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The model

Below we describe a two stage observation model for the time series of deaths.
The aim is to fit this model the observed deaths to infer Bt, the growth factor
of the disease at time t, for all t.

Let It denote new infections in day t and Yt deaths in day t. Note that Yt
is observed but It is not observed; in statistical jargon, It is a latent variable.
Given new infections It−1 at time t− 1, let

It = It−1e
Bt + δt (1)

where δt are mean 0 random variables (independent of all other variables) and
Bt measures the transmission of the epidemic at time t. This parameter is par-
ticularly interpretable: if Bt < 0, then eBt ∈ [0, 1), meaning that the number of
new daily infections is decreasing at time t: the disease is shrinking. Conversely,
if Bt ≥ 0, then eBt ≥ 1, meaning that the disease is growing. The growth of the
epidemic varies across time as the number of susceptible decreases over time (as-
suming re-infections are unlikely), various interventions take effect, the weather
changes, etc.

Next, given new infections up to t, we express deaths at t as

Yt =

t∑
s=1

f(s, t)Is + ξt (2)

where ξt are mean 0 random variables (independent of the other variables) and
f(s, t) denotes the probability that someone infected at time s dies at time t.
We further write

f(s, t) = d(s)f0(s, t) (3)

where d(s) is the probability that someone infected at time s will eventually
die and f(s, t) is the probability that someone infected at time s and who will
eventually die, will die at time t. Following Bonvini et al. (2021), we take f0(s, t)
to be a Gamma distribution with mean 23.9 days and coefficient of variation
0.40.

Finally, we recurse (1) and plug in (2) to obtain the mean model for deaths

E[Yt] =

t∑
s=1

I1f(s, t)e
∑s
r=1 Br . (4)

Simplified Model The non-linear form of (4) makes it difficult to estimate
Bt, the growth of the disease. We therefore simplify f0(s, t) in (3) to be a point
mass at its mean, δ = 24 days, and obtain the simplified model:

E[Yt] = I1d(t− δ)e
∑t−δ
r=1 Br .
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Now, taking the log, we get E[log(Yt + 1)]1 ≈ log[d(t− δ)] + log I1 +
∑t−δ
r=1Br,

or equivalently

E[log(Yt+δ + 1)] ≈ log[d(t)] + log I1 +

t∑
r=1+δ

Br. (5)

This model is additive and thus easily fit to data, as shown in the following plot
for the times series of deaths in the three majority teaching methods groups of
counties. The curves are highly non-linear so we fitted a local linear smoother
with bandwidth 4 weeks.

The last step is to notice that the derivative of (5) is

∂E[log(Yt+δ + 1)]/∂t = d′(t)/d(t) +Bt,

meaning that we can estimate d′(t)/d(t) + Bt by taking the derivatives with
respect to time of the curves shown above. These derivatives are plotted in Fig.
2B. The probability of dying, d(t), certainly changed over time, e.g. hospitals
were better prepared during the second wave. They may also vary across coun-
ties, e.g. be higher in older counties. However, it is reasonable to assume that,
within each county, d(t) is constant during the fall semester, in which case

∂E[log(Yt+δ + 1)]/∂t = Bt.

We are able to estimate the growth of the disease even though we did not observe
the number of infections.

1We add 1 in case Yt = 0.
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