1	Antibody titers measured by commercial assays are correlated with neutralizing
2	antibody titers calibrated by international standards
3	Yu-An Kung ^{a,*} , Chung-Guei Huang ^{c,d,*} , Sheng-Yu Huang ^{a,*} , Kuan-Ting Liu ^{a,b,*} , Peng-
4	Nien Huang ^{a,e} , Kar-Yee Yu ^{a,b} , Shu-Li Yang ^c , Chia-Pei Chen ^c , Ching-Yun Cheng ^c ,
5	Yueh-Te Lin ^{a,b} , Yen-Chin Liu ^a , Guang-Wu Chen, ^{a,c,f,g,#} Shin-Ru Shih ^{a,c,d,h,#}
6	
7	^a Research Center for Emerging Viral Infections, College of Medicine, Chang Gung
8	University, Taoyuan, Taiwan
9	^b Graduate Institute of Biomedical Science, College of Medicine, Chang Gung
10	University, Taoyuan, Taiwan
11	^c Department of Laboratory Medicine, Linkou Chang Gung Memorial Hospital,
12	Taoyuan, Taiwan
13	^d Department of Medical Biotechnology and Laboratory Science, College of Medicine,
14	Chang Gung University, Taoyuan, Taiwan
15	^e Division of Infectious Diseases, Department of Pediatrics, Linkou Chang Gung
16	Memorial Hospital, Taoyuan, Taiwan
17	^f Artificial Intelligence Research Center, Chang Gung University, Taoyuan, Taiwan

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

18	^g Department of Computer Science and Information Engineering, School of Electrical
19	and Computer Engineering, College of Engineering, Chang Gung University, Taoyuan,
20	Taiwan
21	^h Research Center for Chinese Herbal Medicine, Research Center for Food and
22	Cosmetic Safety, and Graduate Institute of Health Industry Technology, College of
23	Human Ecology, Chang Gung University of Science and Technology, Taoyuan,
24	Taiwan
25	
26	[#] Corresponding author
27	Guang-Wu Chen, Ph.D. (E-mail: gwchen@mail.cgu.edu.tw)
28	Department of Computer Science and Information Engineering, Chang Gung
29	University, Taiwan
30	Mailing address: No.259, Wenhua 1st Rd., Guishan Dist., Taoyuan City, Taiwan
31	Phone: +886-3-2118800 ext.3368
32	
33	Shin-Ru Shih, Ph.D. (E-mail: srshih@mail.cgu.edu.tw)
34	Research Center for Emerging Viral Infections, Chang Gung University, Taoyuan,
35	Taiwan
36	Mailing address: No.259, Wenhua 1st Rd., Guishan Dist., Taoyuan City, Taiwan
37	Phone: +886-3-2118800 ext.5497
38	* These authors contributed equally to the study.

39 Running title: Correlation between IU value of NAb and Ab titer

40 Abstract

41	The World Health Organization (WHO) has highlighted the importance of an
42	international standard (IS) for SARS-CoV-2 neutralizing antibody titer detection, with
43	the aim of calibrating different diagnostic techniques. In this study, IS was applied to
44	calibrate neutralizing antibody titers (IU/mL) and binding antibody titers (BAU/mL) in
45	response to SARS-CoV-2 vaccines. Serum samples were collected from participants
46	receiving the Moderna (n = 20) and Pfizer (n = 20) vaccines at three time points: pre-
47	vaccination, after one dose, and after two doses. We obtained geometric mean titers of
48	1404.16 and 928.75 IU/mL for neutralizing antibodies after two doses of the Moderna
49	and Pfizer vaccines, respectively. These values provide an important baseline for
50	vaccine development and the implementation of non-inferiority trials. We also
51	compared three commercially available kits from Roche, Abbott, and MeDiPro for the
52	detection of COVID-19 antibodies based on binding affinity to S1 and/or RBD. Our
53	results demonstrated that antibody titers measured by commercial assays are highly
54	correlated with neutralizing antibody titers calibrated by IS.

56 Introduction

57	Identifying immune correlates of protection against SARS-CoV-2 infection is
58	challenging. Neutralizing antibody titer is not the only determinant of vaccine efficacy;
59	however, the neutralization level is highly predictive of immune protection (1-3).
60	Moreover, the detection of neutralizing antibody titers is feasible in many laboratories.
61	Several methods have been developed to measure neutralizing antibody titers in
62	convalescent serum or vaccinated serum, such as plaque reduction assays, focus
63	reduction assays, microneutralization assays using real viruses, and pseudovirus assays
64	(4, 5). These assays differ substantially, including variation in protocols for similar
65	assay types and variation among laboratories (6, 7).
66	For calibration, the establishment of international standards (IS) for SARS-CoV-
67	2 neutralizing antibody titer detection is a key goal of the World Health Organization
68	(WHO). Various standards, such as 20/130 and 20/136 (provided by National Institute
69	for Biological Standards and Control [NIBSC]), are widely used to establish a baseline
70	for comparing neutralizing antibody titers from different datasets (different laboratories,
71	protocols, assays, etc.) (6). An IS is based on pooled human plasma from convalescent
72	patients (8). For different pooled cohorts, different standard sera are obtained, each with
73	predetermined international units (IU) for the conversion of neutralizing antibody titers,
74	enabling immunogenicity characteristics to be correctly compared across laboratories

75	and vaccine developers. Although many laboratories have applied IU to present
76	neutralizing antibody titers in the serum of patients with COVID-19 or vaccinated
77	individuals, reference data are insufficient.
78	Furthermore, neutralization tests using real viruses at biosafety level 3 (BSL-3)
79	laboratories are laborious and time-consuming. Binding assays based on the anti-spike
80	protein or anti-receptor binding domain (RBD) are widely used to measure neutralizing
81	antibodies (9-11). However, the correlation between antibody titers from binding assays
82	(binding antibody unit, BAU) and neutralizing titers (IU) has not been clearly
83	established.
84	In this study, 120 serum samples from 40 total subjects were analyzed (20 subjects
85	receiving Moderna vaccines and 20 subjects receiving the Pfizer vaccines) before
86	vaccination, after the first dose, and after the second dose to estimate the correlation
87	between titers estimated by a microneutralization assay using real viruses in a BSL-3
88	laboratory (IU/mL) and antibody titers measured by anti-S1 and anti-RBD enzyme-
89	linked immunosorbent assay (ELISA) (BAU/mL). Several promising vaccine
90	candidates have undergone different phases of clinical trials (12). Our results provide
91	useful information for comparisons of neutralizing antibody titers with those of other
92	widely used vaccines and for non-inferiority trials.

94 Materials and Methods

95 Serum samples collection

- 96 A total of 120 COVID-19 vaccinated sera were purchased from Access Biologicals
- 97 (Vista, CA, USA). The serum samples were collected and followed by protocol SDP-
- 98 003, Human Biological Specimens Collection, data September 22, 2017 and the
- 99 qualifications of Principle Investigator (Robert Pyrtle, M.D.) were reviewed and
- 100 approved by Diagnostics Investigational Review Board (Cummaquid, Massachusetts,
- 101 USA). The protocol SDP-003 will expire on May 3, 2022. The collection dates of the
- sera were between February 25, 2021 to April 29, 2021. The serum from 20 individuals
- 103 vaccinated with Moderna mRNA-1273 and 20 individuals vaccinated with Pfizer
- 104 BNT162b2 were collected before vaccination, after the first dose, and after the second
- 105 dose. The ages of the vaccinated participants are between 22 to 69 years old.

106

107 Cell culture and virus

108 African green monkey kidney (Vero E6) cells (CRL-1586) were purchased from the

109 American Type Culture Collection (ATCC, Bethesda, MD, USA) and maintained in

- 110 Dulbecco's modified Eagle's medium (DMEM; Gibco, Waltham, MA, USA)
- 111 containing 10% fetal bovine serum (FBS; Gibco) at 37°C. Severe acute respiratory

112 syndrome coronavirus 2 isolate SARS-CoV-2/human/TWN/CGMH-CGU-01/2020

113 was used in the live virus microneutralization assay.

114

115 Live virus microneutralization assay

Vero E6 cells (2×10^4 cells per well) were seeded in a 96-well plate and incubated at 116 117 37°C for 24 h. The medium was replaced with 100 µL of fresh DMEM containing 2% FBS. The live virus microneutralization assay was performed in a BSL-3 laboratory 118 using the SARS-CoV-2/human/TWN/CGMH-CGU-01/2020 strain. All serum samples 119 120 were heat-inactivated at 56°C for 30 min and then 2-fold serially diluted in DMEM 121 (Gibco) without FBS. From a starting dilution of 1:8 for each sample, ten 2-fold 122 dilutions were performed for a final dilution of 1:8192. Each serum sample was 123 incubated with 100 50% tissue culture infectious doses (100 TCID50) of SARS-CoV-2 at 37°C for 1 h prior to infection with Vero E6 cells. Add 100 µL of the virus-serum 124 125 mixtures at each dilution to a 96-well plate containing the confluent Vero E6 monolayer. After infected cells were incubated at 37°C for 5 days, they were fixed with 10% 126 127 formaldehyde and stained with crystal violet. The neutralization titer was calculated as 128 the logarithm of the 50% end point using the Reed-Muench method based on the presence or absence of cytopathic effects. Each serum sample was tested in four 129

130	replicates. Geometric mean titers (GMTs) were calculated with 95% confidence
131	intervals (CIs) using GraphPad Prism version 8 (GraphPad Software, Inc., CA, USA).
132	

133 ELISA

134	For indirect ELISA, a 96-well plate was coated with 2 μ g/mL S1, RBD, and N protein
135	(Sino Biological, Beijing, China) diluted in phosphate-buffered saline and incubated
136	overnight at 4°C. Each well was blocked with 300 µL of StartingBlock [™] T20 blocking
137	buffer (Thermo Fisher Scientific, Waltham, MA, USA) for 1 h at 37°C. Serum from
138	vaccinated donors or NIBSC 20/136 standard was diluted in blocking buffer, and 100
139	μ L of the sample was added to a 96-well plate, followed by incubation for 1 h at 37°C.
140	After washing, horseradish peroxidase (HRP)-tagged anti-human antibodies (Abcam,
141	Cambridge, UK), diluted 1:10,000 in blocking buffer, were added to the wells (100
142	$\mu L/well)$, and the plate was incubated for 1 h at 37°C. Samples with N antibodies were
143	incubated for 30 min at 37°C. The chromogenic reagent 3,3,5,5-tetramethylbenzidine
144	(TMB) was mixed with an equal volume of Color A and B (R&D Systems, Minneapolis,
145	MN, USA). The TMB reaction time for S1 and RBD ELISA was 5 min and for N
146	protein ELISA was 10 min. After the reaction, stop solution (R&D Systems) was added
147	to the wells, and the absorbance was measured immediately at 450 nm using a Synergy
148	2 Microplate Reader (Bio-Tek, Winooski, VT, USA).

149 Serologic assay

150	Each serum sample was analyzed by the MeDiPro SARS-CoV-2 antibody ELISA,
151	Roche Elecsys® Anti-SARS-CoV-2 S assay, and Abbott AdviseDx SARS-CoV-2 IgG
152	II assay, according to the manufacturers' instructions. The MeDiPro SARS-CoV-2
153	antibody ELISA detected antibodies against S1 and RBD, and values <34.47 IU/mL
154	were considered negative. The electrochemiluminescence immunoassay (ECLIA) (i.e.,
155	Roche Elecsys Anti-SARS-CoV-2 S assay) was used for the detection of antibodies
156	against the RBD of S protein; <0.80 U/mL was considered negative and \geq 0.80 U/mL
157	was considered positive for anti-SARS-CoV-2 S protein. The Abbott AdviseDx SARS-
158	CoV-2 IgG II assay is a chemiluminescent microparticle immunoassay (CMIA) for the
159	detection of IgG antibodies to the RBD of S protein; the cut-off value was 50.0 AU/mL.
160	
161	WHO international standard unit (IU) conversion
162	WHO IS sera (20/130, 20/136, and 20/268) were obtained from NIBSC. The 50%
163	neutralization titer (NT ₅₀) values for WHO IS sera were determined by a live virus

- 164 microneutralization assay (Supplementary Table 1). Each standard serum sample was
- 165 tested in duplicate, except 20/130.

166

168 Statistical analysis

- 169 Statistical analyses were performed using GraphPad Prism version 8 (GraphPad
- 170 Software, Inc., CA, USA). Pearson's correlation coefficients (r) were used to determine
- 171 the correlation between the titers obtained by the different serological assays and the
- 172 live SARS-CoV-2 NT assay. Statistical significance was set at P < 0.05.

174 **Results**

175	The neutralizing antibody titer is important for evaluating protection against viral
176	infection after vaccination. Dynamic neutralizing antibody titers were observed in
177	individuals who had been fully vaccinated. In detail, we obtained serum samples from
178	20 individuals vaccinated with Moderna mRNA-1273 and 20 individuals vaccinated
179	with Pfizer BNT162b2. For each of these 40 individuals, serum samples were collected
180	before the first dose, 24 days after the first dose from Moderna or 14 days after the first
181	dose from Pfizer, and 14 days after the second dose. A total of 120 serum samples were
182	tested to determine neutralizing antibody titers by a live SARS-CoV-2 virus
183	microneutralization assay. We obtained the NT_{50} values that represent 50% protection
184	against SARS-CoV-2-induced cell death. As expected, the neutralizing antibody titers
185	increased after the first and second doses of the Moderna and Pfizer vaccines (Figure
186	1A). The NT ₅₀ values for the WHO IS for anti-SARS-CoV-2 immunoglobulin (obtained
187	from NIBSC) were also determined by a live virus neutralization assay (Supplementary
188	Table 1), with linear regression defining the conversion of NT_{50} values to IU/mL, as
189	shown in Figure 1B. The GMTs are also shown in Figure 1, illustrating the observed
190	increases. The GMT increased from 157.6 to 1404.16 IU/mL and from 348.83 to 928.75
191	IU/mL for Moderna and Pfizer vaccines, respectively. These GMT values provide a
192	reference for non-inferiority tests of candidate vaccines.

193	Although the live virus neutralization assay is the gold standard for determining
194	neutralizing antibody titers, the operation is time-consuming and requires a BSL-3
195	laboratory. We developed binding assays to detect anti-S1, anti-RBD, and anti-N
196	antibodies, followed by NIBSC 20/136 (WHO IS) for conversion to BAU/mL (Figure
197	2). Increases in anti-S1 and anti-RBD antibodies were observed after the first and
198	second doses (Figure 2A and B). Interestingly, anti-N antibodies were detected in a few
199	individuals pre- and post-vaccination, suggesting that the individuals had COVID-19
200	before or after vaccination.
201	To evaluate whether our binding assay based on anti-S1 or anti-RBD in BAU/mL
202	reflects neutralizing antibody titers in IU/mL, the correlation between the two values
203	was determined, as shown in Figure 2C. Both the S1 and RBD antibody titers were
204	highly correlated with the NT titers ($r = 0.9040$ and 0.9298, respectively), suggesting
205	that the binding assays based on anti-S1 or RBD can be used as surrogates to measure
206	neutralizing antibodies.
207	All 120 serum samples were tested by commercial serological assays, including
208	the MeDiPro SARS-CoV-2 antibody ELISA, Roche Elecsys® Anti-SARS-CoV-2 S,
209	and Abbott AdviseDx SARS-CoV-2 IgG II assay. Roche and Abbott serological assays
210	are widely used in clinical laboratories to detect SARS-CoV-2 antibodies worldwide.
211	They detect the antibody against the RBD of the S antigen, yielding qualitative and

212	semi-quantitative results. MeDiPro is a Taiwan FDA-approved kit for quantifying S1-
213	and RBD-binding antibodies; it assumes that data for S1 and RBD fusion proteins can
214	accurately predict the NT titer. We used real NT titers (IU/mL) from BSL-3 as a
215	standard to assess whether these serological assays reflect the neutralization titers based
216	on the detection of antibodies against S1 and/or RBD. The highest correlation was
217	observed between the titers obtained by the MeDiPro and the live SARS-CoV-2 NT
218	assays ($r = 0.9111$) (Figure 3A). Roche and Abbott RBD antibody titers also had good
219	correlation coefficients of 0.7294 and 0.8466, respectively (Figure 3B and C). With
220	respect to the live virus microneutralization assays, the Roche and Abbott serological
221	assays can correctly detect RBD antibodies in all 77 NT-positive samples (Table 1),
222	whereas MeDiPro produced six negative results. Among these six negative results, the
223	NT titer of four samples is equal to 34.47 IU/mL, which is the limit of the detection in
224	MeDiPro assay. Therefore, both the Roche and Abbot serological assays have 100%
225	(95% Cl, 95.3%-100%) sensitivity, followed by 92.2% (95% Cl, 84.0%-96.4%)
226	sensitivity for MeDiPro. However, MeDiPro can distinguish a greater proportion of
227	NT-negative samples (40/43) than those of Roche (24/43) and Abbott (25/43). In terms
228	of specificity, MeDiPro achieved a high specificity of 93% (95% Cl, 81.4%-97.6%),
229	which was much higher than of the Roche (55.8% [95% Cl, 41.1%-69.6%]) and Abbott
230	assays (58.1% [95% Cl, 43.3%-71.6%]). Our results suggest that the MeDiPro SARS-

- 231 CoV-2 neutralization antibody assay is an effective option for detecting SARS-Cov-2
- 232 neutralizing antibodies without requiring a live virus neutralization assay at a BSL-3
- 233 laboratory.

235 Discussion

236	Antibodies increase gradually within a few weeks after vaccination, and the timespan
237	may vary among individuals (13, 14). Therefore, it is necessary to test neutralizing
238	antibodies to determine whether protective antibodies will be elevated after vaccination.
239	Vaccinated individuals may still have to take measures to avoid infection. Accordingly,
240	such assays are very important for protecting vaccinated individuals as well as for the
241	control and prevention of epidemics (15).
242	Anti-N antibodies may reveal whether vaccinated individuals were infected by the
243	virus before or after the vaccination dose (16). For example, as shown in Figure 2B,
244	one individual who received the Pfizer vaccine showed a dramatic increase in N to 556
245	BAU/mL. S1 for the same individual, after the first and second doses, were 2,094 and
246	1,240 BAU/mL, respectively. In the same individual, after the first and second doses,
247	the RBD levels were 1,618 and 927 BAU/mL, respectively. It has been reported that
248	prior infection with SARS-CoV-2 may boost B cells and significantly elevate antibody
249	production (17, 18).
250	Roche and Abbott Covid-19 diagnostic kits are being used extensively in clinical
251	laboratories (19-21). They are semi-quantitative and were originally designed to
252	confirm an infected case. In this study, we utilized standard sera to develop an approach
253	that utilizes these two kits to quantitate antibody titers after vaccination. The Pearson's

254 correlation coefficients (r) between these antibody titers and neutralization antibody 255 titers were 0.7294 and 0.8466, respectively. Titers obtained by MeDiPro, designed to 256 detect neutralizing antibody titers, were highly correlated with titers obtained by live 257 SARS-CoV-2 NT assays (r = 0.9111). IS was used to obtain neutralizing antibody titers in IU/mL and binding antibody 258 259 titers in BAU/mL. We obtained GMTs of 1404.16 and 928.75 for neutralizing antibodies in serum samples from recipients of Moderna and Pfizer vaccines (n = 20260 each) after two doses, respectively. These estimates may provide important information 261 262 for vaccine developers implementing non-inferiority tests. Moreover, we compared three commercially available kits used for the detection of COVID-19 antibodies based 263 264 on binding affinities to S1 and/or RBD. Our results demonstrated that antibody titers 265 measured by commercial assays are strongly correlated with neutralizing antibody titers 266 via IS calibration. 267

268 Acknowledgements

269 This work was financially supported by the Research Center for Emerging Viral 270 Infections from The Featured Areas Research Center Program within the framework of 271 the Higher Education Sprout Project by the Ministry of Education (MOE), Taiwan, the 272 Ministry of Science and Technology (MOST), Taiwan (MOST 109-2634-F-182-001

273	and 109-2221-E-182-043-MY2), the Research Center for Epidemic Prevention Science
274	by the MOST, Taiwan (MOST 109-2327-B-182-002), the Chang Gung Memorial
275	Hospital (grant number BMRP367), and the National Institutes of Health USA grant
276	U01 AI151698 for the United World Antiviral Research Network (UWARN).
277	
278	Author contributions
279	C.G.H, G.W.C. and S.R.S. designed the experiments. Y.A.K., S.Y.H., P.N.H., Y.T.L.
280	and Y.C.L. conducted the live virus neutralization assay at BSL3 facility. K.T.L.,
281	K.Y.Y., S.L.Y., C.P.C. and C.Y.C conducted the serological assay. Y.A.K., S.Y.H.,
282	K.T.L. and C.G.H. analyzed the data. Y.A.K., K.T.L., G.W.C. and S.R.S. wrote the
283	manuscript.
284	
285	Declaration
286	MeDiPro SARS-CoV-2 antibody ELISA was technology transferred from Research
287	Center for Emerging Viral Infections, Chang Gung University, Taiwan. We herewith
288	declare that MeDiPro, Roche, and Abbott did not financially support any research in
289	Research Center for Emerging Viral Infections, Chang Gung University and Chang
290	Gung Memorial Hospital, Taiwan.
291	

292 **References**

293	1.	Khoury DS, Cromer D, Reynaldi A, Schlub TE, Wheatley AK, Juno JA,
294		Subbarao K, Kent SJ, Triccas JA, Davenport MP. 2021. Neutralizing antibody
295		levels are highly predictive of immune protection from symptomatic SARS-
296		CoV-2 infection. Nat Med doi:10.1038/s41591-021-01377-8.
297	2.	Chia WN, Zhu F, Ong SWX, Young BE, Fong SW, Le Bert N, Tan CW, Tiu
298		C, Zhang J, Tan SY, Pada S, Chan YH, Tham CYL, Kunasegaran K, Chen MI,
299		Low JGH, Leo YS, Renia L, Bertoletti A, Ng LFP, Lye DC, Wang LF. 2021.
300		Dynamics of SARS-CoV-2 neutralising antibody responses and duration of
301		immunity: a longitudinal study. Lancet Microbe 2:e240-e249.
302	3.	Earle KA, Ambrosino DM, Fiore-Gartland A, Goldblatt D, Gilbert PB, Siber
303		GR, Dull P, Plotkin SA. 2021. Evidence for antibody as a protective correlate
304		for COVID-19 vaccines. Vaccine 39:4423-4428.
305	4.	Bewley KR, Coombes NS, Gagnon L, McInroy L, Baker N, Shaik I, St-Jean
306		JR, St-Amant N, Buttigieg KR, Humphries HE, Godwin KJ, Brunt E, Allen L,
307		Leung S, Brown PJ, Penn EJ, Thomas K, Kulnis G, Hallis B, Carroll M,
308		Funnell S, Charlton S. 2021. Quantification of SARS-CoV-2 neutralizing
309		antibody by wild-type plaque reduction neutralization, microneutralization and
310		pseudotyped virus neutralization assays. Nat Protoc 16:3114-3140.

311	5.	Supasa P, Zhou D, Dejnirattisai W, Liu C, Mentzer AJ, Ginn HM, Zhao Y,
312		Duyvesteyn HME, Nutalai R, Tuekprakhon A, Wang B, Paesen GC, Slon-
313		Campos J, Lopez-Camacho C, Hallis B, Coombes N, Bewley KR, Charlton S,
314		Walter TS, Barnes E, Dunachie SJ, Skelly D, Lumley SF, Baker N, Shaik I,
315		Humphries HE, Godwin K, Gent N, Sienkiewicz A, Dold C, Levin R, Dong T,
316		Pollard AJ, Knight JC, Klenerman P, Crook D, Lambe T, Clutterbuck E, Bibi
317		S, Flaxman A, Bittaye M, Belij-Rammerstorfer S, Gilbert S, Hall DR,
318		Williams MA, Paterson NG, James W, Carroll MW, Fry EE, Mongkolsapaya
319		J, et al. 2021. Reduced neutralization of SARS-CoV-2 B.1.1.7 variant by
320		convalescent and vaccine sera. Cell 184:2201-2211 e7.
321	6.	WHO/BS.2020.2403. 2020. Establishment of the WHO International Standard
322		and Reference Panel for anti-SARS-CoV-2 antibody.
323	7.	WHO/BS.2020.2402. 2020. Collaborative Study for the Establishment of a
324		WHO International Standard for SARS-CoV-2 RNA.
325	8.	Kristiansen PA, Page M, Bernasconi V, Mattiuzzo G, Dull P, Makar K,
326		Plotkin S, Knezevic I. 2021. WHO International Standard for anti-SARS-
327		CoV-2 immunoglobulin. Lancet 397:1347-1348.
328	9.	Tan CW, Chia WN, Qin X, Liu P, Chen MI, Tiu C, Hu Z, Chen VC, Young
329		BE, Sia WR, Tan YJ, Foo R, Yi Y, Lye DC, Anderson DE, Wang LF. 2020. A

330		SARS-CoV-2 surrogate virus neutralization test based on antibody-mediated
331		blockage of ACE2-spike protein-protein interaction. Nat Biotechnol 38:1073-
332		1078.
333	10.	Patel EU, Bloch EM, Clarke W, Hsieh YH, Boon D, Eby Y, Fernandez RE,
334		Baker OR, Keruly M, Kirby CS, Klock E, Littlefield K, Miller J, Schmidt HA,
335		Sullivan P, Piwowar-Manning E, Shrestha R, Redd AD, Rothman RE,
336		Sullivan D, Shoham S, Casadevall A, Quinn TC, Pekosz A, Tobian AAR,
337		Laeyendecker O. 2021. Comparative Performance of Five Commercially
338		Available Serologic Assays To Detect Antibodies to SARS-CoV-2 and
339		Identify Individuals with High Neutralizing Titers. J Clin Microbiol 59.
340	11.	Huynh A, Arnold DM, Smith JW, Moore JC, Zhang A, Chagla Z, Harvey BJ,
341		Stacey HD, Ang JC, Clare R, Ivetic N, Chetty VT, Bowdish DME, Miller MS,
342		Kelton JG, Nazy I. 2021. Characteristics of Anti-SARS-CoV-2 Antibodies in
343		Recovered COVID-19 Subjects. Viruses 13.
344	12.	Kyriakidis NC, Lopez-Cortes A, Gonzalez EV, Grimaldos AB, Prado EO.
345		2021. SARS-CoV-2 vaccines strategies: a comprehensive review of phase 3
346		candidates. NPJ Vaccines 6:28.
347	13.	Goel RR, Apostolidis SA, Painter MM, Mathew D, Pattekar A, Kuthuru O,
348		Gouma S, Hicks P, Meng W, Rosenfeld AM, Dysinger S, Lundgreen KA,

349		Kuri-Cervantes L, Adamski S, Hicks A, Korte S, Oldridge DA, Baxter AE,
350		Giles JR, Weirick ME, McAllister CM, Dougherty J, Long S, D'Andrea K,
351		Hamilton JT, Betts MR, Luning Prak ET, Bates P, Hensley SE, Greenplate
352		AR, Wherry EJ. 2021. Distinct antibody and memory B cell responses in
353		SARS-CoV-2 naive and recovered individuals following mRNA vaccination.
354		Sci Immunol 6.
355	14.	Pollard AJ, Bijker EM. 2021. A guide to vaccinology: from basic principles to
356		new developments. Nat Rev Immunol 21:83-100.
357	15.	Bartsch SM, O'Shea KJ, Ferguson MC, Bottazzi ME, Wedlock PT, Strych U,
358		McKinnell JA, Siegmund SS, Cox SN, Hotez PJ, Lee BY. 2020. Vaccine
359		Efficacy Needed for a COVID-19 Coronavirus Vaccine to Prevent or Stop an
360		Epidemic as the Sole Intervention. Am J Prev Med 59:493-503.
361	16.	Diao B, Wen K, Zhang J, Chen J, Han C, Chen Y, Wang S, Deng G, Zhou H,
362		Wu Y. 2021. Accuracy of a nucleocapsid protein antigen rapid test in the
363		diagnosis of SARS-CoV-2 infection. Clin Microbiol Infect 27:289 e1-289 e4.
364	17.	Reynolds CJ, Pade C, Gibbons JM, Butler DK, Otter AD, Menacho K,
365		Fontana M, Smit A, Sackville-West JE, Cutino-Moguel T, Maini MK, Chain
366		B, Noursadeghi M, Network UKCIC, Brooks T, Semper A, Manisty C,
367		Treibel TA, Moon JC, Investigators UKC, Valdes AM, McKnight A, Altmann

368		DM, Boyton R. 2021. Prior SARS-CoV-2 infection rescues B and T cell
369		responses to variants after first vaccine dose. Science
370		doi:10.1126/science.abh1282.
371	18.	Anichini G, Terrosi C, Gandolfo C, Gori Savellini G, Fabrizi S, Miceli GB,
372		Cusi MG. 2021. SARS-CoV-2 Antibody Response in Persons with Past
373		Natural Infection. N Engl J Med 385:90-92.
374	19.	Tan SS, Saw S, Chew KL, Wang C, Pajarillaga A, Khoo C, Wang W, Ali ZM,
375		Yang Z, Chan YH, Tambyah P, Jureen R, Sethi SK. 2021. Comparative
376		Clinical Evaluation of the Roche Elecsys and Abbott Severe Acute
377		Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Serology Assays for
378		Coronavirus Disease 2019 (COVID-19). Arch Pathol Lab Med 145:32-38.
379	20.	Harley K, Gunsolus IL. 2020. Comparison of the Clinical Performances of the
380		Abbott Alinity IgG, Abbott Architect IgM, and Roche Elecsys Total SARS-
381		CoV-2 Antibody Assays. J Clin Microbiol 59.
382	21.	Speletas M, Kyritsi MA, Vontas A, Theodoridou A, Chrysanthidis T,
383		Hatzianastasiou S, Petinaki E, Hadjichristodoulou C. 2020. Evaluation of Two
384		Chemiluminescent and Three ELISA Immunoassays for the Detection of
385		SARS-CoV-2 IgG Antibodies: Implications for Disease Diagnosis and
386		Patients' Management. Front Immunol 11:609242.

387 Figures and Tables

390 Figure 1. Neutralization serum titers in vaccinated individuals

- 393 for the conversion of NT₅₀ values to the international standard units (IU/mL). Presented
- 394 are the results from an experiment in technical duplicate and error bars show the SD.
- 395 (C) The IU value for 120 serum samples (20 for the Moderna mRNA-1273 group and
- 396 20 for the Pfizer BNT162b2 group). The geometric mean titers (GMTs) with 95% CI
- 397 are shown pre-vaccination, after the first dose, and after the second dose.

401 Figure 2. Antibody response in 120 serum samples from vaccinated individuals.

402 The responses of antibodies against S1, RBD, and N protein were detected in 120 serum
403 samples from 20 individuals receiving Moderna mRNA-1273 (A) and 20 individuals

404	receiving Pfizer BNT162b2 vaccines (B). The geometric mean titers (GMTs) with 95%
405	CI are shown pre-vaccination, after the first dose, and after the second dose. (C)
406	Correlation between the live virus neutralization titer (IU/mL) and antibody binding
407	unit (BAU/mL) in 120 serum samples. Vertical dashed lines indicate the limit of
408	detection (NT = 34.47). The Pearson's correlation coefficients (r) are provided for S1
409	or RBD antibody responses to live virus neutralization titer (IU/mL).
410	

413 Figure 3. Correlation analysis of commercial serological assays against SARS-

414 **CoV-2 neutralizing antibody titers.**

416 Roche Elecsys[®] Anti-SARS-CoV-2 S assay (**B**), and Abbott AdviseDx SARS-CoV-2

- 417 IgG II assay (C) and live SARS-CoV-2 neutralization titers (IU/mL). The vertical
- 418 dashed line indicates the limit of detection (NT = 34.47 IU/mL). The horizontal dashed
- 419 lines indicate the cut-off values for MeDiPro (34.47 IU/mL), Roche (0.80 U/mL), and
- 420 Abbott (50.0 AU/mL). Correlations were performed in the Pearson's correlation

421 coefficients (r).

422 Table 1. Comparison of commercial serological assays with SARS-CoV-2

423 **neutralizing antibody titer**

Total samples (120)		MeDiPro		Roche		Abbott	
Real NT		Positive	^b Negative	Positive	^c Negative	Positive	dNegative
Positive	77	71	Ψ6	77	0	77	0
^a Negative	43	3	40	19	24	18	25
Sensitivity=TP/(TP+FN)		92.2% (84.0%-96.4%)		100% (95.3%-100%)		100% (95.3%-100%)	
Specificity=TN	/(TN+FP)	93.0% (81.4%-97.6%)		55.8% (41.1%-69.6%)		58.1% (43.3%-71.6%)	
PPV=TP/(TP+FP)		95.9% (85.8%-98.9%)		80.2% (71.1%-87.0%)		81.1% (72.0%-87.7%)	
NPV=TN/(TN+FN)		87.0% (74.3%-93.9%)		100% (86.2%-100%)		100.0% (86.7%-100%)	

424 TP, true positive; FP, false positive; TN, true negative; FN, false negative; PPV,

- 425 positive predictive value; NPV, negative predictive value
- 426 ^{a, b} Negative < 34.37 IU/mL
- 427 ° Negative < 0.80 U/mL
- 428 ^d Negative < 50.0 AU/mL
- 429 Ψ Among the six negative samples, four samples have a neutralizing antibody titer of
- 430 34.37 IU/mL.

431

432

434 Supplementary information

435 Supplementary Table 1. The NT₅₀ values of WHO international standard sera

	Research Reagent	WHO International Standard	WHO Reference Panel				
			NIBSC 20/268				
NIBSC Code	NIBSC 20/130	NIBSC 20/136	High 20/150	Mid 20/148	low S, high N 20/144	Low 20/140	NC 20/142
Neutralizing Ab (IU/mL)	1300	1000	1473	210	95	44	—
Neutralizing Ab (NT50) Test-1	446.8	223.89	398.11	79.43	20	<20	<20
Neutralizing Ab (NT50) Test-2		486.97	370.88	100	19.95	<20	<20

436 NIBSC, National Institute for Biological Standards and Control; NT₅₀, 50%

437 neutralization titer