 2019 (COVID-19) pandemic dramatically highlighted the central position of 59 

diagnostic testing, not only for the clinical management of infected individuals but also for 60 

surveillance purposes 
1
. The use of clinical microbiology laboratories (CMLs) data to survey the 61 

presence of specific microorganisms in a given population represents one of the most established 62 

public health surveillance tools of infectious diseases. In a previous study, we proved that influenza 63 

trends in Belgium may be estimated using laboratory data provided by a CML serving the wider 64 

Brussels-Capital Region area 2. Since the start of the COVID-19 pandemic, several authors have 65 

demonstrated that CMLs could represent the first step toward a global set of sensor networks for 66 

infectious diseases surveillance, where each one of the CMLs can be seen as a real-time sensor in its 67 

area within an interconnected, complex network 1,3,4. In this perspective, CMLs have become a 68 

cornerstone in the fight against SARS-CoV-2 infections due to their ability to process large amounts of 69 

samples in large geographic areas while using highly specialized diagnostic tests 1,5. 70 

By reporting to Sciensano, the Belgian national public health research institute, the number of new 71 

positives among the tests conducted each day, CMLs share the data needed to estimate the effective 72 

reproduction number (Rt) 
6,7. However, the data represent the growth rate of positive tests and not 73 

the incidence of infection, which requires adjustments to account for changes in testing capacity, 74 

delay between infection and test report date, and conversion from prevalence to incidence. We 75 

previously showed that SARS-CoV-2 RT-PCR cycle threshold (Ct) values are different between 76 

populations, with lower Ct values – thus higher viral loads – for outpatients, likely to be recently 77 

infected and higher Ct values for inpatients 8. In a recent article, Hay et al. used the SARS-CoV-2 RT-78 

PCR Ct values in a model to forecast epidemic’s trajectory 9. At the time of writing, RT-PCR assays are 79 
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not standardised and the Ct values obtained using various PCR methods on various instruments in 80 

various laboratories using various sampling methods cannot be easily aggregated by surveillance 81 

systems. Sciensano recently encouraged laboratories to report their results using a semi-quantitative 82 

approach where a viral load below 103 RNA copies/mL is considered as “weak positive” 10. 83 

Sciensano’s primary goal was to approach the actual infectiousness of patients with persistent 84 

positive RT-PCR. Therefore, the semi-quantitative dimension of positive test results is not used by 85 

surveillance systems yet. 86 

Besides the difficulty of making use of all the data provided by CMLs in real time, public health 87 

authorities also face the challenge of making decisions, as the constantly evolving situation requires 88 

permanent adaptation 11. In this perspective, various predictive models have been developed to 89 

support policy makers 12–15. To improve and facilitate the decision-making process, Hens et al. 90 

developed a phase portrait to monitor the epidemic allowing a real-time assessment of whether 91 

intervention measures are needed to keep hospital capacity under control 16. Nevertheless, such 92 

supportive decision tools are often designed at the national level instead of the hospital level where, 93 

during the pandemic, hospital managers needed support to forecast the cancellation and 94 

reintroduction of a series of medical activities, such as the surgical care program, or the number of 95 

COVID-related ICU beds 17. Thanks to the huge amount of data they collect on a daily basis, CMLs 96 

could also help the hospital structures they serve to anticipate the evolution of the epidemic and 97 

forecast their hospitalisation and medical activities.  98 

The objectives of this study were: (1) to verify the accuracy of using of SARS-CoV-2 PCR Ct values 99 

trends in a single CML to monitor the dynamics of the epidemic; (2) to determine the added-value of 100 

using these data as an additional advanced information for scenario analysis, in relation to a phase 101 

diagram and an age-structured compartmental model, both developed to follow the path of the 102 

Belgian COVID-19 epidemic 14,15. 103 

  104 
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Methods 105 

The “Laboratoire Hospitalier Universitaire de Bruxelles - Universitair Laboratorium Brussel” (LHUB-106 

ULB) is a merged clinical laboratory serving five university hospitals located in the Brussels-Capital 107 

region in Belgium 
8
. All the SARS-CoV-2 PCR results produced between April 1, 2020, and May 15, 108 

2021, by the LHUB-ULB were extracted anonymously from its laboratory information system. The 109 

data collected were patients’ postal code, age, qualitative PCR results, Ct values, instruments on 110 

which PCR were performed, and sampling dates. National Belgian data were extracted from the 111 

“total number of tests by date” and the “confirmed cases by date, province, age and sex” public 112 

dataset available on the Sciensano website on May 27, 2021. These datasets contain the total 113 

number of tests, the number of positive tests per day, and the confirmed number of cases per day 114 

and province. To analyse trends and minimize day-to-day and holiday-related fluctuations, we 115 

computed mean daily positive tests and cases, and median and mean Ct values from May 1, 2020 to 116 

May 15, 2021, using a backward sliding window of 14 days (hereafter referred as “14-day mean 117 

positive tests/cases” and “14-day median/mean Ct values”). 118 

To follow the trends of Ct values variation during the study period, only the SARS-CoV-2 PCR results 119 

on nasopharyngeal swabs (NPS) obtained using the m2000 RealTime SARS-CoV-2 assay (Abbott 120 

Molecular, USA) were considered, this assay being the only one used by our laboratory during the 121 

entire period of interest. As detection of both targeted genes (RdRp and N) was performed using the 122 

same fluorophore, the Ct values of this assay were observed up to 32 cycles and were not 123 

comparable with Ct values of other RT-PCR assays. Ct values were plotted against a standard 124 

calibration curve provided by the Belgian NRC to obtain the semi-quantitative results recommended 125 

by Sciensano 10. Accordingly, results with a Ct > 22.3 were considered as “weak positive” (viral load < 126 

103 RNA copies/mL). Correlations between 14-day median/mean Ct values and daily mean positive 127 

tests were calculated using Spearman’s rS rank correlation coefficient. This correlation was performed 128 

with shifts of 0 to 30 days in the median and mean Ct values, to determine the shift with the highest 129 
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rS between the daily mean number of positive tests and Ct values. To test their validity as a source for 130 

COVID-19 surveillance, LHUB-UB’s data were also compared with all COVID-19 confirmed case 131 

notifications according to geographical coverage and time distribution. 132 

We used phase diagrams depicting the evolution of COVID-19 hospitalisations in Belgium to compare 133 

these trends with the evolution of Ct values measures through time 16. These diagrams were 134 

developed to predict the number of COVID-19 patients requiring intensive care by considering the 7-135 

day mean new hospitalisations and the daily ratio of the past 14-day new hospitalisations. For each 136 

combination, the total number of hospitalisations is projected for a horizon of 14 days, from which 137 

the number of patients requiring intensive care is predicted based on the distribution of the time 138 

spent in an intensive care unit (ICU). The hospital contingency plan in Belgium consists of five 139 

different phases (phases 0, 1A and 1B, 2A and 2B), incrementing COVID-19 related ICU beds 140 

capacities. Within this scheme, the total number of patients in ICU moves from 2001 to 2821, 141 

consequently yielding a gradual decrease in non-COVID-19 ICU capacity 16. The hospital and future 142 

COVID-related ICU load is thus depicted from green to red: the green region can be considered a 143 

“safe zone” in which the number of new hospitalisations is limited with a decrease (growth < 1) or a 144 

limited increase (growth > 1) and associated with a limited number of COVID-19 patients at ICU (first 145 

part of Phase 0); the yellow region, a region of increased vigilance (second part of Phase 0). The 146 

orange (Phases 1A & 1B) and red (Phases 2A & 2B) regions are “high impact” and “no-go” zones, in 147 

which non-COVID-19 care decreases substantially and additional capacity for COVID-19 needs to be 148 

provided for. 149 

A comparison between the evolution of 14-day median Ct values by age classes and the daily 150 

estimated Belgian COVID-19 prevalence for theses age classes has been performed using a model of 151 

deterministic continuous age-structured compartmental model (extended SEIR-type) integrating 152 

social contact data and calibrated on hospitalisations and deaths incidence data as well as serological 153 

studies 15. The prevalence was estimated for the following age classes in years: 0-24, 25-44, 45-64, 154 
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65-74 and 75+ as the proportion of the sum of the infected compartments (exposed, asymptomatic, 155 

presymptomatic, symptomatic and hospitalised individuals) compared to the total size of the age 156 

class, with a 90% confidence interval estimated by Bayesian analysis. This method aims to provide a 157 

reliable comparison with the spreading of COVID-19 in Belgium among age classes since the number 158 

of RT-PCR positive tests are known to be biased over time due to testing policy changes, especially 159 

regarding the youngest and oldest classes. 160 

Data from all sources were collected retrospectively and anonymously before analysis from a routine 161 

surveillance perspective. Ethics approval was granted by the Ethics Committee of the Saint-Pierre 162 

University Hospital. No written informed consent was collected. 163 

  164 
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Results 165 

From April 1, 2020, to May 15, 2021, a total of 155,049 SARS-CoV-2 RT-PCR were performed in the 166 

LHUB-ULB and resulted in 12,771 positive results of which 7,906 Cts were analysed. A peak of LHUB-167 

ULB 14-day mean daily positive tests was reached during the Belgian second wave on October 28, 168 

2020 (n = 153.6, Fig. 1). Beforehand, a lower peak was reached during the summer on August 22, 169 

2020 (n = 24.4). In both cases, these peaks were preceded by a drastic decrease in the 14-day median 170 

Ct values reaching local minima respectively 16 days before (13.12 on October 12, 2020) and 12 days 171 

before (12.76 on August 10, 2020). Ct values were negatively correlated with the number of LHUB-172 

ULB positive tests, with a maximum reached for the correlation between the 14-day median Ct values 173 

with a lag of 17 days and the 14-day mean positive tests (rS = - 0.836), as well as between the 14-day 174 

mean Ct values with a lag of 19 days and the 14-day mean positive tests (rS = -0.834). 175 

 176 

Figure 1. COVID-19 trends in a laboratory perspective: evolution of the 14-day median (solid red curve) and 177 

mean (dashed red curve) Ct values obtained from April 1, 2020, to May 15, 2021 (LHUB-ULB, Brussels Region, 178 

Belgium). Reddish areas surrounding the solid red curve indicate the 95% confidence interval (CI) associated with 179 

median Ct values, and the thinner red dashed lines indicate the 95% CI associated with mean Ct values. The 180 

horizontal dashed line refers to the threshold value of 22.3. Those curves are superimposed on the evolution of 181 
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the number of COVID-19 positive cases identified at the LHUB-ULB. As detailed in the text, median and mean Ct 182 

values, as well as COVID-19 positive cases, were all computed using a backward 14-day sliding window. In the 183 

embedded box, we report the relationship between (i) the Spearman correlation between daily estimates of 184 

median (solid curve) and mean (dashed curve) Ct values and the number of COVID-19 positive cases (LHUB-ULB) 185 

and (ii) the time gap considered between the Ct measures and the number of positive cases. On top of the graph, 186 

we also report key dates of the Belgian epidemic. 187 

During the same period, a total of 1,381,393 tests were performed across the Brussels Region and 188 

13,219,135 tests across the whole of Belgian territory, of which respectively 142,562 and 1,131,719 189 

tests were positive. Overall, LHUB-ULB performed respectively 8.96% (12,771/142,562) and 1.13% 190 

(12,771/1,131,719) of all positive tests reported in the Brussels Region and at the national level. 191 

Figure 2 shows the geographical distribution by postal code of the confirmed COVID-19 cases notified 192 

by the LHUB-ULB to Sciensano and the LHUB-ULB’s representativeness in the COVID-19 notification. 193 

Beside the Brussels-Capital Region, which concentrated most of the tests produced by the LHUB-ULB, 194 

its service area extended to several municipalities in Walloon and Flemish Region with, for some of 195 

them, about 5% of all notifications. Overall, the number of positive tests produced by the LHUB-ULB 196 

showed a high correlation with the regional and national trends of the incidence of COVID-19 197 

notifications with coinciding start, peak and end of the different waves of the epidemic. The 14-day 198 

average number of positive tests in LHUB-ULB were strongly correlated with the 14-day average 199 

number of positive tests in the Brussels-Capital Region (rS  = 0.843) and in Belgium (rS  = 0.810) but 200 

also with the 14-day average confirmed cases in the Brussels-Capital Region (rS  = 0.832) and in the 201 

whole country (rS  = 0.804) (figure 3). 202 
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 203 

Figure 2. Mapping by municipality of SARS-CoV-2 RT-PCR tests performed by the LHUB-ULB since March 8, 2020, 204 

and of the proportion of positive cases detected by the LHUB-ULB compared to the overall number of positive 205 

cases detected in those areas. The Brussels Region is highlighted by a dark grey contour. 206 

 207 

Figure 3. Compared evolution of 14-day mean number of positive SARS-CoV-2 RT-PCR tests (LHUB-ULB) with 208 

Belgium (A) and Brussels (B) 14-day mean COVID-19 cases. 209 

In Figure 4, the 14-days median estimates of daily Ct values are plotted in a white to blue colour scale 210 

on the phase diagram introduced above, showing how Ct values decrease when the situation 211 

worsens (and vice versa) in trends making clockwise movements. Figure 4A shows the downward 212 

trend of the end of the first epidemic wave during which the growth in new hospitalisations 213 

progressively decreased to reach below 0%, a moment at which the number of new hospitalisations 214 

started to decline: The Ct values, low at the peak, increase when the number of new hospitalisations 215 

starts to decline. In Figure 4B, an upward trend was observed, leading to a small summer wave. As 216 

soon as both growth and hospitalisations passed from the green “safe zone” to the yellow region of 217 

“increased vigilance”, the Ct values started to decrease, concurrently crossing the threshold value of 218 
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22.3. The opposite effect was observed when the points fell in the green region. The second wave is 219 

visualised in Figure 4C, with a clear decrease and increase of the Ct values. Finally, Figure 4D 220 

corresponds to the third wave, with again the same pattern observed in the evolution of Ct values.  221 

 222 

Figure 4: Phase diagram generated for different time periods: situation from March 1 to July 14, 2020 (A), 223 

situation from July 14 to September 1, 2020 (B), situation from September 1, 2020, to February 1, 2021 (C), 224 

situation from February 1 until May 15, 2021 (D). See the text for further detail on the principle of phase 225 

diagrams. Dots of the phase diagram are coloured according to 14-day median Ct values (thus computed using a 226 

backward sliding window of 14 days). Triangle symbols indicate the dates when Ct values crossed down the 227 

threshold value of 22.3. 228 

In Figure 5, the median of daily Ct values for different age groups are compared to the daily 229 

estimated prevalence of those age groups. The overall behaviour of Ct values was almost similar for 230 

all age classes and was negatively correlated to the estimated prevalence. 231 
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 232 

Figure 5: Ct evolution by age classes with comparison to the estimated prevalence: evolution of the daily 14-day 233 

median Ct values obtained using the Abbott RealTime SARS-CoV-2 assay from April 1, 2020, to May 15, 2021 234 

(LHUB-ULB, Brussels region, Belgium). Reddish areas surrounding solid red curves indicate the 95% confidence 235 

interval (CI) obtained by bootstrapping method associated with daily estimates of median Ct values. Those curves 236 

are superimposed on the daily prevalence of COVID-19 infected people (proportion of infected versus Belgian 237 

demographic data) as estimated by the age-structured extended SEIR-type mathematical model. Solid grey curves 238 

indicate the 95% CI obtained by Bayesian analysis. 239 

240 
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Discussion 241 

Estimating the likely number of infected patients during epidemics but also the dynamics of 242 

spreading in the population is crucial to carry out adequate testing and infection control measures. 243 

As large and accurate data providers, CMLs can adequately support hospital capacity planning by 244 

providing valuable real-time information about the incidence trends of the pandemic. This was 245 

already established by a previous study on influenza 2, but seems to be even more relevant in the 246 

context of a more severe disease like COVID-19, where hospital capacities are crucially challenged. 247 

Indeed, LHUB-ULB processed on its own 8.95% of the SARS-CoV-2 testing in the Brussels-Capital 248 

Region and was proved here to be representative not only of the region but to a certain extent, the 249 

whole country due its central geographic position in Belgium. A step further would be to capitalise on 250 

the ability of these CMLs to rapidly detect and communicate abnormal events such as sudden 251 

increase or emergence of variants of concern without the delay resulting from sending samples to 252 

central sequencing platforms. Thanks to the expertise gained in such data integration, UK scientists 253 

were able to rapidly share an early assessment of the variant Alpha’s (lineage B.1.1.7) genomic 254 

characteristics and associated clinical outcomes 18. 255 

Complementarily, and providing an adequate standardisation under appropriate management and 256 

regulatory structures, “virtual” CMLs consolidation can also adequately support ongoing COVID-19 257 

surveillance by connecting some or all the produced data to national public health surveillance 258 

systems. In the frame of the COVID-19 pandemic, Sciensano started to monitor on a daily basis the 259 

epidemiological situation of SARS-CoV-2 in the country through multiple surveillance systems 260 

including the “healthdata.be” platform aggregating all information from all CMLs located in Belgium 261 

19–21. The added value of such a combined structure was already demonstrated for monitoring viral 262 

infections by the Infection Response Through Virus Genomics–ICONIC consortium in London 22. 263 

Beyond the variation of the infectiousness over time, our results suggest that following the trend of 264 

SARS-CoV-2 RT-PCR Ct values could predict the epidemic trends. Recently infected patients are 265 
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known to have higher viral load, thus higher infectiousness 23. A decrease in Ct values, linked to an 266 

increase of recently infected people is likely to favour spreading, and goes hand in hand with an 267 

increase in the total number of cases. By gathering enough comparable data using semi-quantitative 268 

results, our Ct values based surveillance systems could approach in real time the average level of viral 269 

load in the population, hence approach the current spreading of the virus before the increase of 270 

cases becomes apparent, while avoiding the recurrent problem of normalization. Predicting the 271 

shape and the size of the epidemic curve is not straightforward; and many parameters may influence 272 

it such as seasonality, infection control measures and population immunity level, to cite a few. The 273 

evolution of 14-day median Ct values was also tested against the daily estimated prevalence by age 274 

classes, and Ct values were similarly negatively correlated for all age classes, even we observed a 275 

shift by approximatively half a month for the 75+ which might be due to intergenerational 276 

transmission. However, a starting divergence was observed in May 2021, with Ct values increasing for 277 

the oldest classes while remaining low for the youngest one. This was related to a period of 278 

resumption of activities in Belgium such as reopening of schools, while older age-classes were 279 

progressively becoming protected through the vaccination campaign. The prevalence projections 280 

from the compartmental model followed the same trend. Hence, Ct values divergence by age classes 281 

could be a good indicator of a divergence in transmission in these age classes. 282 

Following the trend of the Ct values might have helped the decision makers as demonstrated with 283 

the integration of the Ct values in a phase diagram predicting the number of COVID-19 patients 284 

requiring intensive care at a national level. For instance, in March 2021, after a long period of 285 

stagnation in the epidemic, the Belgian government decided to reopen close-contact professions and 286 

increased the number of people authorized to gather outside, at a time when Ct values were 287 

decreasing. This reopening was reversed a few weeks later due to the increase of cases underlining 288 

the untimely decision. During the summer 2020, the evolution of Ct values accurately followed the 289 

dynamic of the epidemic with an increase accompanying each decrease of the pressure on hospitals. 290 

But the shift between the initial diagnosis, the admission, and the length of stay for COVID-19 291 
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inpatients makes it harder to anticipate the trends in hospitalisation between October 2020 and 292 

March 2021 when the epidemic had no real break between peaks and the tension in hospital beds 293 

remained stable. Only future evolution after a real epidemic reflux could confirm the added value of 294 

following the Ct values to anticipate the phase shifts.  295 

At the hospital level, being able to foresee epidemic dynamics could allow a greater ability to 296 

anticipate measures such as pre-admission screenings, isolation, postponement of non-urgent 297 

interventions, triage, and upscaling of human resources. In our study, each epidemic wave was 298 

preceded by a drastic decrease of Ct values, the median crossing back the Ct = 22.3 value threshold 299 

(i.e. the proportion of “weak positive” tests went below 50%), setting here an eventual easy-to-300 

evaluate parameter at the local level. This threshold value of 22.3 was clearly crossed back 301 

concurrently with the passage of the number of new hospitalisations versus the new hospitalisations’ 302 

daily ratio from the green “safe zone” to the yellow region of “increased vigilance” in the phase 303 

diagram. Even if the setting described here should likely be adjusted before being transposed to 304 

other laboratories to take account of the specificity of their own patients (ratios 305 

inpatients/outpatients and symptomatic/asymptomatic), repeating this exercise with their own data 306 

could allow them to set up their own alarm threshold. Likewise, local and national surveillance 307 

systems should track the difference in the proportion of strong versus weak positive results to model 308 

the dynamics of the epidemic and thus to provide guidance for prevention measures as suggested by 309 

Hay et al 
9
. 310 

A potential weakness of our data is that a limited part of the LHUB-ULB activity relies on ambulatory 311 

patients at the general practitioner level. Being able to reach this “non-hospitalised” population 312 

would likely increase the sensitivity of a surveillance system to weak signals when the epidemic 313 

begins in the community before affecting hospitals. However, the fact that overall behaviour of Ct 314 

values was almost similar for all age classes and was negatively correlated to the estimated 315 

prevalence in the compartment model indicates that our data capture the whole Belgian population 316 
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to a sufficient extend. One could also argue that correlation between Ct value and actual viral load 317 

depends on many factors, such as sampling method, targeted genes, primers and probes, and 318 

possible mutations in targeted genes 24. Due to the absence of standardisation between SARS-CoV-2 319 

RT-PCR assays, we only analysed Ct values obtained using one RT-PCR assay performed on 320 

nasopharyngeal swabs all along the studied period. We do believe that their number is sufficient to 321 

neutralize the effect of measurement bias. Furthermore, it has been discussed that some variants 322 

could exhibit an average higher viral load 18,25,26 which could directly impact observed trends in the 323 

overall evolution of Ct values. Nevertheless, this potentially higher viral load is likely to favour 324 

infectiousness and should not introduce a bias regarding epidemic surveillance.  325 

In conclusion, this study established a correlation between the trends in the SARS-CoV-2 RT-PCR Ct 326 

values and the trends of the COVID-19 incidence a few days later. Following the dynamics of the 327 

average viral load could add a dimension in the surveillance of respiratory infectious diseases. 328 

Moreover, it underlines that the considerable amount of data daily collected by CMLs can play a key 329 

role at both local level and beyond, depending on the geographical area they serve. By gathering 330 

comparable laboratory data approaching the average viral load of respiratory viruses in the 331 

population, surveillance systems might be able to better follow epidemic dynamics, establish forecast 332 

models, capture weak signals, and thus anticipate uncontrolled spreading. 333 
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