
 

1 
 

Reconstructing the course of the COVID-19 epidemic over 2020 for US states and 1 
counties: results of a Bayesian evidence synthesis model 2 

 3 
 4 
Authors: Melanie H. Chitwood1¶*, Marcus Russi1¶, Kenneth Gunasekera1, Joshua Havumaki1, 5 
Fayette Klaassen2, Virginia E. Pitzer1, Joshua A. Salomon3, Nicole A. Swartwood3, Joshua L. 6 
Warren4, Daniel M. Weinberger1, Ted Cohen1& and Nicolas A. Menzies2& 7 
 8 
Affiliations: 9 
1 Department of Epidemiology of Microbial Diseases and Public Health Modeling Unit, Yale 10 
School of Public Health, Yale University, New Haven, Connecticut USA 11 
2Department of Global Health and Population, Harvard T.H. Chan School of Public Health, 12 
Harvard University, Boston, Massachusetts US 13 
3Department of Medicine, Stanford University, Stanford, California USA 14 
4 Department of Biostatistics and Public Health Modeling Unit, Yale School of Public Health, 15 
Yale University, New Haven, Connecticut USA 16 
 17 
¶These authors contributed equally to this work  18 
&These authors share senior authorship 19 
*Corresponding author 20 
Email: melanie.chitwood@yale.edu  21 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 22, 2021. ; https://doi.org/10.1101/2020.06.17.20133983doi: medRxiv preprint 

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 22, 2021. ; https://doi.org/10.1101/2020.06.17.20133983doi: medRxiv preprint 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 22, 2021. ; https://doi.org/10.1101/2020.06.17.20133983doi: medRxiv preprint 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 22, 2021. ; https://doi.org/10.1101/2020.06.17.20133983doi: medRxiv preprint 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 22, 2021. ; https://doi.org/10.1101/2020.06.17.20133983doi: medRxiv preprint 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 22, 2021. ; https://doi.org/10.1101/2020.06.17.20133983doi: medRxiv preprint 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 22, 2021. ; https://doi.org/10.1101/2020.06.17.20133983doi: medRxiv preprint 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 22, 2021. ; https://doi.org/10.1101/2020.06.17.20133983doi: medRxiv preprint 

https://doi.org/10.1101/2020.06.17.20133983
http://creativecommons.org/licenses/by-nc/4.0/
https://doi.org/10.1101/2020.06.17.20133983
http://creativecommons.org/licenses/by-nc/4.0/
https://doi.org/10.1101/2020.06.17.20133983
http://creativecommons.org/licenses/by-nc/4.0/
https://doi.org/10.1101/2020.06.17.20133983
http://creativecommons.org/licenses/by-nc/4.0/
https://doi.org/10.1101/2020.06.17.20133983
http://creativecommons.org/licenses/by-nc/4.0/
https://doi.org/10.1101/2020.06.17.20133983
http://creativecommons.org/licenses/by-nc/4.0/
https://doi.org/10.1101/2020.06.17.20133983
http://creativecommons.org/licenses/by-nc/4.0/
https://doi.org/10.1101/2020.06.17.20133983
http://creativecommons.org/licenses/by-nc/4.0/


 

2 
 

Abstract 22 

Reported COVID-19 cases and deaths provide a delayed and incomplete picture of SARS-CoV-2 23 

infections in the United States (US). Accurate estimates of both the timing and magnitude of 24 

infections are needed to characterize viral transmission dynamics and better understand COVID-25 

19 disease burden. We estimated time trends in SARS-CoV-2 transmission and other COVID-19 26 

outcomes for every county in the US, from the first reported COVID-19 case in January 13, 2020 27 

through January 1, 2021. To do so we employed a Bayesian modeling approach that 28 

explicitly accounts for reporting delays and variation in case ascertainment, and generates daily 29 

estimates of incident SARS-CoV-2 infections on the basis of reported COVID-19 cases and 30 

deaths. The model is freely available as the covidestim R package. Nationally, we estimated there 31 

had been 49 million symptomatic COVID-19 cases and 400,718 COVID-19 deaths by the end of 32 

2020, and that 27% of the US population had been infected. The results also demonstrate wide 33 

county-level variability in the timing and magnitude of incidence, with local epidemiological 34 

trends differing substantially from state or regional averages, leading to large differences in the 35 

estimated proportion of the population infected by the end of 2020. Our estimates of true 36 

COVID-19 related deaths are consistent with independent estimates of excess mortality, and our 37 

estimated trends in cumulative incidence of SARS-CoV-2 infection are consistent with trends in 38 

seroprevalence estimates from available antibody testing studies. Reconstructing the underlying 39 

incidence of SARS-CoV-2 infections across US counties allows for a more granular 40 

understanding of disease trends and the potential impact of epidemiological drivers. 41 

42 
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Introduction 43 

The numbers of newly diagnosed cases and confirmed COVID-19 deaths are the most easily 44 

observed measures of the health burden associated with COVID-19 and have been widely used 45 

to track the trajectory of the epidemic at the national, state, and local level.1,2 However, there are 46 

at least three limitations of using reported cases and deaths for this purpose. First, testing is 47 

primarily organized to identify symptomatic individuals, but a large fraction of SARS-CoV-2 48 

infections are asymptomatic,3 leading to case counts that are substantially smaller than the true 49 

incidence of infection. Second, the degree to which case counts undercount infections is sensitive 50 

to the availability and utilization of diagnostic testing, which has varied over time and 51 

geography.4,5,6 For this reason, it can be difficult to distinguish true trends from changes in 52 

testing practices. Third, case and death counts are lagging indicators of the transmission 53 

dynamics of the pathogen, as they are affected by delays associated with the incubation period, 54 

care-seeking behavior of symptomatic individuals, diagnostic processing times, and reporting 55 

practices. Taken together, these limitations present challenges to analyses that rely on these 56 

metrics as primary signals of SARS-CoV-2 spread. 57 

A better indicator of changes in local transmission is the effective reproduction number (Rt), 58 

which represents the average number of secondary infections caused by an individual infected at 59 

some time t.7 Rt can signal short-term changes in transmission in response to policy and 60 

behavioral changes. However, Rt is not a directly observable quantity and estimates of Rt based 61 

on raw case reports become biased when reporting delays are incorrectly estimated,5 weakening 62 

their usefulness as a measure of transmission.  63 
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Unbiased estimates of COVID-19 cases and the Rt of SARS-CoV-2 can provide more accurate 64 

insight into the size and scope of the United States (US) epidemic and inform current and future 65 

COVID-19 control policies. A number of modeling approaches have been developed to 66 

reconstruct the time series of infections and deaths over the course of the US epidemic. These 67 

approaches typically do not allow for variability in case ascertainment and infection fatality 68 

ratios (IFRs) across space and time, nor do they attempt to model SARS-CoV-2 infections or 69 

COVID-19 deaths at fine spatial scales, such as at the county level.8,9 70 

Here, we present detailed estimates of viral dynamics for all US states and counties, based on a 71 

Bayesian statistical model that combines multiple data sources to estimate SARS-CoV-2 72 

infection patterns from observed case notifications and death reports. We apply our model to 73 

publicly available COVID-19 case and death data and report on the trajectory of the epidemic 74 

from the first reported case (January 13, 2020) until January 1, 2021. The model is available on 75 

GitHub (https://github.com/covidestim/covidestim/) as a package for the R programming 76 

language (covidestim). 77 

Results  78 

Analytic Overview 79 

We developed a mechanistic model to back-calculate SARS-CoV-2 infections and subsequent 80 

outcomes based on reported COVID-19 cases and deaths. In this model the natural history of 81 

COVID-19 is represented using four health states: asymptomatic or pre-symptomatic SARS-82 

CoV-2 infection (Asymptomatic), symptomatic but not severe COVID-19 disease (Symptomatic), 83 

severe COVID-19 disease (Severe), and death from COVID-19 (Death). In each health state 84 

(except Death) individuals either recover or transition to a more severe state after some delay. 85 
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Infected individuals can be diagnosed in the Asymptomatic, Symptomatic, or Severe states, and 86 

we assume all diagnosed cases and all deaths among diagnosed individuals are reported after as 87 

short delay.  Figure 1 shows modeled health states and transitions. The model generates several 88 

outcomes of epidemiological importance, including Rt, total infections, symptomatic cases, total 89 

deaths, and case ascertainment; we estimated these outcomes for each US state and county from 90 

the start of the epidemic until January 1, 2021. 91 

Figure 1: A model schematic of the main health states: Asymptomatic (denoted 92 

“Asymp.”), Symptomatic (denoted “Symp.”), Severe, and Death. The subscript “dx” 93 

indicates that individuals in that state have received a diagnosis of COVID-19. Each 94 

transition (denoted with an arrow) has an associated probability and delay distribution. 95 

Solid arrows denote disease progression; dotted arrows denote recovery; short dashed 96 

arrows denote diagnosis; long dashed arrows denote reporting. All diagnosed cases and 97 

deaths are assumed to be reported after a given delay.  98 

 99 

Main Findings 100 

Incidence and Rt 101 

The SARS-CoV-2 epidemic in the US consisted of a series of related outbreaks, which varied 102 

greatly in both the intensity of transmission and the extent of geographic spread (Figure 2). The 103 

March outbreak in New York State was the largest per population in a single state; on March 28, 104 

we estimate that New York State had 812 (95% credible interval: 477, 1393) infections per 105 

100,000, and 39% (23%, 68%) of all infections in the US on that day. Local surges in infections 106 

during the fall and winter of 2020 rivaled New York’s March outbreak in scale, but occurred in 107 
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the context of a more generalized US epidemic. South Dakota, for example, had its highest per 108 

capita infections of 2020 on November 7 (628 [405, 1009] infections per 100,000), but 109 

accounted for just 1.2% (0.8%, 2.0%) of all US infections that day. Forty-five states experienced 110 

the highest daily infections per capita in November or December (Figure 3).  111 

Figure 2: Panels 1-10: County-level infections per 100,000 population per day at 10 112 

timepoints between April 1, 2020 and January 1, 2021. Panel 11: Time series of national 113 

SARS-CoV-2 infection estimates (orange line) and reported COVID-19 diagnoses (blue 114 

bars) per 100,000 people per day from March 1, 2020 to January 1, 2021.  115 

Figure 3: Incident infections per 100,000 residents per day for each US state from March 116 

1, 2020 to January 1, 2021. Shaded areas represent 95% credible intervals.  117 

While most states and counties had lower levels of transmission during the summer months, few 118 

achieved established thresholds of low levels of community transmission, defined as fewer than 119 

20 confirmed cases per 100,000 per week.10 We estimate that only six states (Alaska, Hawaii, 120 

Montana, Oregon, Vermont, and West Virginia) had fewer than 20 symptomatic cases per 121 

100,000 inhabitants per week after transmission was established locally. Notably, Vermont 122 

remained below this threshold from the week of April 27 until the week of October 5.  123 

Estimates of Rt at the start of the epidemic varied greatly by state. The median state-level 124 

estimate of Rt on the first day a case was reported in each state was 4.9 (range: 2.0 [1.7 – 2.4] in 125 

Washington to 11.4 [7.4– 18.9] in New York). Throughout April, Rt estimates dropped 126 

substantially. Over the period May 1, 2020 to January 1, 2021, state-level estimates of Rt ranged 127 

from 0.6 (0.5, 0.8) to 1.7 (1.4, 2.0) (Figure 4).  128 
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Figure 4: Rt estimates for each US state from March 1, 2020 to January 1, 2021. 129 

Background colors indicate whether Rt is substantially greater than 1 (red), close to 1 130 

(white), or substantially less than 1 (blue). Grey line indicates Rt = 1. Shaded areas 131 

represent 95% credible intervals. 132 

Percent Ever-Infected with SARS-CoV-2 133 

For each county, we calculated the percentage of the population ever-infected as the sum of all 134 

estimated infections divided by county population on January 1, 2021 (Figure 5). This 135 

cumulative infection estimate is distinct from reported seroprevalence estimates, as 136 

seroprevalence measures may be affected by the lower immune response among individuals with 137 

mild/asymptomatic infection, possible waning of antibody titers,11,12 and non-representativeness 138 

of sampled populations.13 By January 1 2021, we found that the percent of the population ever-139 

infected exceeded 50% in 241 (7.7%) counties and exceeded two-thirds of the population in 22 140 

(0.7%) counties. Conversely, the percent ever-infected was less than 10% in 145 (4.6%) counties 141 

and less than 5% in 34 (1.1%) counties. Based on the sum of state estimates (posterior medians), 142 

we estimate that 27% of the US population had been infected with SARS-CoV-2 by January 1, 143 

2021. Across states, the percent ever-infected ranged from 6.7% (4.4%, 10.9%) in Vermont to in 144 

44.6% (30.0%, 66.5%) Arizona (Figure 3).  145 

On January 1, 2021, the US had reported 349,247 cumulative COVID-19 deaths.14 Based on the 146 

sum of state estimates (posterior medians), we estimate there were 400,718 cumulative COVID-147 

19 deaths as of January 1, 2021, 14.7% greater than cumulative reported deaths and 148 

approximately 0.12% of the US population on January 1, 2020. Estimates of the size of the 149 
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infected population were sensitive to assumptions about the infection fatality rate, with higher 150 

IFR values producing lower estimates of the infected population (Figure S1). 151 

Figure 5: Percentage of the population ever-infected with SARS-CoV-2 as of January 1, 152 

2021.  153 

Case Ascertainment 154 

The probability that an infection is diagnosed changed substantially over the course of the U.S. 155 

epidemic. Ascertainment was low in the months of March, April, and May 2020. The national 156 

median state-level case ascertainment (based on state-level posterior medians) in this period was 157 

14% (range: 3.8%, 41.2%). Infection ascertainment improved steadily through June 2020 before 158 

plateauing; the national mean probability of diagnosis fluctuated between 24% and 37% between 159 

July 1, 2020 and January 1, 2021. Infection ascertainment estimates varied significantly across 160 

states, and state-level estimates were highly uncertain (Figure 6). Only 5 states achieved greater 161 

than 50% ascertainment at any point in time (based on posterior median). State-level model 162 

estimates of infection ascertainment each day are very weakly correlated with the seven-day 163 

moving average fraction of tests that have a positive result (Spearman rank correlation (�) = -164 

0.10, p < 0.001). From the introduction of SARS-CoV-2 in the US until January 1, 2021, we 165 

estimate that 22.9% of infections were identified and reported.  166 

Figure 6: The probability that a person infected with SARS-CoV-2 on a given day will 167 

be diagnosed for each US state from March 1, 2020 to January 1, 2021. Shaded areas 168 

represent 95% credible intervals.  169 

Comparisons to External Covid-19 Burden Indicators 170 
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We compared our estimates of the percent ever-infected with SARS-CoV-2 to U.S. Centers for 171 

Disease Control (CDC) seroprevalence estimates drawn from commercial laboratory data,15 172 

acknowledging previously noted differences between these different outcomes. Derived from a 173 

convenience sample of blood specimens collected for reasons unrelated to COVID-19, the 174 

seroprevalence estimates provide state-level evidence on SARS-CoV-2 antibody test positivity at 175 

multiple time points (Figure 7). However, these estimates are incomplete in some states (e.g. 176 

South Dakota), and the series of values declines over time in others (e.g. New York). Comparing 177 

these estimates to other reported indicators of cumulative disease burden on January 1 2021, the 178 

modeled estimates of the percent ever-infected were more strongly correlated with cumulative 179 

hospitalizations (Spearman rank correlation (ρ) = 0.60) and cumulative reported deaths (ρ = 180 

0.81) than the CDC seroprevalence estimates (ρ = 0.41 and 0.37 for hospitalizations and deaths 181 

respectively).   182 

Figure 7: Comparison of the estimated percent ever-infected with SARS-CoV-2 (purple 183 

line, shaded areas represent 95% credible intervals) to CDC seroprevalence estimates 184 

from commercial laboratory data (red vertical line) and cumulative reported cases (black 185 

line) for each US state from March 1, 2020 to January 1, 2021. 186 

In addition, we compared model estimates of cumulative COVID-19 deaths (detected and 187 

undetected) to state-level estimates of excess all-cause mortality, which reflect both COVID-19 188 

deaths and deviations from expected levels and patterns in non-COVID-19 deaths,6 (Figure 8) at 189 

each weekly timepoint from March 7 to December 19, 2020. On average, modeled estimates of 190 

cumulative COVID-19 deaths are less than or approximately equal to estimates of excess all-191 

cause mortality. Notably, three states (Alaska, Hawaii, Maine) have extended periods where the 192 

estimated all-cause mortality did not exceed all-cause mortality from previous years (i.e. excess 193 
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mortality was negative); in periods where all-cause mortality is higher than expected, our 194 

estimates of COVID-19 deaths correlate strongly with excess mortality estimates (Spearman 195 

rank correlation (ρ) = 0.96, p < 0.001). Additionally, model estimates of cumulative COVID-19 196 

deaths exceed estimates of excess all-cause mortality in two states (Massachusetts and Rhode 197 

Island). Estimates of excess all-cause mortality were not available for Connecticut, North 198 

Carolina, or West Virginia.  199 

Figure 8: Comparison of cumulative COVID-19 deaths (blue) to cumulative excess all-200 

cause mortality (red) for each US state from March 7 to December 19, 2020. Shaded 201 

areas represent 95% credible intervals. 202 

Discussion  203 

We present detailed estimates of the dynamics of SARS-CoV-2 infections in US states and 204 

counties through the end of 2020. We found that the viral dynamics are best described as a series 205 

of related local and regional epidemics, differing in their timing and magnitude even within 206 

individual states. This is evident in the large variation in state- and county-level estimates of 207 

percent ever-infected as of January 1, 2021. As case ascertainment has also varied over space 208 

and time, these estimates provide insights beyond those that can be inferred from cumulative 209 

case counts alone. Ascertainment of infection improved markedly after the first months of the 210 

US epidemic, but remained low nationally; we conclude that the reported cumulative case count 211 

was approximately one-quarter of the true number of US infections at the end of 2020.  212 

Most notably, we found that model estimates of cumulative infections differ from seroprevalence 213 

estimates produce by the CDC. We note that our estimates of cumulative infections are more 214 

strongly correlated with cumulative hospitalizations and deaths across states, potentially 215 
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reflecting biases in the empirical seroprevalence estimates. Seroprevalence studies have a 216 

number of known limitations, including the use of non-representative samples13 and possible 217 

reduced sensitivity associated with waning of antibody titers, as has been reported for some 218 

tests.11,12 A comparison between model estimates and seroprevalence data therefore suggests that 219 

this method provides valuable information about the incidence of infection over time. 220 

The Bayesian estimation approach used for this analysis makes a number of simplifying 221 

assumptions. To reduce model complexity, we rely on fixed distributions to describe delays in 222 

disease progression and detection. Because we anchor the analysis on death data (under the 223 

assumption that deaths were more consistently reported than cases over the course of the 224 

epidemic), model estimates are sensitive to infection fatality risk (IFR) estimates, which are 225 

themselves uncertain. Finally, we assume that a previously infected individual cannot be re-226 

infected with SARS-CoV-2. While waning antibody titers suggest that re-infection is possible 227 

over time, we do not believe that our assumptions about re-infection meaningfully impact our 228 

results.16,17 229 

In addition, we used data that have been aggregated from state-level reporting mechanisms, 230 

which are vulnerable to a number of potential sources of bias. States vary in their reporting 231 

criteria (e.g. reporting the number of positive tests as opposed to number of individuals who have 232 

tested positive) and the average delay between case detection and reporting. Data are also subject 233 

to occasional revisions, often implemented as a single-day change in the cumulative count of 234 

cases or deaths. Taken together, these data irregularities lead to additional variance in the 235 

reported data and a reduction in the precision of reported estimates. While line-list data would 236 

likely improve the precision of model estimate18, these data are not widely available in the US, 237 

and it is not possible to generate the results presented here from a method which relies solely on 238 
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line-list data. Despite these limitations, the method described here may represent an 239 

improvement over similar modeling approaches that do not allow for case ascertainment rates 240 

and infection fatality ratios that vary over both space and time,8,9,19,20 or that estimate Rt using 241 

model outputs rather than as part of the modeling framework.9,18,20 Furthermore, our approach 242 

uses changes in case and death data to estimate changes in transmission, while others approaches 243 

make use of more indirect data on mobility8,19 or similar proxies20 to signal changes in 244 

transmission. While mobility has a mechanistic relationship with disease transmission, the 245 

association between movement data and viral transmission is complex, possibly because of 246 

changes in mask use and other non-pharmaceutical interventions, and was an increasingly poor 247 

predictor of transmission as the epidemic progressed in the US.21,22 248 

In conclusion, the modeling approach described here provides a coherent framework for 249 

simultaneously estimating the trend in SARS-CoV-2 infections and the fraction of the population 250 

that has been infected previously, providing key information on the viral dynamics at county- 251 

and state-levels. While the deployment of effective vaccines against the virus represents a great 252 

hope for the control of SARS-CoV-2 transmission, vaccine hesitancy and the emergence of more 253 

transmissible variants23 present an ongoing challenge to disease control in the US. Understanding 254 

the course of the epidemic in the pre-vaccine era can help guide decision making in a landscape 255 

with heterogenous vaccine coverage. Ongoing, local evidence on trends in Rt and new and 256 

cumulative infections will continue to be important for both governments and individuals.  257 

Methods 258 

We developed a mechanistic model that uses reported case and death data to back-calculate the 259 

natural history cascade of SARS-CoV-2. The model estimates the expected number of cases and 260 
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deaths reported on a given day as the convolution of the time series of diagnosed cases and 261 

deaths (among diagnosed individuals) and fixed reporting delay distributions; the expected 262 

number of diagnoses on a given day is estimated with health-state specific and time-varying 263 

probabilities of diagnosis. The model represents the natural history of COVID-19 as a series of 264 

health state transitions with associated probabilities and delays (Figure 1). The model utilizes 265 

delay distributions associated with health state progression, time-invariant probabilities of 266 

transitioning from Asymptomatic to Symptomatic and from Symptomatic to Severe, and a time-267 

varying probability of transitioning from Severe to Death. The number of individuals entering 268 

Asymptomatic is a function of the serial interval, the fraction of the population not yet infected, 269 

and Rt; Rt is modeled using a log-transformed cubic b-spline.    270 

Data  271 

For every state and county in the United States, we extracted daily data on reported COVID-19 272 

cases and deaths from a repository compiled by the Johns Hopkins Center for Systems Science 273 

and Engineering (CSSE)9. We calculated the time series of new cases and deaths as the 274 

difference between cumulative counts reported on consecutive days. In instances in which the 275 

reported cumulative count decreased from one day to the next, we assumed that there were zero 276 

new cases or deaths on each day until the cumulative count exceeded the previous maximum. In 277 

several instances the data reported by CSSE fail to capture the beginning of the epidemic in early 278 

2020, or exhibit irregularities during this period. To reconstruct the time series for this period we 279 

used data compiled by the Covid Tracking Project.24 280 

Mathematical model 281 
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We constructed a deterministic mathematical model relating reported cases and deaths to 282 

unobserved COVID-19 natural history. A flexible function for Rt determines the number of 283 

individuals infected on a given day, and the model then tracks the progression of the infected 284 

cohort through health states of increasing disease severity, with modelled quantities—At 285 

(Asymptomatic), St (Symptomatic), Vt (Severe), and Dt (Death)—reflecting the number of 286 

individuals entering a given health state on day t. From each health state, an individual can either 287 

recover or progress to the next health state, with this transition governed by a defined delay 288 

distribution. Ultimately, the model estimates an expected number of reported cases and deaths on 289 

each day, which are fit to observed data via negative binomial likelihood functions.  290 

New infections 291 

We modelled the daily number of newly-infected individuals (��) entering the Asymptomatic 292 

state. For each modelled location, we specified a random intercept (��) 28 days before the first 293 

reported COVID-19 case, and calculated changes in �� as a function of the effective 294 

reproduction number (��) and the serial interval (�), measured in days.  295 

���� � ����

�

�   ��	 
 � 0 [1] 296 

We modelled the time trend in �� using a log-transformed cubic b-spline (
�,�) with knots every 297 

5 days, allowing flexibility in the evolution of the epidemic curve over time. Penalties on first 298 

and second differences of the spline parameters were used to dampen oscillations not supported 299 

by the data. We assumed that individuals can only be infected once and multiplied the spline by 300 

the fraction of the population (�) uninfected at each timepoint, penalizing �� towards zero as the 301 

population ever-infected approaches 100%.  302 
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�� � 
�,� �1 � ∑ ��
�
���

	
� [2] 303 

Disease progression 304 

We assumed that a fraction of individuals with asymptomatic disease (�
) progress to the 305 

Symptomatic state. The delay from infection to symptoms was assumed to follow a Gamma 306 

distribution, with �
,�  representing the fraction progressing between i and i+1 days after 307 

infection, among those progressing to the symptomatic state. 308 

�� � ∑ ����
�
�
� �
�
,�  [3] 309 

Similarly, a fraction of individuals in the Symptomatic state (��) were assumed to progress to the 310 

Severe state, with Gamma-distributed delay distribution ��,�. A fraction of individuals with 311 

severe disease (��,�) die, with Gamma-distributed delay distribution ��,� . 312 

�� � ∑ �����
�
� ����,�  [4] 313 

�� � ∑ �����
�
� ��,���,�  [5] 314 

With the exception of ��,�, disease progression parameters were not allowed to vary over time. 315 

For ��,� we assumed higher values applied in early 2020, reflecting higher case fatality among 316 

individuals with severe disease early in the epidemic due to later presentation and lower 317 

effectiveness of treatment at that time. We modeled the time trend in ��,� as a sigmoid curve 318 

(operationalized using the Normal cumulative distribution function Φ) with an inflection point 319 

on May 1 2020. The odds ratio ����
 describes the elevated case fatality early in the epidemic, 320 
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and ��� defines the progression probability after early 2020. In Equation 6, � is equal to the 321 

number of days between the start of the model (t=0) and May 1st 2020, and � is equal to 21 days. 322 

��,�

����,�
� ��,�

����,�
�1 � Φ ����

�
� ����

� [6] 323 

While vaccination would also affect disease progression probabilities, we assumed that 324 

vaccination coverage was insufficient to impact disease natural history during the study period. 325 

Infection fatality ratio 326 

We assumed that the infection fatality ratio (IFR) differs across states and counties, reflecting 327 

differences in the age distribution of the epidemic and differences in the prevalence of medical 328 

risk factors for severe COVID-19 disease. First, we calculated the age distribution of infections 329 

for each state, based on the reported age distribution of COVID-19 deaths25 and published age-330 

specific IFRs.26 Second, we used these age distributions to calculate an average IFR for each 331 

state, weighting the age-specific IFRs by the fraction of the population in each age group. This 332 

produced a national average IFR of 0.35, which we believe to be implausibly low; we rescaled 333 

state-level values to produce a national average IFR of 0.5%.27 As the age-distribution of 334 

COVID-19 deaths was not available at the county-level, we estimated county-level IFR values 335 

by multiplying the state-average IFR by the prevalence of medical risk factors for severe 336 

COVID-19 disease in each county relative to the rest of the state.28 To understand the 337 

implications uncertainty in the IFR for modelled estimates of the infected population, we plotted 338 

the relationship between these two quantities in the fitted model outcomes. 339 

Diagnosis 340 
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We assumed that infected individuals could be diagnosed from the Asymptomatic, Symptomatic, 341 

or Severe states, and that diagnosis would not affect disease progression. We assumed that 342 

diagnosis in the Asymptomatic state only occurs among individuals who will not progress to the 343 

Symptomatic state. The daily number of these diagnoses  is denoted ��� (with the ^ used to 344 

indicate quantities related to diagnosis). The fraction of these individuals diagnosed (��,�) was 345 

assumed to vary over time, to allow for changes in case ascertainment over the course of the 346 

epidemic. The delay to diagnosis was defined by ���,�, which is described by a Gamma 347 

distribution. 348 

��� � ∑ ������,������,� 1 � �
!�
�
�  [7] 349 

To estimate the number diagnosed from the Symptomatic state (���) we assumed a time-varying 350 

probability of diagnosis �
,� and delay to diagnosis ��
,� . 351 

��� � ∑ �����
,�����
,��
�
�  [8] 352 

The number diagnosed from the Severe state (�"�), was calculated based on a time-invariant 353 

probability of diagnosis (��) and delay to diagnosis ���,� . These were applied after subtracting 354 

individuals developing severe disease who had been previously diagnosed at Symptomatic (�#�).  355 

�#� � ∑ �����
,�������,��
�
�  [9] 356 

�"� � ∑  ���� � �#���!�
�
� �����,�  [10] 357 

Time-varying diagnosis probabilities (��,�, �
,�) were calculated as a function of ��: 358 

�
,� �  ��
�	 ,�
 [11] 359 
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��,� �  ��
�	 ,�
���


 [12] 360 

In equations 11 and 12, 
�	 ,�
 is a logit-transformed cubic b-spline with knots spaced 21 days 361 

apart, with penalties on first and second differences of the spline parameters. ���

 is constrained 362 

to fall in the unit interval, so that that ��,� $ �
,� $ �� for all t. 363 

Reporting 364 

We assumed that all diagnosed COVID-19 cases were reported. The number of diagnoses 365 

reported on a given day (%&
�, with the ‘·’ used to indicate quantities related to reporting) was 366 

calculated as the sum of diagnoses from Asymptomatic, Symptomatic and Severe states, with 367 

reporting delay �&�,�  . 368 

%&
� � ∑ '����� � ����� � �"���(�

�
� �&�,�  [13] 369 

The reported number of COVID-19 deaths (�&
�) were calculated from the number of diagnosed 370 

individuals who subsequently died (�)�). �)� was calculated as the sum of deaths among 371 

individuals diagnosed from the Symptomatic and Severe states, represented by the first and 372 

second terms in equation 14, respectively. We assumed that all deaths among diagnosed COVID-373 

19 cases were reported, with reporting delay �&�,� . 374 

�)� � '∑ �#����
�
� ��,���,�( � '∑  ���� � �#���!�

�
� ����,���,�( [14] 375 

�&
� � ∑ �)����

�
� �&�,�  [15] 376 

Data likelihood 377 
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We specified negative binomial likelihood functions to fit the model to observed cases (*�,�) and 378 

death data (*�,�). 379 

*�,� ~�,-./0'%&
�, 2�( 

*�,� ~�,-./0'�&
�, 2�( 

To account for variation in daily reported cases and deaths, we implemented the likelihood using 380 

a seven-day moving average of input data and modeled values. The negative binomial dispersion 381 

parameters (2� , 2�) were estimated simultaneously, allowing for additional variance in the 382 

observed time series. 383 

Model parameters  384 

Model parameters are shown in Table 1. 385 

Table 1: Model parameters 386 

Model Parameter Mean, std. 
Deviation 

Distribution Type Source 

Log Of New Infections At T=0 (3�) 0,10 Normal(0,10) prior Assumed 

4�,� Spline Parameters 0,3 Normal(0,3) prior Assumed 

First Derivative of 4�,�Spline 
Parameters 

0,0.5 Normal(0,0.5) prior Assumed 

Second Derivative of 4�,�Spline 
Parameters 

0,0.1 Normal(0,0.1) prior Assumed 

Serial Interval  5.8, 0.5 Gamma(129.1, 22.25) prior 29 

Probability of Developing Symptoms 
If Infected  

0.59, 0.16 Beta(5.14, 3.53) prior 30-33 

Probability of Becoming Severely Ill 
If Symptomatic 

0.09, 0.06 Beta(1.89, 20.00) prior 35 

Probability of Death for All 
Infections (national average) 

0.005, 0.001 Beta(15.9, 3167) prior 26,27 

Probability of Death for Severe 
Infections 

0.15, 0.03 Beta(28.2, 162.3) prior 35 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 22, 2021. ; https://doi.org/10.1101/2020.06.17.20133983doi: medRxiv preprint 

https://doi.org/10.1101/2020.06.17.20133983
http://creativecommons.org/licenses/by-nc/4.0/


 

20 
 

Rate Ratio, Diagnosis at 
Asymptomatic Vs. Symptomatic 

0.1, 0.07 Beta(2,18) prior Assumed 

Rate Ratio, Diagnosis at 
Symptomatic Vs. Severe 

0.5, 0.22 Beta(2,2) prior Assumed 

Probability of Diagnosis at Severe 0.72, 0.16 Beta(20,5) prior Assumed 

Case Dispersion Parameter (1/σ)2 * 0.8, 0.6 Half-Normal(0,1) prior 36 

Death Dispersion Parameter (1/σ)2 * 0.8, 0.6 Half-Normal(0,1) prior 36 

Time from Infected to Symptomatic 
(Days) 

5.6, 3.1 Gamma(3.41, 0.61) fixed  37 

Time from Symptomatic to Severe 
(Days) 

7.5, 5.8 Gamma(1.72, 0.22) fixed  38 

Time from Severe to Death (Days) 9.1, 6.3 Gamma(2.10, 0.23) fixed  39 

Scaling Factor: Time to Diagnosis 
Relative to Time in Symptomatic 
State  

0.5, 0.22 Beta(2,2) prior Assumed 

Scaling Factor: Time to Diagnosis 
Relative to Time in Severe State 

0.5, 0.22 Beta(2,2) prior Assumed 

Case Reporting Delay 2.2, 1.5 Gamma(2.2, 1) prior Assumed 

Death Reporting Delay  2.2, 1.5 Gamma(2.2, 1) prior Assumed 

 387 

Model implementation  388 

The model was implemented in R using the rstan package.40 The model initializes 28 days before 389 

the first reported case or death. Given the delay from infection to death, we chose 28 days to 390 

allow the model to generate the necessary number of new infections to plausibly result in a death 391 

early in the observed time series. The model is fit to data from each county or state separately. 392 

For state-level results we estimated outcomes using a Hamiltonian Monte Carlo algorithm.41 The 393 

model ran for 3000 iterations (2000 burn-in) on 5 chains, and 4000 samples (across 4 chains) 394 

from the posterior were included in these results. Counties were fit using an optimization routine 395 

that reports the maximum a posteriori estimate, which represents an estimate of the mode of the 396 

posterior distribution of the model parameters.  397 

covidestim Package 398 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 22, 2021. ; https://doi.org/10.1101/2020.06.17.20133983doi: medRxiv preprint 

https://doi.org/10.1101/2020.06.17.20133983
http://creativecommons.org/licenses/by-nc/4.0/


 

21 
 

The covidestim package is a package for the R programming language, suitable for public as well 399 

as research use. It can accommodate a number of data inputs. Users may enter a vector of daily 400 

case counts and/or daily death counts. These data sources can be used in combination, so long as 401 

they are the same length and cover the same time period; days with no observed events may be 402 

represented with zeroes.  403 

The package contains default model priors for progression probabilities and delays, detection 404 

probabilities and delays, and reporting delays associated with each data type. Users have the 405 

ability to override these defaults, though we recommend that they only specify priors for 406 

reporting delays; we do not recommend that users change default priors on parameters related to 407 

the natural history of COVID-19.  408 

Covidestim.org and code repositories 409 

We produce daily estimates of COVID-19 infections and the effective reproduction number of 410 

SARS-CoV-2 at the state- and county-levels at https://covidestim.org. To allow for daily 411 

production of model estimates for all U.S. counties and states, we developed several tools. The 412 

covidestim Docker image is a container which allows for model execution in any HPC or cloud 413 

environment, and is the easiest way to begin using the covidestim R package. The covidestim-414 

sources repository enables automated, version-controlled, reproducible data cleaning of four 415 

different case/death data sources by leveraging Git’s submodules feature. Finally, the dailyFlow 416 

repository uses the Nextflow workflow engine42 to clean the data, orchestrate 3200+ model runs 417 

within three supported execution environments (local, HPC, cloud), and export the results for 418 

research use and for web consumption. These repositories can be found at 419 

https://github.com/covidestim, and contain extensive documentation. 420 
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