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Summary 

Abstract 

Adverse drugs effects (ADEs) in children are common and may result in disability and 

death. However, current pediatric drug safety methods have not gone beyond event surveillance 

to identify and evaluate potential biological mechanisms. Children undergo an evolutionarily 

conserved and physiologically dynamic process of growth and maturation that can alter 

pharmacokinetics and pharmacodynamics. Our hypothesis is that temporal patterns of drug event 

reporting are reflective of dynamic mechanisms from child growth and development. We 

generated a database of 460,837 pediatric ADEs using generalized additive models (GAMs) that 

we have previously shown identify dynamic risk estimates of adverse drug events1. We identified 

19,438 significant drug-event risks where drug risks corresponded with physiological 

development throughout childhood. Our results identified known pediatric drug effects and risk 

dynamics across child development that were not known previously. For example, we identified 

significant risk dynamics of montelukast-induced psychiatric disorders, including enriched risk 
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(Odds Ratio 8.77 [2.51, 46.94]) within the second year of life. We developed a data-driven time-

series clustering approach resulting in up to 95.2% precision and 97.8% sensitivity for 

categorizing risk dynamics across development stages for all ADEs including known but 

previously development-agnostic pediatric drug effects. We found that our real-world evidence 

may contain biologically-relevant underpinnings as well, where risk dynamics of CYP enzyme 

substrates were dependent on the enzyme’s expression across childhood. We curated this 

database for the research community to enable, for the first time, evaluation of real-world 

hypotheses of adverse drug effects across child growth and development.  
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Introduction 

Growth and maturation during child development are reflected by changes in the molecular 

landscape that may alter pharmacokinetics and pharmacodynamics2. In particular, cytochrome 

P450 enzymes, which metabolize 70-80% of drugs, exhibit dynamic activity during this time and 

within the first weeks of life these enzymes can vary up to 100-fold3. Activating metabolizers 

such as monooxygenases, aldehyde dehydrogenases, and amidases exhibit dynamic changes 

during infancy and early childhood4. During puberty, the hypothalamic-pituitary-gonadal axis 

orchestrates orders of magnitude increases of sex hormones like precursor estradiol5,6. These 

hormonal dynamics drastically reduce or accelerate the bioavailability of drugs7 and regulate 

receptor availability and downstream signaling6,8. Variations in metabolizing enzymes and other 

pharmacogenes will modulate drug and metabolite activities and increase the risk of adverse 

effects such as serotonin syndrome9 and NSAID-induced hypersensitivity10. Pharmacodynamic 
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interactions can also lead to unexpected adverse effects, like paradoxical seizures following 

benzodiazepine treatment11 and heightened cyclosporin immunosuppression12,13.  

Despite strong evidence for molecular dynamics across child development and notable drug 

safety examples, such as doxorubicin-induced cardiotoxicity14 and methylphenidate-induced 

mental disorders15, the role of child development in pediatric drug effects remains largely a 

mystery. Preclinically, it is unclear if toxicity studies assess effects on child growth and 

development and significantly influence the design of trials involving children16. When pediatric 

trials are conducted (recently incentivized or required by regulation17), the studies include few 

patients in specific age groups within too short of a time period to sufficiently evaluate drug 

effects during child development18. This landscape is enabled by current drug safety legislation: 

drug safety can be extrapolated from adults to children if 1) the disease is determined to be 

similar and 2) the effect of the drug is similar between adults and children19. On the contrary, 

children are not simply small adults20–22 but can have distinct disease pathogenesis and 

trajectory23. Rapid growth and development during the period from birth through the teenage 

years complicates drug treatment when disease manifests. The pediatric drug safety landscape 

requires a large-scale approach, including the entire pediatric population, to ascertain the 

developmental contexts for this diverse population. 

Real-world observational data, such as from spontaneous reports and electronic health record 

databases, can identify a diverse range of drug effects in large pediatric populations across 

different growth and development contexts24. Importantly, observational studies can identify 

idiosyncratic but clinically-relevant risks of medications taken throughout childhood2. 

Notwithstanding the need to mitigate substantial bias inherent in real-world pediatric data, 

statistical and machine learning approaches can address this challenge and investigate the 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 19, 2021. ; https://doi.org/10.1101/2021.07.15.21260602doi: medRxiv preprint 

https://doi.org/10.1101/2021.07.15.21260602
http://creativecommons.org/licenses/by/4.0/


 4 

interaction between prescribed medications, observed side effects, and the developmental context 

of children. For newborns to young adults, and for those with diseases both common and rare, 

real-world observational data presents an opportunity to systematically investigate drug safety in 

the context of child development. 

Current real-world observational data approaches in pediatric drug safety treat child 

development as independent periods of time instead of a continuous trajectory throughout 

childhood. The proportional reporting ratio (PRR), a disproportionality statistic of event 

prevalence associated with drug exposure, is commonly used by researchers and agencies to 

identify adverse drug events in the pediatric population. However, disproportionality statistics 

are limited to either modeling all children under 18 as one homologous group or to modeling 

risks within age groups which limits their power and treats children as distinct and unrelated to 

their similarly developing peers25. We have previously shown that generalized additive models 

(GAMs) address these limitations and generate robust and sensitive scores for modeling temporal 

adverse drug event risk across childhood1. GAMs allow for sharing information between 

development stages to reveal drug effect dynamics even when there may be scant evidence at a 

particular stage1. Moreover, GAMs are computationally efficient enough to apply in a high 

throughput manner to identify pediatric drug safety signals and evaluate the biology that may be 

associated.  

We developed a resource of nearly half a million adverse drug effect risks across child 

development stages. We applied logistic generalized additive models (GAMs) to all observed 

pediatric adverse drug events (ADEs) in the FDA’s adverse event reporting system, generating 

drug effect risk estimates and dynamics across the stages of child development. Using GAMs, 

we mitigated reporting bias through covariate adjustment and increased more than two-fold 
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detection of rare adverse events. Our ADE resource reproduced population-level physiological 

growth and development, and identified 19,438 significant as well as known, pediatric-specific 

adverse drug events. Our results identified known pediatric drug effects such as montelukast-

induced psychiatric disorders, including enriched risk (Odds Ratio 8.77 [2.51, 46.94]) within the 

second year of life. A data-driven time-series clustering approach resulting in up to 95.2% 

precision and 97.8% sensitivity for categorizing risk dynamics across development stages for all 

ADEs including known but previously developmentally-unknown pediatric drug effects. 

Furthermore, we evaluated and found evidence for observed drug risks associated with 

expression of cytochrome P450 enzymes across child development stages. We provide a 

resource for the pediatric drug safety community to further evaluate clinical and molecular 

hypotheses for observed ADE risks in the context of child development.   

 

Results 

Pediatric FAERS adverse drug event reporting 

There were 264,453 pediatric reports in FAERS ranging from term neonates through late 

adolescents in the Pediatric FAERS dataset (Table 1). There were 460,837 unique drug-event 

(ADE) pairs reported over three decades. Majority of reports listed Female sex (52.9%). The 

most frequently reported drugs were from nervous system (35.3%), antineoplastic (26.8%), and 

alimentary tract and metabolic (13.5%) pharmacological classes. More than two drugs were 

reported for any given report (2.28 on average) and 95% of reports listed up to 8 drugs.  

 

Our machine learning approach mitigates ADE confounding and reporting bias 
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In Pediatric FAERS, we observed 94% of ADEs were reported only up to 10 times in 

total (Figure S1A) and reporting factors such as stage, sex, reporting date, type of reporter, and 

class of drugs varied across childhood (Figure SB-F).  

We evaluated GAM likelihood and generalizability by accounting for different factors or 

reporting characteristics for drug-events (see Methods). Compared to a base model, without 

covariates, accounting for sex across childhood resulted in a better model fit, specifically, a 2.1% 

and 16.9% increased model likelihood and generalizability, respectively (Figure 1A). 

Alternatively, accounting for the report date and type of reporter showed a 3.1% and 22.9% 

increased model likelihood and generalizability, respectively. The likelihood of the GAMs were 

stable in rank when considering different numbers of drug-event reports (Figure 1B). We found 

that separating the number of drugs taken (‘NdrugsS’) from their drug class (‘ATCbin’) slightly 

improved model likelihood (7.56% vs. 6.41% percent increase) and drug-event probability 

(86.3% vs. 74.3% percent increase) compared to integrating these two factors into one composite 

(‘ATC’) (Figure 1C). However, increasing the model complexity through separating rather than 

integrating factors showed an increase in model overfitting, defined as the training from testing 

AUROC difference, from -0.0062 to -0.017 (73% increase) while resulting in similar testing 

performance (Figure 1D,E). Overfitting was also exacerbated when increasing the number of 

drug classes (‘ATC3’). From these model comparisons, accounting for sex, report date, reporter, 

and the number of drugs within pharmacological classes produced the most improved model 

likelihood, generalization performance, and drug-event probability in a more modest time frame 

(Figure 1F).  

 

A resource of child development-specific ADEs 
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We generated 460,837 drug-event risk estimates across childhood for 10,770 and 1,088 

unique adverse events and drug exposures, respectively. In comparison to the commonly used 

proportional reporting ratio (PRR), the GAMs estimated risk by sharing information across all 

stages (Figure 2A) that generated smooth risk relationships (Figure 2B). We then summarized 

the drug-event GAM risk distribution of drug-events across child development stages (Figure 

2C). The model identified 152,919 or 33.2% drug-events that generated at least one nominally 

significant risk (GAM 90% lower bound beta coefficient>0) across child development stages 

(Figure 2D). To mitigate spurious associations, we further defined drug-event significance by 

comparing risk scores to a null risk from random drug and event associations (see Methods). 

This narrowed our findings to 19,438 or 4.2% of drug-events passing the 99th percentile null risk 

threshold at each stage. The percent of risks exceeding both nominal and null model significance 

thresholds were higher for earlier child development stages (Figure 2E). We defined significant 

drug-events where at least one risk passed nominal and null model significance thresholds 

(Figure 2F). We found significance by the null model detected two times more drug risks for 

pediatric adverse events compared to nominal significance (odds ratio 2.00 [1.85, 2.15]).  

 

Drug-event GAMs identify known pediatric drug effects 

We evaluated drug-event risk scores within known, or positive, drug-events compared to 

unassociated, or negative, drug-events. We first examined risks across childhood between 312 

positive and negative drug-events, which were not specific to the pediatric population, in the 

Ryan et al. reference set. There was a 1.15-fold higher rate (relative risk 90% CI [0.72, 1.84]) of 

nominally significant risks for positive compared to negative drug-events. We then examined 

risks across childhood for 187 positive and negative drug-events, which were specific to the 
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pediatric population, curated by the Global Research in Pediatrics (GRiP) consortium. There was 

a 1.9-fold higher rate (relative risk 90% CI [1.08, 3.38]) of nominally significant risks at child 

development stages for positive compared to negative drug-events. We determined drug-event 

risk at stages, which were unspecified previously, and found 22 (29.3%) drug-events contained 

nominally significant risk scores and displayed dynamic drug-event risk across childhood 

(Figure 3).  

 

Drug effects show dynamic risks by effect etiologies and drug mechanisms 

We evaluated the enrichment of 1,518 medication and drug classes showing significant 

risks for 8,675 MedDRA adverse events and disorders at child development stages (Figure 4A). 

We found 282 or 0.13% of drug effects were enriched (FDR<0.05) for significant drug-events at 

child development stages (Figure 4B). Adverse events and systemic disorders were found for 

both medications and drug classes (Figure 4C). Of note, we identified 32 medications 

significantly associated within systemic disorders (MedDRA system organ class) at child 

development stages (Figure 4D and Table S1). 

Figure S2 shows the percentage of significant drug events and their odds enrichment 

within each development stage for a drug effect etiology. Younger children were at a greater risk 

(odds ratio 3.19 [2.83, 3.58]) for experiencing congenital disorders, where about 60% of 

congenital-related drug-events were significant during the first month of life compared to other 

development stages. Infants were at a greater risk (odds ratio 1.45 [1.20, 1.74]) of experiencing 

drug effects related to surgeries and medical procedures. We found that nervous system disorders 

(odds ratio 1.16 [1.06, 1.27]) and eye disorders (odds ratio 125 [1.09, 1.43]) became significant 

risks just after the second year of life. Endocrine disorders became significant drug effect risks 
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(odds ratio range 1.36 - 1.58) during the stages of early childhood through early adolescence 

which parallels the biological processes of puberty. Only during late adolescence were 

gastrointestinal disorders significant drug effects (odds ratio 1.24 [1.10, 1.40]). 

Figure S3 shows the percentage of significant drug events and their odds enrichment 

within each development stage dependent for drug pharmacological class. Younger children 

were at significant risk for drug effects from cardiovascular drugs (odds ratio 1.29 [1.16, 1.43]), 

mirroring the significant risk for cardiac disorder effects (odds ratio 1.57 [1.39, 1.79]). 

Significant drug effect risk from antineoplastic agents were significantly enriched in each 

development stage after the first month of life (odds ratio range 1.12 – 1.23). Moreover, 

mirroring hormonal fluctuations that occur during puberty, we found significant enrichment of 

drug risks from those affecting the genito-urinary system and sex hormones (odds ratios range 

1.28-1.38).  

 

ADEs had dynamic risk patterns across child development 

We found drug-event GAM risk followed distinct patterns across child development 

stages. However, while most risk patterns were found to be directly increasing (65%) or 

decreasing (28.6%), there were 28,892 (6.4%) drug-events that fell outside these trends and 

remain unassigned. 

We performed a data-driven clustering strategy to assign patterns for drug-events in 

Pediatric FAERS. We evaluated our clustering strategy to categorize injected ‘canonical’ drug-

event risk patterns, including increase, decrease, and plateau patterns, and be both sensitive and 

precise towards cluster assignments (see Methods). We found that clustering algorithms, using 

different combinations of distance and centroid parameters, assigned canonical patterns to 
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clusters with up to 95.2% precision (cluster purity) and 97.8% sensitivity (dynamics localization; 

Figure 4A). Increasing the number of identified clusters, even with reduced sensitivity, increased 

the precision for canonical dynamics (Figure 4B). Moreover, treating the drug-event risks as 

time-series or shapes that share information across childhood resulted in overall higher clustering 

sensitivity and precision (Figure 4C).   

We compared all pairwise drug-events in Pediatric FAERS using shaped-based distance 

and partitional clustering, and found the dynamics clustered into four visually distinct risk 

dynamics across childhood (Figure 4D). While 137,008 (65.25%) drug-events were assigned to 

the increase dynamic cluster, only 5,397 (1.79%) were significant by the null model. In contrast, 

20,127 (4.37%) drug-events were assigned to the plateau dynamic cluster and 5,885 (29.23%) of 

those were significant by the null model (Figure 4E).  

We visualized the cluster assignments per the 32 drug risks for systemic disorders 

enriched within child development stages. We identified dynamic risk patterns of known drug 

risks, such as montelukast-induced psychiatric disorders (Figure 4F). There were drugs that 

posed only one risk dynamic, such as quinapril exposure and gastrointestinal disorders, and 

drugs that posed multiple risk dynamics for specific sub-etiologies, such as valproic acid and 

congenital disorders (Figure S3).  

 

Cytochrome P450 expression dynamics were predictive of drug effect risks across 

child development stages 

We took a systems biology approach to evaluate our real-world observations for putative 

biological mechanisms during growth and development. For example, dynamics of cytochrome 

P450 enzymes expression across child development stages may alter systemic effects of drugs 
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we observe in Pediatric FAERS (Figure 6A). We found that grouping significant drug-events by 

the CYP metabolizing enzyme of the drug showed enrichment (fisher exact test FDR<0.05) 

within child development stages (Figure 6B). We then hypothesized the expression of CYP 

enzymes across child development stages is associated with observed dynamics of systemic risks 

by drug substrates.  

We first constructed a dataset of gene expression across childhood (Table S2 and Figure 

S5A,B) where previously identified age-associated genes by Stevens et al. were corroborated in 

our dataset following our re-normalization and adjustment procedure (Figure S5C and see 

Methods). Genome-wide expression did not significantly change on average between infancy 

through early adolescence stages (t-test FDR>0.05). We identified 22 CYP genes comprising 50 

probes, with concordant probe expression within genes, that showed dynamics across child 

development stages.  

We evaluated shared dynamic information between adverse drug event risks and CYP 

enzyme expression across child development stages. Specifically, we compared the mutual 

information between CYP gene expression and drug risks by CYP substrates compared to non-

substrates, accounting for risk estimate variation, across child development stages. Out of 780 

significant drug-events present on drug product labels, there were 429 drug-events where the 

drugs were substrates of the 22 CYP enzymes. We found dynamic expression of CYP2C18 (t-test 

p-value<5.57E-23) and CYP27B1 (p-value<1.69E-31) were more informative of drug risk 

dynamics by substrates compared to non-substrates across all side effects. However, we found 

enzyme expression significantly associated with (t-test FDR<0.05) drug substrate risks across 

multiple systemic disorders (Figure 5C). Specifically, we found systemic risks by drug substrates 
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for 16 CYP enzymes contained significant shared information across child development stages 

(Figure 5D,E).  

 

Discussion 

Study overview 

We systematically generated 460,837 observed adverse drug event risk estimates across 

child development stages. Unlike disproportionality measures that quantify risk within age 

groups, our approach using generalized additive models (GAMs) both mitigated bias and shared 

information to estimate risk across stages. We assessed the impact of different factor 

combinations and specified GAMs that produced robust and generalizable adverse risk estimates. 

This approach, for the first time, systematically identified adverse drug event risk dynamics 

across childhood in all stages of child development.  

 

Biologically-inspired modeling using drug-event GAMs  

GAMs enable estimating dynamic risks by sharing information across childhood. GAMs 

are common in evaluating environmental and ecological characteristics over space and time, 

such as black smoke particulate exposures across the UK over four decades26 and artificial light 

density on bird stopover in different habitats during autumn migration27. The aim of 

pharmacovigilance activities, on the other hand, has been to detect signal for potential and rare 

adverse effects from marketed medicinal products28. Disproportionality methods have served this 

monitoring purpose, and for the pediatric population the common practice of stratifying data into 

age groups was shown to uncover signal that would otherwise go unnoticed25.  Alternatively, our 

approach goes beyond monitoring and towards evaluating drug effects over time as children 
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grow and develop on molecular, physiological, and structural levels. We flip-the-script in 

pediatric drug safety by developing and applying a strategy informed by pediatric developmental 

biology.  

 

Drug-event GAMs were more robust and predictive of pediatric adverse events 

 Our models quantify relationships for every drug and adverse event co-reported across 

pediatric age groups as opposed to isolated pediatric groups. In this way, we were able to extract 

dynamic risk information across child development stages instead of concatenating isolated risks. 

Despite including a quarter of a million reports with very few events co-reported with a drug in 

our models, we extracted useful information based on 1) increased model fit to the data when 

considering important factors that contribute to adverse drug events29,30 and 2) increased 

generalizability for a hold-out test set with modest overfitting. This robust, systematic approach 

generated hypotheses of pediatric drug effects including rare adverse drug events.  

 

Drug-event GAMs identify known pediatric drug effects 

We identified putative risk dynamics for known pediatric drug effects. We generate evidence 

of the risk for all pediatric-specific adverse drug events curated by the Global Research in 

Pediatrics (GRiP) consortium31,32. We provide a temporal map of the risk for these pediatric 

drug-events across child development stages that was unspecified previously. For known culprits 

such as montelukast, our approach identified significant risk during mid-childhood (Figure 3) 

corresponding to studies from the Swedish ADR database33,34 and the World Health 

Organization’s Vigibase35. Moreover, our unsupervised clustering approach further evaluates the 

dynamics of these and thousands of drug risks that were previously unknown. We categorize 
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dynamics of drug-events that visually correspond to their temporal trend across child 

development stages, as expected. Importantly, our systematic approach generates evidence for 

classes of medications resulting in seemingly distinct but temporally-related side effects.  

 

Drug-event GAMs cluster within robust risk dynamic patterns across child development 

 We investigated patterns of half a million drug risks across all drugs and adverse events 

in the population. We optimized our clustering procedure to accurately and precisely cluster 

known (through simulation) drug risk dynamics. Our procedure rediscovered the canonical 

(through our simulation study1) cluster ‘inverse plateau’ that we intentionally left out, which 

signifies its ability to generate clusters of canonical trends over time. Cluster assignments can 

now be utilized to test hypotheses for enriched drug risk dynamics by common therapy, disease, 

and type of side effect. This can only be done by having large amounts of drug risks available. 

Our novel data mining methodology is the first approach to evaluate when during childhood side 

effect risk may be occurring for a particular drug therapy or drug class. From thousands of drug 

effects, we can investigate effects arising from medications with shared pharmacology. 

 

Drug-event GAMs facilitate evaluating ontogenic-mediated pediatric drug effects 

Our database enables for the first time the ability to investigate pediatric, ontogenic biology 

from observational data. For example, the cytochrome P450 enzymes, which metabolize about 

70-80% of drugs on the market, exhibit dynamic changes in activity across child development 

that result in altered drug actions and effects9,36. Notably, these enzymes show characteristic 

activity patterns where it is generally thought CYP enzymes surge in activity during the first few 

years of life and then gradually decline to mature levels37. From our approach, we showed drug 
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risks within stages throughout childhood are enriched when metabolized by CYP enzymes. We 

curated a gene expression dataset to evaluate a biological underpinning or shared information 

between our observed risks and the expression of drug enzymes across child development stages. 

We found evidence for ergocalciferol, also known as vitamin D2, resulting in risks for Polyuria, 

Hypercalciuria, and Hypervitaminosis D from CYP27B1 metabolism, where ergocalciferol 

treatment was previously shown to result in abnormally high calcium levels in younger pediatric 

patients38. We also identified evidence of drug risk dynamics associated with CYP2C18 

expression, where the ontogeny of this gene isoform is not known but drug binding was found to 

be different compared to other CYP2C gene family isoforms39. There were four drug-event 

substrates different from other CYP2C family substrates, comprising the three drugs 

cyclophosphamide, ifosfamide, and omeprazole. The alkylating agents ifosfamide and its parent 

compound cyclophosphamide are known to share a toxicity profile of myelosuppression and 

urotoxicity40, but our data suggest and corroborate the long term effect of severe cellular damage 

and possible infertility in pediatric cancer-survivors41. Moreover, our observational analysis 

corroborates omeprazole risk for the benign adverse effect of enlarged breast tissue in neonates 

that stems from increased oestrogen production42 (Figure 7).  Our resource allowed for 

generating clinically-relevant molecular and developmental hypotheses found through a 

systematic data mining approach.  

 

Pediatric drug effect resource 

We made available, for the first time, a database of half a million pediatric drug effects 

across growth and development stages. We have shown how a massive data mining effort 

captures known pediatric drug effects and reproduces system-wide development patterns. We 
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included standardized drug and adverse event vocabulary information as well as derived 

clustering and stage enrichment data to further investigate both clinical and molecular pediatric 

ADE hypotheses. Importantly, we include a summary of the covariates within our significant 

drug-event GAMs to illuminate the data-context, as well as promote equitable treatment of our 

predictions, for which we generated these hypotheses. Our resource is novel in both its 

accessibility to the clinical community but also to researchers for evaluating mechanistic 

hypotheses such as metabolic associations on observed drug risk dynamics as shown here for 

substrates of CYP enzymes. We include additional data for evaluating shared information 

between drug risks and their targets, carriers, transporters, and enzymes. We make available our 

findings to the research community to accelerate pediatric drug safety research.  

 

Limitations 

This study has some limitations. First, the observations of drug reporting over time in 

FAERS contains biases and confounding factors that may impact our risk estimates. While we 

mitigate potential biases by including confounding factors in our GAMs, we acknowledge that 

our models may still contain these biases. For example, we did not take into account the 

administration route of the drugs, which are known factors in drug toxicity. This treatment 

characteristic was rarely present in our data and so we could not adequately consider this factor 

in our drug-event GAMs. Though our model evaluation strategy was not exhaustive in 

performance metrics and model factors, we showed reduced bias and increased signal when 

accounting for known adverse drug event risk factors. We represented child growth and 

development through pre-defined stages with age ranges defined by NICHD which were 

intended to standardize consistent age groups for randomized clinical trials. These stages, 
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however, remain temporally-related and were evaluated by multiple stakeholders such as the 

American Academy of Pediatrics and the Centers for Disease Control and Prevention. Our 

approach generated nonzero risk at stages for drug-events with no reporting. While it is difficult 

to interpret nonzero risk estimates at stages with no occurrence of a report, the sharing of 

information between stages including report and drug characteristics promoted risk estimation. 

Nevertheless, nonzero risk estimation from no explicit reporting at a stage may provide an 

opportunity to alleviate the burden of underreporting of medication side effects. While we 

performed a stringent strategy to generate CYP expression that corresponded with the original 

Stevens et al. findings, our latent representation was not validated against another data source. 

Nonetheless, this triangulation procedure augments real-world evidence to pinpoint putative 

metabolic mechanisms for our observed drug risks. Our resource not only lends itself to assess 

when during childhood risks may occur, but also toxicities arising from shared drug 

pharmacology furthering our understanding of adverse drug effect mechanisms and 

developmental pharmacology. 

Conclusion 

Children may be prescribed medications at any point during childhood, and we provide the first 

resource to identify and evaluate drug effects across child development stages. We generated 

robust risk estimates for half a million adverse drug events by sharing information across child 

development stages. The generated risk estimates identified known pediatric drug effects apart 

from risk estimates from unknown drug and event associations. These risk estimates spanned 

across the child development stages to allow for examining differential drug-event risk across 

childhood, such as by systemic disorders and drug mechanisms. Moreover, our real-world 

evidence was shown to contain dynamic information on putative biological mechanisms that 
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supports evaluating adverse drug effect hypotheses. We provide a multi-purpose resource for the 

community to explore from identifying safety endpoints in clinical trials to evaluating known 

and novel developmental pharmacology. 
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Figure legends 

Figure 1: Generalized additive models (GAMs) generate robust and generalizable evidence 

for adverse drug events across childhood 

Figure 2: Drug-event GAMs estimate dynamic risks that share information across stages to 

identify pediatric adverse drug events  

Figure 3: Drug risks and adverse effects are associated to child development stages 

Figure 4: Time-series based clustering categorizes drug risks into dynamic patterns across 

child development 
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Figure 5: Drug risks from real-world observations associate with gene expression dynamics 

across childhood 

Figure S1: Observed adverse drug events vary in reporting characteristics across child 

development stages 

Figure S2: Drug risks vary by etiology and mechanisms across child development stages 

Figure S3: Medications posing development risks have characteristic dynamics across 

childhood 

Figure S4: Mitigating bias in gene expression across child development stages shows 

association with previously found age-associated gene markers 

Figure S5: Adverse event risk dynamics by CYP2C18 drug substrates associate with the 

enzyme’s expression dynamics 

Figure S6: Clustering performance captures purity and localization of canonical dynamic 

drug-events in clusters 

Tables 

Table 1: Adverse drug events across child development stages in Pediatric FAERS  

Table S1: Medications pose risks for systemic disorders at child development stages 

Table S2: The dataset of gene expression across childhood is made up of various datasets 

across development stages and tissues 

Availability of Data and Materials 

The data used in this study is publically available from the openFDA platform. The code for this 

study is available https://github.com/ngiangre/pediatric_ade_database_study. The database 

generated by this study, in a redacted version due to size constraints, can be found at 
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https://github.com/ngiangre/pediatric_ade_database. Please contact the authors for full data 

access.  

 

STAR Methods 

Pediatric FAERS 

We created “Pediatric FAERS” as a subset of the existing FAERS database limited to 

those patients aged 21 or younger. We retrieved drug event reports from the Food and Drug 

Administration’s openFDA43 download page, utilizing an API key with extended permissions, 

containing the FAERS data. The data is comprised of safety reports listing at least one drug and 

at least one adverse event. Using custom python notebooks and scripts available in the 

‘openFDA_drug_event-parsing’ github repository (DOI: 10.5281/zenodo.4464544), we extracted 

and formatted all drug event reports prior to the third quarter of 2019. Data fields included the 

safety report identifier, age value, age code e.g. year, adverse event the Medical Dictionary of 

Regulatory Activities concept code (preferred terms), and drug RxNorm code (various) used in 

our analyses. The age value was standardized to year units for categorizing reports into the 7 

child development stages according to the Eunice Kennedy Shriver National Institute of Child 

and Human Development44. Adverse drug event MedDRA codes were mapped to standard 

concept identifiers using concept tables45 from the OMOP common data model. The drug 

RxNorm code was similarly translated to the standard RxNorm concept identifier (ingredient 

level) in OMOP and was further mapped to the equivalent Anatomical Therapeutic Chemical 

(ATC) Classification concept identifier (ATC 5th level) using the concept relationship table. The 

occurrence of an adverse drug event is defined as any safety report where both the adverse event 

and drug concepts are reported together. The pediatric report space for any adverse drug event is 
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all reports which have age above zero and less than or equal to 21 years old which is the upper 

bound for the late adolescence child development stage. All pediatric reports reported either 

Female or Male sex, contained the type of reporter (Physician, Consumer, lawyer, or other health 

professional), and the date of the report. Additionally, we joined the higher-level ATC class for 

drugs from the drugbank database46, with code to generate the database on GitHub (DOI: 

10.5281/zenodo.4464604).   

 

ADE detection models 

We compared two different models for detecting adverse drug events from spontaneous 

reports. First, we applied the logistic generalized additive model47 (GAM) to all unique drug-

event pairs in Pediatric FAERS. The drug-event GAM was used to quantify adverse event risk 

due to drug exposure versus no exposure across child development stages. We refer to the ‘base’ 

GAM formula as: 

𝑔(𝐸(𝐸𝑣𝑒𝑛𝑡)) = 𝑠(𝑛𝑖𝑐ℎ𝑑) ∗ 𝐷𝑟𝑢𝑔 

where 𝑔 is a logit link function, 𝐸(𝐸𝑣𝑒𝑛𝑡) is the expected value of event reporting, 𝑠 is a spline 

function with a penalized cubic basis, 𝑛𝑖𝑐ℎ𝑑 is the child development stage of the report’s 

subject, and 𝐷𝑟𝑢𝑔 is an indicator i.e. 0 or 1 of drug reporting. Details for GAMs can be found at 

references48,49 and we specified the model using the 𝑚𝑔𝑐𝑣 package in R. Furthermore, we 

evaluated different model types or GAMs including different combinations of covariates: the 

smooth interaction effect between the report’s subject being in a child development stage and 

reporting female or male sex (‘Sex’), the date of first reporting the drug-event (‘Date’), the type 

of reporter for the drug-event (‘Reporter’), the number of drugs in ATC level 1 pharmacological 

drug classes for the report’s subject (‘ATC’), the number of drugs in ATC level 2 therapeutic 
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drug classes for the report’s subject (‘ATC3’), the exposure of a drug within ATC level 1 

pharmacological drug classes for the report’s subject (‘ATCbin’), the exposure of a drug within 

ATC level 2 therapeutic drug classes for the report’s subject (‘ATC3bin’), and a smooth effect 

for the number of drugs taken by the report’s subject (‘NdrugsS’). 

Briefly, the GAM is a flexible statistical model that captures nonlinear effects of 

covariates onto a response. In this paper, we model the effect by the child development stage 

interacting with drug reporting on the reporting of an event where the event is the reporting of 

the MedDRA preferred term and the drug is the reporting of the ATC 5th level drug concept. The 

𝑠() function is a spline function where the interaction of the child development stage (main 

effect) and the drug (interaction using the ‘by’ variable) is modeled according to a set of basis 

functions. Each development stage defines the knot (7 in total) in which the expectation of event 

reporting is quantified. In the spline function, a penalized cubic spline basis (bs=’cs’) is used for 

fitting the basis functions where the first and second derivative of the event expectation is zero at 

each knot, resulting in a smooth event expectation across stages. To mitigate overfitting or 

‘wiggliness’, we used a penalized iterative restricted likelihood approach, called ‘fREML’, with 

a wiggliness penalty in the objective function. Fitting the GAM model (using the ‘bam’ function 

and discrete=T) produces coefficient terms, similar to beta coefficients in logistic regression, for 

each child development stage for the association of the adverse event being reported in 

interaction with reporting the drug. We generated GAM scores for each child development stage 

resulting in 7 scores for each drug-event pair. It is important to note that all GAM scores 

produced were finite, nonzero values.  

In addition, we made a comparison to the Proportional Reporting Ratio (PRR): 
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𝑎
𝑎 + 𝑐
𝑏

𝑏 + 𝑑
 

where ‘a’ is the number of reports with the drug and event, ‘b’ is the number of reports without 

the drug and with the event, ‘c’ is the number of reports with the drug and without the event, and 

‘d’ is the number of reports without the drug or event of interest. The resulting score is the event 

reporting prevalence with the drug compared to without the drug. We generated PRR scores for 

each child development stage resulting in 7 scores for each drug-event pair.  

We determined the lower confidence bound in which the population-based score would 

be greater than 90% of score replicates. A risk was nominally or statistically significant if the 

score had a 90% lower bound above the null association (null association: GAM==0, PRR==1). 

The drug-events from Pediatric FAERS were nominally significant if at least one risk, the risk 

coefficient’s 90% lower bound, was above the null association. The GAM coefficients and PRR 

scores were normalized between [0,1] producing scores across childhood for each drug-event to 

generate normalized scores. 

We derived a null GAM to evaluate significance of drug-event risk compared to random 

drug and event reporting. We randomized drugs and events for reports, maintaining the report 

characteristics, and then recalculated the drug-event GAMs for 10,000 randomly selected drug 

and event pairs. The null GAM risk coefficients for each stage resulted in a null distribution of 

risks for randomly-associated drugs and events. A risk was significant by the null model if the 

score had a 90% lower bound above the 99% percentile of the null GAM coefficient distribution 

at a stage. The drug-events from Pediatric FAERS were significant by the null model if at least 

one risk, the risk coefficient’s 90% lower bound, was above the 99% of the null distribution for 
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that stage. This ensured that at least one risk at a child development stage was nominally 

significant as well.  

Unless otherwise specified, all statistics in brackets are the lower and upper 90% 

confidence intervals.  

 

ADE detection model likelihood and performance 

We evaluated the generalizability and model likelihood i.e. fit of a drug-event GAM, 

including each model type, on a random sample of 2,000 drug-events from Pediatric FAERS. We 

quantified model statistics using a proportion of the 2,000 drug-events that were reported 50 or 

more times and an additional, complementary set of drug-events with less than 50 reports. We 

quantified the fit of the drug-event GAMs using the Akaike’s Information Criterion (AIC), which 

is a measure of the tradeoff between model likelihood and complexity. We quantified the 

generalization of the drug-event GAMs by fitting each model on 80% of the dataset, termed the 

training set, and quantifying the area under the receiver operating characteristic (AUROC) curve 

on both the training set and the unseen testing set. The training and testing sets were balanced in 

having the same proportion of reports with (20%) and without (80%) the adverse event. Each 

model type was fit on the same training set.  

 

Drug-event reference sets 

Ryan et al. reference set 

We downloaded the adverse event reference set developed by Ryan et al.50 containing 

manually curated positive and negative control drugs associated to four outcomes: acute liver 
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injury, acute kidney injury, acute myocardial infarction, and upper gastrointestinal bleeding. We 

mapped RxNorm concepts to ATC 5th level. There were 1078, 59, 284, and 928 unique adverse 

drug events, both positive and negative controls, for each outcome, respectively. We found 312, 

comprising only three outcomes, out of 2,349 total drug-event pairs (13%) within Pediatric 

FAERS. There were 74 negative and 238 positive drug-event pairs. 

 

GRiP pediatric reference set 

We extracted the drug-event pairs observed in Pediatric FAERS listed within the 

pediatric drug-event reference standard from the Global Research in Pediatrics consortium31. A 

machine-readable dataset can be found at the ‘GRiP_pediatric_ADE-reference_set’ github 

repository (DOI: 10.5281/zenodo.4453379). We assigned drug-event pairs with epidemiological 

or mechanistic evidence in children (Control==’C’ and Control==’B’) as the positive class 

(N=179 and 75 in Pediatric FAERS), and the cross-product of all drugs and events that were 

complementary to drug-event pairs in the reference set as the negative class (N=397 and 112 in 

Pediatric FAERS). In total, we evaluated 187 positive and negative drug-events observed in 

Pediatric FAERS.  

 

Pediatric adverse events 

We downloaded and joined standard concepts to the pediatric adverse event term list 

from the MedDRA website (https://www.meddra.org/paediatric-and-gender-adverse-event-term-

lists). This term list is no longer supported but we provide a machine-readable version in our 

resource.  
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ADE clustering 

We identified clusters of risk patterns across development stages for all drug-events in 

Pediatric FAERS. We considered ADE risk patterns as time series, representing temporal drug-

event risk across child development stages.  The temporal risk scores are the normalized, 

between 0 and 1, GAM scores of the interaction between child development stage and drug 

exposure. We used the R package dtwclust51 to compare different distance and centroid methods 

due to ease of implementation and optimization of computationally expensive methods. We 

performed an iterative procedure to evaluate the clustering by different combinations of distance 

and centroid methods. 

We used a partitional clustering strategy, which minimizes the intra-cluster distance 

while maximizing the inter-cluster distance by iterative greedy descent to converge to a local 

optima52. The distance methods evaluated were dynamic time warping (DTW), which is a fast 

implementation to find the optimum warping path between two drug-events (‘dtw_basic’); the 

shape-based distance (‘sbd’), which is a shift and scale-invariant comparison of time series based 

on the k-Shape algorithm53; and the triangular global alignment kernel (‘gak’) which is a kernel 

method unlike DTW that has been shown faster and more efficient in classification tasks54. The 

centroid methods that evaluated cluster assignment for drug-events were the average risks 

between drug-events across childhood (‘mean’); the partition-around-medoids (‘pam’), which 

utilizes one of the series as the cluster centroid; DTW barycenter averaging (‘dba’), which finds 

the optimum average drug-event between drug-event series in DTW space; and shape averaging 

(‘shape’) based on the k-Shape algorithm, which extracts the most representative drug-event 

dynamic to utilize as the centroid53.  

 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 19, 2021. ; https://doi.org/10.1101/2021.07.15.21260602doi: medRxiv preprint 

https://doi.org/10.1101/2021.07.15.21260602
http://creativecommons.org/licenses/by/4.0/


 27 

We fit the clustering model, with hyperparameter sets that include a distance metric, 

centroid method, and number of clusters K, on a random sample of 10,000 drug-events from 

Pediatric FAERS along with spiked-in ‘canonical’ dynamics patterns. We assert that reporting 

dynamics during childhood reflect ontogenic profiles observed on molecular, functional, and 

structural levels4,55,56. The canonical drug-events previously studied, including filtering for the 

ranked pattern of interest, were categorized as ‘increase’ (N=237), ‘decrease’ (N=224) , or 

‘plateau’ dynamics (N=106)1. We quantified clustering performance for each hyperparameter set 

using the drug-events in each canonical dynamics’ category and their cluster assignment (see 

Figure S5 for details and illustrations of the strategy). Overall, we developed two custom 

metrics: 1) Cluster purity, which is the clustering precision or the score for drug-events from a 

canonical dynamics category assigned to a cluster, and 2) Dynamics localization, which is the 

clustering sensitivity or the score for drug-events within a cluster from a particular canonical 

dynamics’ category. This ensured the clustering performance , both the cluster purity and 

dynamics localization, for each hyperparameter set scores the homogeniety in both the 

assignment of dynamics and type of dynamics within clusters. We only considered the 

predominant or most frequent cluster of each of the three dynamics to compute the above 

metrics, allowing for comparing performance for K>3 (see Figure S6 for details and illustrations 

of the strategy).  

 

ADE cluster enrichment 

We evaluated the enrichment of drug-events, which were significant by the null model, 

within clusters and categories of drug-events. We calculated the fisher’s exact test to evaluate 

enrichment of drug-events within a specific category to also be assigned a specific cluster.  
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ADE stage enrichment 

We evaluated the enrichment of drug-events, which were significant by the null model, 

within child development stages and categories of drug-events. We calculated the fisher’s exact 

test to evaluate enrichment of drug-events within a specific category to also have a significant 

risk, by the null model, at a specific stage.  

 

Pediatric gene expression dataset 

Dataset processing 

We extracted expression data from GEO and EBI microarray datasets utilized by Stevens 

et al.8 to derive gene expression across child development stages (Table S2). We compiled 

datasets’ raw image (CEL) files (affymetrix images only) and integrated annotation to the 

microarray probe sets. We used the Bioconductor R package affy to load the microarray data. 

Samples were preprocessed together per the same assay (hgu133a, hgu133b, and hgu133plus2) 

closely aligning to the procedure in Stevens et al. Specifically, we used Robust Microchip 

Average (RMA) background correction (‘rma’), quantile normalization (‘quantile’), perfect 

match correction algorithm (‘pmonly’), and mean probe set summarization (‘avgdiff’). We used 

the R package ROMOPOmics (DOI: 10.5281/zenodo.4463257) to extract phenotypic data from 

each GEO dataset (the ‘TABM666’ dataset was downloaded from the EBI website) and convert 

the age of each sample from the datasets to year units. We defined the NICHD child 

development stages using the age of the samples within the stage age boundaries44. We mapped 

probe set IDs to uniprot IDs and to gene symbols using the libraries of each assay’s annotation R 

package within Bioconductor. We evaluated the average difference in log2 probe expression 
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values, using 10,000 samples with replacement, by Students t-test between each adjacent child 

development stage.  

 

Dataset validation 

 We performed a validation analysis to evaluate the processed gene expression data to 

reproduce the significant age-associated findings published by Stevens et al8. Specifically, there 

were 690 genes comprising 927 probes with expression that was significantly associated to age. 

We then performed an association analysis to evaluate significant stage-associated genes from 

our gene expression dataset (we only utilized the datasets from their main analysis dataset: 

GSE11504, GSE9006, and TABM666). We quantified stage-association of each probe’s 

expression using a GLM where the probe value was the dependent variable and the NICHD 

stage, where each category was an integer, and the first six principal components and GEO series 

indicator minus the intercept term were predictors or covariates. We computed the odds ratio 

using the hypergeometric test to compare overlap of age-associated and stage-associated genes, 

compared to those that were not, at different alpha significance thresholds (we required at least 

one probe to be significantly stage-associated per gene). We found that the enrichment of genes 

in our data to be robust at varying significance levels (Figure S4C). The robust enrichment 

provided evidence that our gene expression dataset was capturing accurate dynamic expression 

patterns across childhood.  

 

Pediatric cytochrome P450 gene expression dynamics evaluation 
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We evaluated whether drug-event risk dynamics were dependent on expression dynamics 

of the drug’s substrate using our pediatric gene expression dataset. Again, we only utilized the 

datasets from their main analysis dataset: GSE11504, GSE9006, and TABM666. 

First, to account for observed batch effects (Figure S4B), we performed a regression for 

every probe to mitigate bias of gene expression dynamics across child development stages and 

all datasets. We used the residual probe levels from a GLM where the dependent variable were 

the observed values, the observations were each sample, and the covariates were the first six 

principal components and the GSE series indicator. Importantly, the GLM did not include 

association to development stages so that the residuals capture the difference between observed 

probe values and the batch-predicted probe values (again, we only utilized the datasets from their 

main analysis dataset: GSE11504, GSE9006, and TABM666). We used these probe residual 

values in our downstream analysis.  

We identified cytochrome P450 gene products using a regex expression ‘^CYP’ on gene 

symbols to extract probe-level expression data. We performed a correlation analysis between 

pairs of probes within non-random CYP gene products and removed probes that showed a 

negative correlation (Pearson r<0) in at least one pairwise comparison.  

We manually scraped drugbank webpages to determine the mapping between drug 

enzymes and uniprot IDs. We then filtered for drugs that were annotated as substrates for CYP 

gene products, again using the gene symbol pattern matching to the regex expression ‘^CYP’. 

We only considered drug risks where side effects were listed on the drug’s label according to 

SIDER 4.057 (N=780). 

We hypothesized expression of CYP enzymes across child development stages influence 

the adverse event risks of drugs they metabolize versus do not metabolize. In other words, drugs 
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that were substrates for CYP enzymes generated drug-event risks with more shared information 

with expression dynamics than drugs tthat were not substrates. We generated the two 

distributions by computing the mutual information (MI), using the maigesPack R package in 

Bioconductor, between the CYP probes’ residual expression, averaged across samples, and drug 

risks’ score for each child development stage, if both expression and risk were present. We 

generated a distribution of mutual informations from (drug-event, CYP gene probe, z score) 

triplets. The drug-event risk score at each stage varied according to a randomly selected z-score 

from a standard normal distribution. We used the mean (mu) and the standard error (SE) of the 

GAM estimates to generate a new risk score at each child development stage: 

𝑟𝑖𝑠𝑘	𝑠𝑐𝑜𝑟𝑒 = 𝑧 ∗ 𝑆𝐸 +𝑚𝑢 

These permutations generated substrate MIs and non-substrate MIs for each CYP enzyme. The 

two MI distributions were compared using Student’s t-test to evaluate a greater difference in 

average mutual information for substrate compared to non-substrate drug-event risks for their 

substrate’s gene expression. Also, we computed a Mann Whitney one-sided test to evaluate 

whether the substrate risk comparisons were greater in rank than non-substrate risks, on average 

across possible risk variations for a drug-event and CYP probe residual expression. We derived 

an AUROC statistic by normalizing the Mann Whitney U statistic for the number of comparisons 

between substrate (𝑛!) and non-substrate (𝑛") doublets: 

𝐴𝑈𝑅𝑂𝐶 = 	
𝑈

𝑛! ∗ 𝑛"
 

We made these comparisons across all event disorders, detailed above, as well systemic events of 

a system organ class by the same procedure.  
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Table 1: Adverse drug events across child development stages in Pediatric FAERS. The 
number and proportion of reports with the subject or drug characteristics. The drug class of the 
reported drug is in descending order. 

 
 
Figure S1: Observed adverse drug events vary in reporting characteristics across child 
development stages. A) The proportion of adverse drug events or drug-events out of all unique 
drug-events with a number of reports in pediatric FAERS. B) The percent of drug-events across 
child development stages by C) sex, D) drug-event reporter qualifications, E) drug class, and F) 
date, spanning between 1990 and 2020, of drug-event reporting. Related to Table 1. 
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Figure 1: Generalized additive models (GAMs) generate robust and generalizable evidence 
for adverse drug events across childhood. A) The average Akaike’s Information Criterion 
(AIC) versus average time, in seconds, across drug-event GAMs, per model type. B) The AIC 
distribution of drug-event GAMs, per model type, between low to max reporting in drug-event 
sample. C) The drug-event probability average fold change from the ‘Base’ model. The control 
probabilities or drug-nonevent probabilities are shown in small squares for comparison. D) The 
average training versus testing area under the receiver operating characteristic (AUROC) curve 
for each model type. E) The average difference of testing from training performance or 
overfitting for each model type. F) The average testing AUROC versus the average time, in 
seconds, to fit the training data per model type.  
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Figure 2: Drug-event GAMs estimate dynamic risks that share information across stages to 
identify pediatric adverse drug events. A) The spearman correlation between drug-event risks 
at child development stages from a random set of 2,000 drug-events, compared between our 
drug-event GAM and the popular proportional reporting ratio. B) The normalized risk scores 
across child development stages (normalized between [0,1] for each drug-event) from a random 
set of 2,000 drug-events, compared between our drug-event GAM and the popular proportional 
reporting ratio. C) The percent of nominally significant drug-event risks (90% lower bound 
above 0 or the null association) across child development stages for the drug-event GAMs. Error 
bars represent the 95% confidence interval for percentages calculated across 100 bootstraps of 
drug-events from Pediatric FAERS. The dashed redline indicates the null association between an 
adverse event and drug exposure across child development stages. D) The percent of nominally 
significant drug-event risks (90% lower bound above 0 or the null association) across child 
development stages. E) The percent of significant drug-event risks by the null model, out of all 
nominally significant drug-event risks, across child development stages. F) The percent of 
significant drug-events by the null model out of all drug-events in Pediatric FAERS. 
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Figure 3: Known pediatric drug effects show dynamic risk across child development stages. 
Adverse event risk across child development stages for drug-events in the GRiP drug-event 
reference set with either epidemiological or mechanistic evidence in children. 

 
 
Figure 4: Drug risks and adverse effects are associated to child development stages. A) 
Volcano plot of the enrichment for drug-events among ATC and MedDRA classes within child 
development stages. B) The number of significant enrichments at each stage (false discovery rate 
of 0.05) for significant drug-events. C) The number of significant enrichments by the ATC and 
MedDRA class. D) The 95% lower-bounded odds for disorders by medications with at least one 
significant enrichment across child development stages. The presence of the line indicates 
significant drug-events were present at that stage, and none were significant otherwise. The red 
dashed line indicates the null enrichment threshold. Abbreviations: ATC: Anatomical 
Therapeutic Class; ATC1-5: ATC 1st level – 5th level; SOC: System Organ Class, HLGT: 
Higher-Level Group Term, HLT: Higher-Level Term. 
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Table S1: Medications pose risks for systemic disorders at child development stages. 
Enrichment results for the ATC 5th level drugs enriched for MedDRA SOC-level events at a 
child development stage. The columns are ordered by child development stage then FDR. 
Related to Figure 4. Abbreviations: ATC5: ATC 5th level; SOC: System Organ Class, HLGT: 
Higher-Level Group Term. 

 
 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 19, 2021. ; https://doi.org/10.1101/2021.07.15.21260602doi: medRxiv preprint 

https://doi.org/10.1101/2021.07.15.21260602
http://creativecommons.org/licenses/by/4.0/


 44 

Figure S2: Drug risks vary by etiology across child development stages. A) The percent of 
significant drug-events, by the null model, at child development stages out of all drug-events 
within anatomical therapeutic classification (ATC) level 1 pharmacological classes. B) The 
enrichment of significant drug-events by pharmacological class at child development stages. The 
red dashed line indicates the null enrichment threshold. Related to Figures 2 and 4. 
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Figure S3 Drug risks vary by drug mechanisms across child development stages. A) The 
percent of significant drug-events, by the null model, at child development stages out of all drug-
events within MedDRA system organ class (SOC) etiologies. B) The enrichment of significant 
drug events by SOCs at child development stages. The red dashed line indicates the null 
enrichment threshold. Related to Figures 2 and 4. 
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Figure 5: Time-series based clustering categorizes drug risks into dynamic patterns across 
child development. A) Clustering metrics dynamics localization versus cluster purity scores 
across clustering models for (Number of clusters, centroid, distance) triplet hyperparameter sets. 
B) Cluster metric scores and their 95% confidence interval versus the number of clusters to fit in 
the clustering model. C) Cluster metric scores and their 95% CI versus the drug-event distance 
used to fit in the clustering model. See Methods for details on the clustering strategy and metrics. 
D) Cluster assignments assigned to putative risk dynamics categories after fitting top cluster 
model with all drug-events in pediatric FAERS. The GAM coefficients were normalized between 
[0,1] producing scores across child development stages for each drug-event. E) Percent of drug-
events assigned from the top cluster model that were significant by the null model. F) 
Montelukast-psychiatric disorder drug-events assigned risk dynamics clusters. 
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Figure S4: Medications posing development risks have characteristic dynamics across 
childhood. Drug-events were assigned risk dynamics clusters and also grouped within MedDRA 
system organ classes or systemic disorder. Related to Figures 4 and 5. 
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Table S2: The dataset of gene expression across childhood is made up of various datasets 
across development stages and tissues. All referenced Affymetrix image data from Stevens et 
al. Abbreviations: PBMCs: Peripheral blood mononuclear cells. Related to Figure 6. 

 
 
Figure 6: Drug risks from real-world observations associate with gene expression dynamics 
across childhood. A) Putative metabolic models of development-dependent risk. Adverse drug 
reactions (ADRs) can be influenced by dynamic metabolic processes during growth and 
development. In Model A, the risk of an ADR stems from increased concentration of the drug. 
The decreased metabolism, such as by the enzyme in green, increases the bioavailability of the 
drug resulting in the observed ADR. In this case, drug risks are inversely proportional to 
expression dynamics of this enzyme across child development stages. In Model B, the risk of an 
ADR stems from the aberrant modification of the drug such as by the enzyme in green. The 
concentration of the metabolite results in an observed ADR. Drug risks are directly proportional 
to expression dynamics of this enzyme across child development stages. B) Enrichment of 
significant drug-events at child development stages out of all drug-events with cytochrome P450-
metabolized drugs. The red dashed line indicates the null enrichment threshold, and the error 
bars are the 95% confidence intervals of the odds ratio. Shown are CYP enzymes where at least 
one stage was significantly enriched for CYP-metabolized drug risks across child development 
stages. C) Volcano plots of the average mutual information (MI) for drug systemic risks by CYP 
substrates versus the -log10 t-test false discovery rate (FDR) between substrate and non-substrate 
mutual information. A dashed red line for FDR=0.05 is shown. D) The average drug substrate 
risk for systemic risks for each CYP enzyme sharing significant information (t-test FDR<0.01) 
within systemic disorders. E) The residual probe expression across child development stages for 
the CYP enzymes in B). 
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Figure S5: Mitigating bias in gene expression across child development stages shows 
association with previously found age-associated gene markers. A) Log2 probe-level gene 
expression across child development stages. Outliers are not shown. B) Dimension reduction of 
microarray expression across 576 samples and 39,558 probes. Dimensions were included in 
deriving stage-association. C) Enrichment analysis, at varying alpha significance thresholds, 
from our final gene expression dataset for the 690 significantly age-associated genes from the 
original Stevens et al. study. All alpha levels from the range of p-values, in tenth increments, are 
shown. Related to Figure 6. 

 
 
Figure 7: Adverse event risk dynamics by CYP2C18 drug substrates associate with the 
enzyme’s expression dynamics. We found CYP2C18 as one of the only two CYP enzymes 
significantly associated with adverse risks of their substrates. The drugs in each drug-event are 
metabolized only by CYP218 and no other CYP2C family gene. Each drug-event is reported in 
each facet with different colors. Bars are in red, blue, and green to indicate the number of drug, 
event, and drug-event reporting, respectively, in Pediatric FAERS. Related to Figure 6. 
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Figure S6: Clustering performance captures purity and localization of canonical dynamic 
drug-events in clusters. A) The cluster purity confusion matrix where each value is the fraction 
of canonical drug-events assigned to each cluster out of all drug-events in each cluster. Example 
breakdown for a hyperparameter set including the number of clusters K=3. The numbers shown 
are rounded to the second significant digit. B) The dynamics localization confusion matrix where 
each value is the fraction of canonical drug-events assigned to each cluster out of all drug-events 
in each canonical dynamics’ category. C) The product of the maximum cluster purity and 
dynamics localization score for each (cluster, canonical dynamics) pair. D) The overall cluster 
purity and dynamics localization score for a hyperparameter set. The overall score is derived in a 
two-step calculation from the scores in A and B): We identify the maximum cluster purity for 
each (cluster, canonical dynamics) pair and then average the cluster purity across canonical 
dynamics categories and the dynamics localization across clusters, respectively. This ensures the 
optimized score for each hyperparameter set scores homogeniety in both the canonical dynamics 
cluster assignment and the type of drug-events contained in clusters. This performance strategy is 
agnostic to the number of clusters K in each hyperparameter set. Related to Figure 4. 
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