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ABSTRACT 

Mood instability (MOOD) is a transdiagnostic phenomenon with a prominent neurobiological basis. 

Recent genome-wide association studies found significant positive genetic correlation between MOOD 

and major depression (DEP) and weak correlations with other psychiatric disorders. We investigated 

the polygenic overlap between MOOD and psychiatric disorders beyond genetic correlation to better 

characterize putative shared genetic determinants. Summary statistics for schizophrenia (SCZ, 

n=105,318), bipolar disorder (BIP, n=413,466), DEP (n=450,619), attention-deficit hyperactivity 

disorder (ADHD, n=53,293) and MOOD (n=363,705), were analysed using the bivariate causal mixture 

model and conjunctional false discovery rate methods to estimate the proportion of shared variants 

influencing MOOD and each disorder, and identify jointly associated genomic loci. MOOD correlated 

positively with all psychiatric disorders, but with wide variation in strength (rg=0.10-0.62). Of 10.4K 

genomic variants influencing MOOD, 4K-9.4K were estimated to influence psychiatric disorders. 

MOOD was jointly associated with DEP at 163 loci, SCZ at 110, BIP at 60 and ADHD at 25, with 

consistent genetic effects in independent samples. Fifty-three jointly associated loci were overlapping 

across two or more disorders (transdiagnostic), seven of which had discordant effect directions on 

psychiatric disorders. Genes mapped to loci associated with MOOD and all four disorders were enriched 

in a single gene-set, “synapse organization”. The extensive polygenic overlap indicates shared 

molecular underpinnings across MOOD and psychiatric disorders. However, distinct patterns of genetic 

correlation and effect directions of shared loci suggest divergent effects on corresponding 

neurobiological mechanisms which may relate to differences in the core clinical features of each 

disorder.  
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INTRODUCTION 

Mood instability (MOOD) is a psychological construct defined as a tendency to experience frequent, 

rapid fluctuations of intense affect and an inability to regulate these fluctuations or their behavioural 

sequelae (1). The concept was first described in people with borderline personality disorder and is a 

central component of the disorder (2). While present in approximately 14% of the general population 

(3), it is also overrepresented in several other psychiatric disorders, including schizophrenia (SCZ), 

bipolar disorder (BIP), depression (DEP), and attention-deficit hyperactivity disorder (ADHD) (4–7) 

Furthermore, MOOD is a predictor and trait-marker for both DEP and BIP (6,8–10), and is associated 

with suicidality and poor treatment outcomes in multiple disorders (4,11).  

There is mounting evidence supporting a prominent neurobiological basis to MOOD. Firstly, twin 

studies have estimated 25% and 40% heritability for affect intensity and affective lability respectively,  

central components of MOOD (12). Secondly, symptoms mirroring MOOD can be caused by seizure 

activity or localised brain lesions, typically involving the pre-frontal cortex, the temporal lobe and the 

diencephalon (13). Thirdly, neuroimaging, behavioural, cognitive and electrophysiological studies have 

reported an array of neurobiological correlates, of which alterations in amygdala activation and 

connectivity between the ventromedial prefrontal cortex, amygdala and anterior cingulate cortex are the 

most convincing (14). In combination with its clinical significance, MOOD therefore represents a 

promising transdiagnostic therapeutic target that could be leveraged to develop novel treatments and 

inform personalized psychiatric treatment, consistent with the Research Domain Criteria framework 

(15). Despite this, questions remain over MOOD’s neurobiological and phenomenological consistency 

across and within diagnostic groups, particularly in disorders such as SCZ, which is classically 

associated with reduced affective expression despite increased MOOD (2,16). 

An improved understanding of the shared genetic basis of MOOD and different psychiatric disorders 

may provide insights into these questions. Two large-scale GWASs of MOOD in the UK Biobank have 

previously identified 46 genomic loci and strong positive genetic correlations with depression, but weak 

positive correlations with SCZ, BIP and ADHD (17,18). This has implicated several genes in MOOD 
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which are also implicated in psychiatric disorders, including PLCL1 in SCZ, PLCL2 in BIP and NEGR1 

in DEP (18–21). Nonetheless, much of the genetic basis for MOOD and psychiatric disorders remains 

unexplained and individual loci linked to both have yet to be examined systematically (18,22). 

Furthermore, the identification of overlapping loci might help to disentangle the effects of different risk 

loci on the diverse phenomenology of psychiatric disorders and highlight neurobiological pathways 

with therapeutic potential (15).  

To this end, we applied state-of-the-art statistical tools to summary statistics from GWAS of MOOD, 

SCZ, BIP, DEP and ADHD (18–21,23). We first used the bivariate causal mixture model (MiXeR) to 

estimate the total number of trait-influencing variants shared between MOOD and psychiatric disorders 

(24). Since MiXeR quantifies total genetic overlap and is unable to identify shared genomic loci, we 

next employed the conjunctional false discovery rate (conjFDR) method to discover loci jointly 

associated with MOOD and each psychiatric disorder beyond genome-wide significance (25). Unlike 

genetic correlation, which provides an aggregate measure for the balance of variants with concordant 

and discordant effects on two phenotypes, MiXeR and conjFDR are able to identify genetic overlap 

regardless of effect direction (26). These methods complement genetic correlation to provide a more 

comprehensive overview of the genetic relationships between phenotypes. Given MOOD’s increased 

prevalence across multiple diagnostic categories, we also aimed to identify loci that were common to 

MOOD and more than one psychiatric disorder, representing “transdiagnostic” MOOD loci. Finally, 

the conjFDR method also leverages cross-phenotype enrichment to boost the power to identify novel 

genomic loci for each phenotype, thus contributing to efforts to unravel the “missing” heritability of 

psychiatric disorders (22,25).  
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METHODS AND MATERIALS 

Samples 

We acquired summary statistics from a GWAS of MOOD in the UK Biobank (n=363,705) (18). MOOD 

was assessed by a yes/no questionnaire item “does your mood often go up and down?” (18). While this 

only captures “frequent fluctuations of affect” and no other features of MOOD, e.g. affect intensity (1), 

a positive response has been found to be 2.5 and 14.3 times more prevalent in people with DEP and BIP 

compared to controls, demonstrating its clinical relevance (8). The SCZ sample comprised a meta-

analysis of CLOZUK and Psychiatric Genomics Consortium (PGC) consisting of 40,675 cases and 

64,643 controls (19). The DEP sample was a meta-analysis of PGC and 23andMe, Inc. samples 

comprising a total of 121,198 cases and 329,421 controls (21). BIP and ADHD samples were acquired 

from the latest PGC GWAS, comprising 41,917 cases and 371,549 controls for BIP (27) and 19,099 

cases and 34,194 controls for ADHD (23). All samples were of European descent. We also included 

height as a non-psychiatric comparator (n=709,706) (28). The PGC East Asian SCZ sample (cases = 

22,778, controls = 35,362) (29) and FinnGenn BIP (cases = 4,501, controls = 192,220) and DEP (cases 

= 17,794, controls = 156,611) samples (30) were used for replication (Supplementary methods). The 

Norwegian Institutional Review Board: Regional Committees for Medical and Health Research Ethics 

(REC) South-East Norway evaluated the current protocol and found that no additional ethical approval 

was required because no individual data were used.  

Data analysis 

MiXeR v1.3 was applied to MOOD and each of SCZ, BIP, DEP, ADHD, and height (24). MiXeR first 

uses a univariate gaussian mixture model to quantify the polygenicity of each trait from GWAS 

summary statistics, expressed as the number of ‘trait-influencing’ variants (also referred to as ‘causal’ 

variants). Next, a bivariate gaussian mixture model is constructed to quantify the additive genetic effect 

of four components: 1) variants not influencing either phenotype; variants uniquely influencing either 

the 2) first or 3) second phenotype and 4) variants influencing both phenotypes. Results are visualised 

as a Venn diagram. MiXeR also calculates the genetic correlation between phenotypes and predicts the 
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proportion of shared variants with concordant effect direction on both phenotypes. Estimates and 

standard errors are calculated by performing 20 iterations using 2 million randomly selected SNPs for 

each iteration, followed by random pruning at an linkage disequilibrium threshold of r2=0.8. Model fit 

is based on likelihood maximization of signed test statistics (GWAS z-scores), evaluated by the Akaike 

Information Criterion (AIC) and demonstrated with modelled versus observed conditional quantile-

quantile (Q-Q) plots.  

We next employed conjFDR to identify SNPs jointly associated with MOOD and each psychiatric 

disorder, which has been described previously in detail (25,31). Briefly, conditional Q-Q plots were 

constructed to visualise cross-trait polygenic enrichment of SNP associations between MOOD and each 

psychiatric disorder (Supplementary methods). Cross-trait enrichment was leveraged within a Bayesian 

statistical framework to boost the power to discover shared genetic loci beyond genome-wide 

significance. Computed as the maximum of two mutual conditional FDR values (Supplementary 

methods), the conjFDR value provides an estimate for the posterior probability that a SNP is not 

associated with either trait or both traits. SNPs with a conjFDR<0.05 were assigned statistical 

significance.  

The consistency of genetic effects in independent samples was evaluated using an en-masse sign 

concordance test (Supplementary methods) (32–34).  

Genomic loci definition  

Independent genomic loci jointly associated with MOOD and each psychiatric disorder were defined 

using the FUMA protocol (35). Significant, independent SNPs were defined as conjFDR<0.05 and 

r2<0.6. Lead SNPs were chosen if they were in approximate linkage equilibrium with each other 

(r2<0.1). Transdiagnostic loci were defined as physically overlapping loci which shared at least one 

candidate SNP with conjFDR≤0.05 across two or more MOOD/psychiatric disorder conjunctional 

analyses. Effect directions within transdiagnostic loci were evaluated by comparing effect sizes of the 

SNP with the lowest maximum conjFDR value within the overlapping region from each 

MOOD/psychiatric disorder analysis, defined as the “transdiagnostic lead SNP”. LD data was 

calculated using the European population of the 1000 genomes project reference panel (36).  
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Functional annotation 

Candidate SNPs, defined as any SNP within each jointly associated genomic locus with a conjFDR 

value <0.10 and an LD r2≥0.6 with an independent significant SNP, were functionally annotated using 

FUMA (35). A lower conjFDR threshold for candidate SNPs was employed to maximise the probability 

that putative causal SNPs are captured for functional annotation, consistent with previous primary 

GWAS (33) and conjFDR studies (37). SNPs were mapped to putative causal genes using three 

strategies: a) positional mapping b) expression quantitative trait locus (eQTL) mapping and c) 

chromatin interaction mapping(35). We defined a subset of “credible mapped genes” as those that were 

mapped by all three strategies. We conducted Gene Ontology gene-set analyses using FUMA (35) on 

credible mapped genes for each MOOD/psychiatric disorder pair. See Supplementary methods for 

further details. 

Data availability 

All GWAS summary statistics are publicly available besides 23andMe DEP data (Supplementary 

methods). The code for all analyses can be accessed at https://github.com/precimed.  

RESULTS 

Using MiXeR to estimate total polygenic overlap  

Univariate MiXeR demonstrated MOOD to be highly polygenic, with 10.4K (SD=0.4K) variants 

predicted to influence MOOD, comparable to the complex polygenic architectures of psychiatric 

disorders (Supplementary table 1, Supplementary figure 1).  

Bivariate MiXeR analysis revealed substantial overlap between MOOD and all four disorders (Figure 

1a, Supplementary table 1), both in the presence of moderate positive genetic correlation (DEP and 

ADHD) and minimal genetic correlation (SCZ and BIP). This occurs due to a pattern of mixed effect 

directions among shared variants, i.e. a balance of variants with concordant and discordant effects on 

each trait cancel each other out resulting in minimal correlation despite extensive polygenic overlap. 

For example, the overlap between SCZ and MOOD was particularly striking, with 9.4K (SD=0.4K) 

shared variants, representing 97% variants influencing SCZ and 90% variants influencing MOOD, 
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despite weak positive genetic correlation (rg=0.11, SE=0.0089). There was also weak positive genetic 

correlation (rg=0.10, SE=0.0096) but fewer shared variants between BIP and MOOD, with 7.8K 

(SD=0.6K) shared variants which represented smaller proportions of trait-influencing variants (91% 

and 75% for BIP and MOOD respectively). The proportions of shared variants predicted to have 

concordant effects on MOOD and each of SCZ (54%, SD=0.4%) and BIP (57%, SD=0.5%) were 

consistent with extensive overlap and weak genetic correlation. 

In comparison, DEP (rg=0.62, SE=0.011) and ADHD (rg=0.38, SE=0.012) possessed stronger positive 

genetic correlations with MOOD (replicating previous findings in DEP) (18). A total of 7.7K 

(SD=0.3K) variants were estimated to be shared between DEP and MOOD, representing 55% DEP-

influencing variants and 74% MOOD-influencing variants. The high number of DEP-specific variants 

relative to the other disorders (6.3K, SD=0.5K, 45%) was likely due to DEP’s extensive polygenicity 

(14K, SD=0.6K) and may relate to the clinical heterogeneity of the disorder (24,38). ADHD was found 

to share 4K (SD=0.6K) variants, representing 71% ADHD influencing variants and 38% MOOD 

influencing variants. The high proportion of MOOD-specific variants (6.4K, 0.6K, 62%) is related to 

ADHD’s lower polygenicity (5.6K, SD=0.4K) relative to MOOD. Consistent with the stronger positive 

genetic correlations, there were higher proportions of shared variants predicted to have concordant 

effects, with 94% (SD=2.8%) concordant for DEP and MOOD and 77% (SD=6%) for ADHD and 

MOOD. Given the extensive polygenic overlap across phenotypes, we applied the MiXeR model to 

height and MOOD as a non-psychiatric comparator. MiXeR estimated 0.8K (0.2K) shared variants and 

minimal negative correlation (rg=-0.08, SE=0.0083). AIC and conditional QQ plots to assess MiXeR 

model fit are described in Supplementary results. 

The relationship between the number of shared variants and genetic correlation is illustrated in density 

plots in Figure 1b, in which the effect of each variant on MOOD is plotted against its effect on each 

psychiatric disorder and height. For SCZ and BIP, a large proportion of variants effect both phenotypes 

(oval) but these are distributed evenly between regions indicating concordant effects (top-right and 

bottom-left quadrants) and discordant effects (top-left and bottom-right quadrants). The effects of 

overlapping SNPs cancel each other out leading to weak genetic correlation despite substantial overlap. 
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For DEP and ADHD, most variants have concordant directions, illustrated by the preponderance of 

variants in the top-right and bottom-left quadrants. This results in polygenic overlap and stronger 

positive genetic correlations. The MOOD and height subplot reveals that most variants affecting one 

trait do not influence the other and vice versa. Almost all associated variants are therefore plotted close 

to β=0 for one or the other phenotype (horizontal and vertical lines), indicating minimal genetic overlap 

and weak genetic correlation. 

 

 

 

Figure 1: a) Total number of shared variants between mood instability (MOOD, blue) and schizophrenia (SCZ), bipolar 

disorder (BIP), major depression (DEP), attention-deficit hyperactivity disorder (ADHD) and height as estimated by MiXeR. 

Venn diagrams representing the proportion of unique and shared variants associated with MOOD and each of SCZ, DEP, BIP, 

ADHD and height. Polygenic overlap is represented in grey. The numbers indicate the estimated quantity of variants in 

thousands per component that explains 90% of SNP heritability for each phenotype. The size of the circle reflects the extent 

of polygenicity for each trait. Genetic correlation (rg) is represented in the horizontal bars beneath the Venn diagrams. Right 

of the central bar (red) indicates positive rg and left of the central bar (blue) indicates negative rg. b) MiXeR density plots 

illustrating the effect sizes of variants (β, x and y axes) influencing MOOD and each of SCZ, BIP, DEP, ADHD, and height 

respectively, with respect to the number of variants (colour scale, blue to yellow). Extensive polygenic overlap of concordant 

and discordant variants is observed for MOOD and SCZ and BIP. The plots of MOOD and ADHD and DEP also illustrate 

extensive polygenic overlap, but most variants have concordant effects. The plot of MOOD and height indicates that most 

variants influencing each trait have little to no effect on the other. 
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Identifying genomic loci shared between MOOD and psychiatric disorders 

We computed conjFDR values for each SNP present in both primary GWASs. The conjFDR value is 

interpreted as a conservative estimate for the probability that a given SNP is not associated with either 

phenotype. By leveraging cross-trait enrichment and employing a Bayesian statistical framework 

(Supplementary figures 3-4), conjFDR identifies jointly associated loci beyond genome-wide 

significance.  

At conjFDR<0.05, MOOD was jointly associated with SCZ at 102 independent genomic loci, BIP at 

60 loci, DEP at 163 loci, and ADHD at 28 loci (Table 1, Supplementary table 2). Among these, 246 

were novel in MOOD, 26 in SCZ, 22 in BIP, 92 in DEP and 12 in ADHD, demonstrating conjFDR’s 

ability to boost the power to discover novel loci. On comparing the effect direction of jointly associated 

lead SNPs, 58.9% (60/102) were concordant for SCZ and MOOD, 65.0%% (39/60) for BIP and MOOD, 

96.3% (157/163) for DEP and MOOD and 96% (27/28) for ADHD and MOOD. These figures closely 

resemble the MiXeR estimates for MOOD and SCZ (54%), BIP (54%) and DEP (94%) but are 

somewhat discrepant from the estimate for MOOD and ADHD (77%). This is likely due to the small 

number of loci identified in this analysis. Functional annotation analyses for individual analyses are 

presented in Supplementary results. 

Consistency of genetic effects in independent samples 

When comparing the effect directions of lead SNPs in discovery and replication samples, there was 

significant en masse sign concordance for SCZ (74/96 concordant; p=4.72e-8), BIP (39/56 concordant; 

p=0.0023) and DEP (121/154 concordant; p=2.63e-13). The discrepancy in the number of lead SNPs 

was due to missing lead SNPs in replication samples (SCZ=6; BIP=4; DEP=9). We did not have access 

to sufficiently large independent datasets for MOOD or ADHD. 
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Identifying and characterising transdiagnostic loci 

A total of 53 loci were associated with MOOD and two or more psychiatric disorders (Supplementary 

table 9). Among these, 38 were associated with MOOD and two disorders, 11 with MOOD and three 

disorders and four with MOOD and all four disorders. Seven transdiagnostic loci had divergent effect 

directions on psychiatric disorders, but BIP was always concordant with SCZ (n=27) and DEP was 

always concordant with ADHD (n=18). The distribution of these loci is summarised in Figure 2. Loci 

overlapping across three or more psychiatric disorders are presented in Table 2.  

 

Psych 
Psych 

GWAS (n) 

Joint loci with 

MOOD at 

(p<5x10-8) 

Joint loci with 

MOOD at 

(conjFDR<0.05) 

Novel loci in 

MOOD (n) 

Novel loci 

in Psych (n) 

Replicated loci 

(sign test) (n) 

Transdiagnostic 

loci (n) 

SCZ 105,318 40 102 71 26 74 41 

BIP 413,463 5 60 42 22 39 35 

DEP 450,619 29 163 140 92 121 38 

ADHD 53,293 2 28 17 12 N/a 11 

Table 1: Summary of the total number of loci jointly associated with mood instability (MOOD) and each of psychiatric 

disorders (Psych) schizophrenia (SCZ), bipolar disorder (BIP), major depression (DEP) and attention-deficit hyperactivity 

disorder (ADHD), number of novel loci in each phenotype, number of loci with concordant effect directions in discovery and 

replication samples, and number of transdiagnostic loci (overlapping between two or more Psych) identified using the 

conjunctional false discovery rate (conjFDR) method at a threshold of conjFDR<0.05. The sample sizes of the original Psych 

GWAS and the number of overlapping loci at genome-wide significance in the original GWAS (5xp<10-8) are provided for 

comparison. 

 

Figure 2: The distribution of transdiagnostic mood instability loci. Venn diagram showing the numbers of diagnosis-specific 

and transdiagnostic loci across each MOOD and psychiatric disorder conjFDR analysis (SCZ=schizophrenia, BIP= bipolar 

disorder, DEP=major depression, and ADHD=attention-deficit hyperactivity disorder). 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 19, 2021. ; https://doi.org/10.1101/2021.07.16.21260608doi: medRxiv preprint 

https://doi.org/10.1101/2021.07.16.21260608
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

11 

 

We next identified 1179 genes that were mapped to candidate SNPs from two or more psychiatric 

disorder/MOOD pairs, 64 of which were mapped by all three strategies (Supplementary table 7). Figure 

2 illustrates the chromosomal distribution of the shared loci for each phenotypic pairing alongside 

mapped genes for each transdiagnostic locus overlapping across three or more disorders. Among these, 

VRK2, KIAA1109, AC110781.3, PCLO, TMPRSS5 and EP300 were all mapped to non-synonymous 

exonic SNPs. Furthermore, VRK2, AC110781.3 and EP300 were mapped by all three mapping 

strategies, including eQTLs in the substantia nigra (VRK2), caudate, hypothalamus and nucleus 

accumbens (AC110781.3) and the cerebellum and hypothalamus (EP300). VRK2 is a serine threonine 

kinase which has previously been implicated in SCZ, BIP and DEP and plays a role in neuronal 

proliferation and migration (39). AC110781.3 is a gene of unknown function expressed within 13 

different brain tissues, with greatest expression in the cortex, amygdala, and hippocampus 

(Supplementary figure 5). It was also mapped to a locus associated with all four disorders, but with 

opposite effect directions on SCZ and BIP vs DEP and ADHD. Finally, EP300 is a histone 

acetyltransferase implicated in cell proliferation and differentiation. Other notable genes mapped to 

transdiagnostic loci include the dopamine receptor D2 gene (DRD2), the calcium channel voltage-gated 

channel subunit CACNA1C, and the neuron specific potassium/chloride transporter SLC12A5.   

A single gene-set, “Synapse organization” was significantly enriched with mapped genes from all four 

analyses. There were a further 6 gene-sets enriched with mapped genes for MOOD and each of SCZ, 

BIP and DEP, although there was extensive overlap in genes across the different gene-sets. All gene-

sets besides “Neuron part” were either directly or indirectly related to synaptic structure (“Synapse”, 

“Synapse part”, “Postsynapse”, “Synaptic membrane”, “cell projection part”) (Supplementary table 8), 

Interestingly, when linking mapped genes from each gene-set back to their associated genomic locus, 

there was a divergent pattern of effect directions with SCZ (51.4-61.8%) and  BIP  (58.3-70.6%) 

showing a pattern of mixed effect directions with MOOD, while  DEP (97.4-100%)  and ADHD (100%) 

were almost entirely concordant. This is consistent with the patterns of effect directions estimated by 

MiXeR and observed in jointly associated loci identified by conjFDR (Supplementary table 10). This 

indicates that the divergent pattern of effect directions persists at the level of specific gene-sets.   
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Chr Psych  Min-max BPs 

Trans-

diagnostic 

lead SNP 

conjFDR 
Concordant 

effects  

Novel 

in 

Psych 

Novel in 

MOOD 
Mapped genes 

2 

SCZ 

BIP 
DEP 

ADHD 

22430795-22545027 

22430795-22606275 
22430795-22606275 

22430795-22493637 

rs13387284 

0.029 

0.035 
0.010 

0.029 

TRUE 

TRUE 
TRUE 

TRUE 

x 

x 
x 

x 

TRUE AC068490.2a 

2 

SCZ 

BIP 
DEP 

57942987-58505679 

57956088-58444610 
57942987-58484172 

rs2717039 

0.029 

0.032 
0.010 

TRUE 

TRUE 
TRUE 

x 

x 
x 

x VRK2, FANCL, BCL11A 

4 

SCZ 

BIP 

DEP 

122913532-123558330 

123026869-123558330 

123052343-123558330 

rs10014468 

0.019 

0.0048 

0.0015 

x 

x 

TRUE 

x 

x 

x 

x TRPC3, KIAA1109, IL21 

5 

SCZ 
BIP 

DEP 

ADHD 

103791044-104055261 
103671867-104082179 

103671867-104082179 

103671867-104082179 

rs2447832 

0.044 
0.036 

0.013 

0.033 

TRUE 
TRUE 

TRUE 

TRUE 

x 
x 

x 

x 

x RP11-6N13.a, CTD-2374C24.1a 

7 

SCZ 

BIP 

DEP 

ADHD 

1873756-2110850 

1882795-2110850 

1860733-2247403 

1873756-2110850 

rs55790766 

0.026 

0.011 

0.005 

0.037 

x 

x 

TRUE 

TRUE 

x 

x 

x 

x 

x 

AC110781.3, INTS1, MAFK, 

TMEM184A, PSMG3, ELFN1, 
MAD1L1, FTSJ2, NUDT1 

7 
SCZ 
BIP 

DEP 

82386297-82641937 
82376952-82555669 

82386297-82557937 

rs2158220 
0.006 
0.01 

0.012 

TRUE 
TRUE 

TRUE 

x 
x 

x 

TRUE HGF, PCLO 

8 

SCZ 

BIP 
DEP 

8088230-11417790 

7632319-11830150 
10121605-10435915 

rs2952245 

0.028 

0.044 
0.036 

x 

x 
TRUE  

x 

x 
x 

x MRSAc 

10 

SCZ 

BIP 

DEP 
ADHD 

106453832-106640653 

106455520-106640653 

106405854-106830537 
106392549-106640653 

rs2496014 

0.016 

0.022 

0.006 
0.016 

TRUE 

TRUE 

TRUE 
TRUE 

x 

x 

x 
x 

x SORCS3 

11 

SCZ 

BIP 

DEP 

113185591-113692660 

113241877-113451229 

113166310-113692660 

rs2514218 

7.37e-7 

0.001 

0.0015 

TRUE 

TRUE 

TRUE 

x 

x 

x 

x 

TTC12, DRD2, AP002884.3, BCO2, 

PLET1, AP002884.2, TMPRSS5, 

ZBTB16 

12 
SCZ 
BIP 

DEP 

2474661-2523772 
2474661-2523772 

2465364-2523772 

rs2239063 
0.038 
0.043 

0.016 

TRUE 
TRUE 

TRUE 

x 
x 

x 

TRUE CACNA1C 

18b 

SCZ 

BIP 
DEP 

50517509-51055069 

50711776-50907127 
50358109-51055069 

rs1367635 

0.0032 

0.034 
0.0035 

TRUE 

TRUE 
TRUE 

x 

x 
x 

x DCC  

18b 

SCZ 

DEP 

ADHD 

50517509-51055069 

50197439-51055069 

50358109-51055069 

rs7506904 

0.049 

0.048 

0.046 

TRUE 

TRUE 

TRUE 

x 

x 

x 

x DCC 

18 
SCZ 
BIP 

DEP 

52720948-53474904 
52720948-52827668 

52520149-53424880 

rs4505420 
0.0032 
0.0083 

0.0098 

TRUE 
TRUE 

TRUE 

x 
TRUE 

x 

x RAB27B, TXNL1, WDR7 

20 

SCZ 

BIP 
ADHD 

44680853-44749251 

44680412-44747947 
44680853-44749251 

rs6032660 

0.044 

0.047 
0.042 

TRUE 

TRUE 
TRUE 

TRUE 

x 
x 

x 

SLC12A5, CD40, UBE2C, ZSWIM1, 

SPATA25, NEURL2, CTSA, PCIF1, 
AL162458.1, NCOA5, ELMO2 

22 
SCZ 
BIP 

DEP 

41080566-42248289 
41080566-41404511 

41080566-42216326 

rs80533 
0.01 
0.021 

0.0067 

TRUE 
TRUE 

TRUE 

x 
x 

x 

x 

MCHR1, SLC25A17, XPNPEP3, 

RBX1, EP300, L3MBTL2, 

RANGAP1, ZC3H7B, SGSM3, TOB2, 

PHF5A, ACO2, POLR3H, MEI1, 

WBP2NL  

Table 2: Transdiagnostic loci jointly associated with mood instability (MOOD) and psychiatric disorders (Psych) across three 

or more disorders. Minimum and maximum base pairs (BPs), “transdiagnostic lead SNPs” and conjunctional false discovery 

statistics (conjFDR) are presented for each locus. The concordance of effect direction and novelty of a locus for MOOD and 

each Psych is indicated by “TRUE”. Protein-coding genes mapped to candidate SNPs from each MOOD/Psych analysis are 

presented. If there were no protein-coding genes mapped to a locus, non-protein coding mapped genes are presented (a). Genes 

mapped by all three mapping strategies (credible genes) are in bold. bLoci are physically overlapping but there was no candidate 

SNP with conjFDR<0.05 across all four analyses.  Locus spans 8p23 inversion region with complex linkage disequilibrium. 

This biases gene-mapping strategies so only a single mapped gene is presented. 
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Figure 3: Manhattan plot showing -log10 transformed conjunctional FDR (conjFDR) values for mood instability (MOOD) 

and a) schizophrenia (SCZ, blue) b) bipolar disorder (BIP, orange) c) major depression (DEP, green) and d) attention-deficit 

hyperactivity disorder (ADHD, red) for each SNP (y axis) against chromosomal position (x axis). The dotted line represents 

conjFDR<0.05 significance threshold. Black circles represent lead SNPs. Lead SNPs from transdiagnostic loci across three or 

more disorders are annotated with mapped genes. N.B. Not all mapped genes for each locus are presented due to space 

limitations. Credible genes (bold) were prioritised followed by protein-coding genes and then non-protein-coding genes. * 

Locus spans 8p23 inversion region with complex linkage disequilibrium. This biases gene-mapping strategies so only a single 

mapped gene is presented. 
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DISCUSSION  

In this combined GWAS analysis, we used MiXeR to reveal extensive polygenic overlap between 

MOOD and each of SCZ, BIP, DEP and ADHD despite divergent patterns of genetic correlations. A 

large proportion of the genetic variants linked to psychiatric disorders also influence MOOD, but the 

number of shared and trait specific variants and the balance of protective and risk-enhancing variants 

differ across diagnostic groups. Using conjFDR, MOOD was jointly associated with SCZ at 163 loci, 

BIP at 60 loci, DEP at 163 loci and ADHD at 28 loci, representing 259 unique genomic loci jointly 

associated with MOOD and psychiatric disorders. Of these, 220 were novel in MOOD and 152 were 

novel in psychiatric disorders. Replication analysis provided evidence of consistent genetic effects in 

independent SCZ, BIP and DEP samples. We identified 53 transdiagnostic loci that were overlapping 

across MOOD and two or more psychiatric disorders, implicating 1179 putative transdiagnostic genes 

with an apparent convergence on synaptic gene-sets, although a divergent pattern of effect directions 

persisted within shared gene-sets. These findings have implications for how the genetic risk of mental-

health related traits is conceptualized and suggests differences in the neurobiological basis of MOOD 

across different psychiatric disorders, including the possibility of genetically influenced sub-groups of 

patients with more or less prominent MOOD. We also highlight genes that are likely to influence 

MOOD across several diagnoses, indicating high relevance for future in vitro and in vivo investigation. 

Firstly, 55%-97% of disorder associated variants were predicted to influence MOOD, raising questions 

about the specificity of the genetic architecture of these complex polygenic psychiatric disorders and 

related traits. Our findings compliment evidence that a large proportion of genetic variants are not 

unique for a given mental trait or disorder (26,40), but influence multiple mental phenotypes to different 

degrees. As such, the distinct SNP-based risk profiles for different mental-health related traits are not 

merely defined by unique non-overlapping sets of genetic variants, but largely accounted for by a set of 

pleiotropic non-specific genetic variants showing different strengths of association and effect across 

these phenotypes (26). Although this hypothesis warrants further interrogation, it suggests that novel 

approaches are needed to account for the substantial pleiotropy we predict in order to robustly 

distinguish the genetic risk for different mental traits and disorders.26 Furthermore, this places emphasis 
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on identifying disease specific variants that may disproportionately affect the development of a specific 

phenotype, individually and/or collectively, to inform precision medicine approaches in psychiatry. 

Secondly, MOOD has gained interest due to its prevalence across diagnoses and its prominent 

neurobiological basis (14), implying that it may represent a novel treatment target (2,14). To some 

extent, this is supported by the large degree of shared genomic loci and corresponding mapped genes 

identified. However, there were differences in genetic correlations and effect directions of shared loci, 

with stronger positive correlations and higher proportions of loci with concordant effects in DEP and 

ADHD compared to weak correlations and lower proportions of loci with concordant effects in SCZ 

and BIP. This pattern persisted within specific gene-sets identified across multiple analyses. This 

implies that there may be mechanistic differences in MOOD across the four psychiatric disorders. It is 

important to note that this measure only reflects one aspect of MOOD, which may explain the lack of 

correlation with SCZ and BIP, particularly given MOOD’s strong clinical association with BIP. 

Nonetheless, it is tempting to speculate that MOOD experienced in DEP and ADHD has a similar 

neurobiological relationship whereas MOOD in BIP and SCZ may reflect a different underlying 

aetiological mechanism. This is relevant as such differences may limit the potential for transdiagnostic 

pharmacological interventions. Alternatively, the current findings are also consistent with subgroups 

characterised by higher or lower MOOD within diagnostic categories, in line with clinical observations 

(41). Above all, these findings emphasise the importance of exploring the neurobiological and 

phenomenological differences in MOOD across diagnostic groups. 

To characterise MOOD’s neurobiological underpinnings, we used three gene-mapping strategies to 

identify credible mapped genes for all jointly associated loci. Among these, AC110781.3 was mapped 

to a non-synonymous exonic SNP jointly associated with MOOD and all four psychiatric disorders. 

AC110781.3 is a protein-coding gene of unknown function that is expressed in the cortex, amygdala 

and hippocampus. In addition to previously being implicated in schizophrenia (42) and risk-taking 

behaviour (43), we also recently linked AC110781.3 to multiple sleep phenotypes and BIP, DEP and 

SCZ in an analysis of the genetic overlap between sleep-related phenotypes and psychiatric disorders. 

This suggests AC110781.3 influences multiple diverse phenotypes and may represent a promising 
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candidate for further in vitro and in vivo investigation. We also identified several well-established 

psychiatric risk genes, including VRK2 (39), CACNA1C (44), and DRD2 (45), although an association 

with mood instability has not previously been described in the literature. The convergence of 

transdiagnostic mapped genes on synaptic structure builds on Ward et al.’s finding in the primary mood 

instability GWAS that mapped genes were associated with synaptic transmission.  

Finally, while mood instability has a prominent genetic component, it remains influenced by 

environmental factors (12,18). Future work focusing on gene-environmental interplay, particularly in 

relation to childhood trauma which has been found to correlate with the development of mood instability 

(46), would be of high interest. 

There were limitations to the current study. Firstly, due to available sample sizes and multi-ancestral 

differences in LD structure we were unable to include multi-ancestral samples. This is an essential area 

for improvement in psychiatric genetics. Secondly, due to the small sample size of the most recent 

borderline personality disorder GWAS (n=2 579), we were unable to include it in the current analysis 

despite its primacy in MOOD (2). This analysis should be repeated as sample sizes increase to include 

other relevant disorders, identify more transdiagnostic loci, and validate MiXeR’s predictions. Thirdly, 

the measure of MOOD was based on a single, binary questionnaire item that did not measure affect 

intensity, regulation of affect or behavioural sequelae, and did not specify the timeframe (1). This may 

have contributed to the lack of genetic correlations with SCZ and BIP. Nonetheless, a simple measure 

was necessary to achieve a large enough sample size to achieve a genome-wide signal. Previous GWAS 

using more complete measures have substantially smaller sample sizes and failed to identify genome-

wide significant loci (47). Moreover, the same binary questionnaire item is associated with BIP and 

DEP, demonstrating its clinical relevance. Future work with more refined measures is required to 

understand how these findings relate to other dimensions of MOOD. Finally, differences in sample size 

affect conjFDR’s power to discover shared loci. This precludes cross-analysis comparisons of the 

number of loci discovered by conjFDR. The disparity between the number of shared loci discovered 

and the number of shared variants predicted by MiXeR also indicates that we cannot confidently identify 

loci “unique” to each mental disorder, since it is possible that the lack of association is due to type II 
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error. This will only be addressed once larger proportions of disorder-influencing variants have been 

discovered. 

In conclusion, we have discovered extensive polygenic overlap between MOOD and psychiatric 

disorders with divergent patterns of genetic correlation and effect directions. These results support the 

notion that there are common molecular pathways implicated in MOOD across diagnostic categories, 

but disorder specific effect size distributions indicate key differences in MOOD’s neurobiological 

underpinnings across diagnoses. 
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