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Supplementary File S1: Outbreaker model specification 

Posterior distribution 

The joint posterior distribution of the augmented data and parameters given the data can 

then be defined as: 

𝑃(𝐴, 𝜃|𝐷) ∝ 𝑃(𝜃) ∏

𝑖

𝛺𝑖
1𝛺𝑖

2𝛺𝑖
3𝛺𝑖

4𝛺𝑖
5𝛺𝑖
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where the likelihood terms model the incubation period (𝛺𝑖
1), generation time (𝛺𝑖

2), 

mutation events (𝛺𝑖
3), case reporting process (𝛺𝑖

4), contact process (𝛺𝑖
5) and ward infection 

process (𝛺𝑖
6). Given the absence of contact data, the contact term 𝛺𝑖

5 is fixed at a value of 1. 

The prior distributions of the parameters are assumed independent such that: 

𝑃(𝜃) = 𝑝(𝜇)𝑝(𝜋)𝑝(𝜎)𝑝(𝜏) 

The very high identity among SARS-COV-2 genetic sequences tends to link all the 

observations in the data and this results in posterior values for these parameters—for 

instance, 𝜋 converges to very high values indicating that the vast majority of the cases were 

present in our data—that are not compatible with clinical and epidemiological sources of 

information. To account for this (i) we assigned sensible fixed values to the ward 

parameters (𝜎 and 𝜏) and the ascertainment parameter (𝜋) (Supplementary Table S1) and 

explored the variability around these values in one way sensitivity analysis; (ii) we modified 

the original outbreaker genetic likelihood by modelling the SNP distance between direct 

transmission pairs with a Poisson distribution; this places less likelihood weight on the 

genetic sequence data than the original formulation and allows a more evenly weighted 
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integration with ward data. By modelling mutation events as a feature of infection, 

assuming no within-host diversity and using a per-infectious-generation, per-base 

mutation rate 𝜇 and number of comparable nucleotides 𝑙(𝑠𝑖, 𝑠𝛼𝑖
), the genetic likelihood 𝛺𝑖

3of 

the SNP distance 𝑑(𝑠𝑖, 𝑠𝛼𝑖
)between the samples of a case i and its most recently sampled 

ancestor 𝛼𝑖separated by 𝜅𝑖 generations is given by: 

𝑑(𝑠𝑖, 𝑠𝛼𝑖
)~ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜇 × 𝜅𝑖 × 𝑙(𝑠𝑖 , 𝑠𝛼𝑖

)) 

 The mutation rate (𝜇) represents a probability and was assigned a Beta distributed prior 

(Supplementary Table S1).   

Ward likelihood 

Though the infectious process is unobserved, the probability of infection between cases 

can be estimated from the ward data, more specifically from the pair of wards they are 

registered in on the most likely inferred day of infection (Supplementary Figure S5). We 

assume that infection is more likely to occur between individuals on the same ward, and 

model this assumption explicitly by defining the parameter 𝜎 as the probability of a primary 

case infecting a secondary case registered on the same ward on the day of infection, 

conditional on the primary case having caused an infection. We refer to such events as 

“within-ward” infections. 

 

The probability of a primary case infecting a secondary case registered on a different ward 

on the day of infection is therefore 1 − 𝜎, which we refer to as “between-ward” infections. 

This accounts for uncertainty in using ward data to estimate the infectious process, for 

example if a patient visits another ward during their stay in the hospital or if viral particles 
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are transferred between wards via contaminated equipment or ventilation. However, 1 − 𝜎 

defines the marginal probability of transmission pairs being registered on any two different 

wards, while the ward likelihood must consider the probability of infection occurring 

between the two specific wards where the transmission pair is based. 

 

To calculate this probability, the likelihood of infection moving from one ward to another 

must be defined. Formally, given 𝑁𝑤 different wards in the hospital, we define a transition 

matrix 𝑄𝑘,𝑙 (𝑁𝑤 × 𝑁𝑤) describing the probability of a case registered in ward k infecting a 

case registered in ward l, conditional on a between-ward infection. The rows of this matrix 

therefore sum to 1, under the assumption that all outgoing infections occur in one of the 

other wards, and 𝑄𝑘,𝑘 = 0. given that we lack information on the proximity between wards 

or the number of staff shared between them, we made the assumption that infection 

occurs with equal probability to any other ward such that 𝑄𝑘,𝑙 = 1/(𝑁𝑤 − 1). 

 

Given the probability of within-ward infection 𝜎 and the matrix of transition probabilities 

𝑄𝑘,𝑙, we define a matrix X as a function of 𝜎 as follows: 

 

𝑋(𝜎) = [𝜎 (1 − 𝜎)𝑄1,2  … (1 − 𝜎)𝑄1,𝑁𝑤  (1 − 𝜎)𝑄2,1 𝜎 (1 − 𝜎)𝑄2,3 (1 − 𝜎)𝑄2,𝑁𝑤  … (1 − 𝜎)𝑄3,2 𝜎 … (1 − 𝜎)𝑄𝑁𝑤,1 (1

− 𝜎)𝑄𝑁𝑤,2  …  𝜎 ] 

 

where individual elements 𝑋(𝜎)[𝑘, 𝑙] describe the probability of a case in ward k infecting a 

case in ward l, conditional on the primary case having caused an infection). In other words, 

this matrix describes the expected proportion of infections originating in ward k that end 
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up in ward l. Using the ward designation of 0 to indicate a case not being registered in the 

hospital, we make the assumption that infection can only occur between cases in the 

hospital by defining 𝑋(𝜎)[𝑘, 𝑙] = 0 if 𝑘 = 0 or 𝑙 = 0. This completes the ward likelihood for 

direct transmission pairs (Supplementary Figure S5), which describes the probability of a 

primary case on ward k infecting a secondary case on ward l on the day of infection of the 

secondary case, and is given by 𝑋(𝜎)[𝑘, 𝑙].  

 

To keep the dimensionality of the ward model fixed, we analytically integrate over 

unobserved ward states and calculate the probability of the most recent sampled ancestor 

𝛼𝑖, registered on a given ward k, causing infection in case i, registered on a given ward l, 

after 𝜅𝑖 generations of infection. This approach requires knowledge of the registered ward 

of 𝛼𝑖 on the day of infection of the first unobserved case between 𝛼𝑖 and i (Supplementary 

Figure S5). However, the default Outbreaker model does not impute infection times of 

unobserved cases and as such this ward cannot be defined. We therefore impute an 

additional set of augmented data 𝑇𝑖
𝑎𝑛𝑐, called the ancestral infection time and defined as 

the infection time of the earliest unobserved case in an unobserved transmission chain 

separating 𝛼𝑖 and i. 𝑇𝑖
𝑎𝑛𝑐 is thus only defined when 𝜅𝑖 is greater than 1. A complete 

integration of 𝑇𝑖
𝑎𝑛𝑐 into the outbreaker likelihood would require calculating 𝑃(𝑇𝑖

𝑎𝑛𝑐) as part 

of the generation time likelihood 𝛺𝑖
2. However, this calculation would introduce variable 

model dimensionality that could only be explored using reversible-jump MCMC 1,2. To avoid 

this complexity, we make the simplifying assumption that 𝑃(𝑇𝑖
𝑎𝑛𝑐) = 1 for 𝑇𝛼𝑖

𝑖𝑛𝑓
< 𝑇𝑖

𝑎𝑛𝑐 <

𝑇𝑖
𝑖𝑛𝑓and 𝑃(𝑇𝑖

𝑎𝑛𝑐) = 0 otherwise, and keep the original generation time likelihood 𝛺𝑖
2. 

 

https://paperpile.com/c/AQWZ3D/3pPR+C8e7
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Under these assumptions, the ward likelihood can be calculated by integrating over all 

potential transmission routes between the registered ward of 𝛼𝑖 on day 𝑇𝑖
𝑎𝑛𝑐 and the 

registered ward of i on day 𝑇𝑖
𝑖𝑛𝑓. For each unobserved case there exist two unobserved 

ward states, one on the day of infection and one on the day of onward infection 

(Supplementary Figure S5). As cases tend to remain on a single ward for a given period of 

time, these ward states cannot be considered independent. We therefore condition the 

later ward state on the earlier ward state by defining a parameter 𝜏 as the daily probability 

of a case being registered on the same ward it was in on the day of infection. If the case is 

found on a different ward, the specific probability of being transferred from a given ward k 

to a different ward l is calculated using the same transition probability 𝑄𝑘,𝑙 defined above. 

We therefore assume that ward transfers of unobserved cases follow the same transition 

probabilities as infections occurring between wards, though this assumption could be 

easily relaxed if the necessary data to inform these estimates were available. We then 

define a matrix Y as a function of 𝜏: 

𝑌(𝜏) = [𝜏 (1 − 𝜏)𝑄1,2  … (1 − 𝜏)𝑄1,𝑁𝑤  (1 − 𝜏)𝑄2,1 𝜏 (1 − 𝜏)𝑄2,3 (1 − 𝜏)𝑄2,𝑁𝑤  … (1 − 𝜏)𝑄3,2 𝜏 … (1

− 𝜏)𝑄𝑁𝑤,1 (1 − 𝜏)𝑄𝑁𝑤,2  …  𝜏 ] 

 

where individual elements 𝑌(𝜏)[𝑘, 𝑙]  indicate the probability of an unobserved case being 

transferred from a given ward k on the day of infection to a given ward l on the day of 

onward infection. 

 

Given this parameterization it is possible to integrate over the unobserved transmission 

pathways linking a given ward k to a given ward l over 𝜅𝑖 generations of infection. We do so 
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by first defining all potential transmission routes between any two wards in a single 

unobserved generation of infection (Supplementary Figure S6). Fast integration over these 

transmission routes that accounts for all combinations of ward transfers and infection 

events can be achieved by matrix multiplication of 𝑌(𝜏) and 𝑋(𝜎) such that the elements of 

𝑌(𝜏) × 𝑋(𝜎) describe the probability of an unobserved case that was infected on ward k 

causing infection on ward l after one unobserved generation of infection.  

 

The probability of each route (Supplementary Figure S6) is conditional on the primary case 

becoming infected on that given ward in the previous generation of infection. The matrix 

product 𝑌(𝜏) × 𝑋(𝜎) can therefore be multiplied by itself in a recursive manner to integrate 

over transmission pathways for greater numbers of unobserved cases, where each 

multiplication by 𝑌(𝜏) × 𝑋(𝜎) represents the movement of infection in one unobserved 

generation. 

 

This recursive approach can be initialised as the ward states of the most recent sampled 

ancestor 𝛼𝑖 are observed. The probability of the first unobserved case becoming infected 

on any given ward i, given its infector 𝛼𝑖 is registered in the observed ward k on the day of 

onward infection, is simply given by 𝑋(𝜎)[𝑘, 𝑙]. We therefore define a matrix Z as a function 

of 𝜎, 𝜏 and 𝜅: 

𝑍(𝜎, 𝜏, 𝜅𝑖) = 𝑋(𝜎) × (𝑌(𝜏) × 𝑋(𝜎))^(𝜅𝑖 − 1) 

where × indicates the matrix multiplication operator and ^ the exponentiation operator. 

The first term calculates the probability of movement of infection from the sampled 

ancestor 𝛼𝑖 to the first unobserved case, while the exponentiated term accounts for 
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successive unobserved generations of infection. Individual elements 𝑍(𝜎, 𝜏, 𝜅𝑖)[𝑘, 𝑙] 

therefore describe the probability of infection originating in a given ward k and ending up 

on ward l after 𝜅𝑖 generations of infection. 

 

Given these probabilities, the ward likelihood 𝛺𝑖
6 can then be defined for a given case i as: 

𝛺𝑖
6 = {𝑝 (𝑊

𝑖,𝑇𝑖
𝑖𝑛𝑓|𝛼𝑖, 𝑇𝑖

𝑖𝑛𝑓
, 𝑊

𝛼𝑖,𝑇𝑖
𝑖𝑛𝑓 , 𝜅𝑖, 𝜎, 𝜏)       𝜅𝑖

= 1 𝑝 (𝑊
𝑖,𝑇𝑖

𝑖𝑛𝑓|𝛼𝑖, 𝑇𝑖
𝑖𝑛𝑓

, 𝑇𝑖
𝑎𝑛𝑐 , 𝑊𝛼𝑖,𝑇𝑖

𝑎𝑛𝑐 , 𝜅𝑖, 𝜎, 𝜏)       𝜅𝑖 > 1  

and calculated as: 

𝛺𝑖
6 = {𝑍(𝜎, 𝜏, 𝜅𝑖) [𝑊

𝛼𝑖,𝑇𝑖
𝑖𝑛𝑓; 𝑊

𝑖,𝑇𝑖
𝑖𝑛𝑓]       𝜅𝑖 = 1 𝑍(𝜎, 𝜏, 𝜅𝑖) [𝑊𝛼𝑖,𝑇𝑖

𝑎𝑛𝑐; 𝑊
𝑖,𝑇𝑖

𝑖𝑛𝑓]       𝜅𝑖 > 1  

The ward likelihood therefore describes the probability of infection originating in the ward 

that 𝛼𝑖 is registered in on the day of onward infection (𝑇𝑖
𝑖𝑛𝑓 if 𝜅𝑖 = 1 or 𝑇𝑖

𝑎𝑛𝑐 if 𝜅𝑖 > 1), and 

ending up in the ward that i is registered in on its day of infection (𝑇𝑖
𝑖𝑛𝑓) after 𝜅𝑖 

generations of infection. 
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Supplementary File S2: Supplementary methods 

Definitions of onset and association 

All COVID positive cases in patients were classified in 5 groups as in 4: 

(1) Community-Onset Community-Associated: Positive specimen date up to 14 days 

before, or within 2 days after, hospital admission, with no discharge from hospital in 

14 days before specimen date. 

(2) Community-Onset Suspected Healthcare-Associated: Positive specimen date up to 

14 days before, or within 2 days after, hospital admission, with discharge from hospital 

in 14 days before specimen date. 

(3) Hospital-Onset Suspected Healthcare-Associated: Positive specimen dated 8-14 days 

after hospital admission; or specimen date 3-14 days after admission, with discharge 

from hospital in 14 days before specimen date. 

(4) Hospital-Onset Intermediate Healthcare-Associated: Positive specimen date 3-7 days 

after hospital admission, with no discharge from hospital in 14 days before specimen 

date. 

(5) Hospital-Onset Healthcare-Associated: Positive specimen date to 15 or more days 

after hospital admission. 

Ascertainment probability (𝜋) 

The ascertainment parameter, π, was estimated by combining (i) the proportion of known cases which 

have high quality sequence, (ii) the proportion of these cases where their location is known and (iii) 

https://paperpile.com/c/AQWZ3D/7h1B
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the proportion of cases which are undetected. While the first two of these proportions were known, 

the third was more uncertain.  

Wave 1 estimate 

2,288 patient (1,184) and staff (1,104) cases tested SARS-CoV-2 positive at Sheffield Teaching 

Hospitals NHS Foundation Trust. 886/1184 (74.8%) patients and 842/1104 (76.3%) staff cases 

were sequenced to a genome coverage of greater than 90%. 220 cases were excluded 

because they were outpatients (106), non-clinical staff (37), external staff (47) or community 

based staff (30). 206 staff cases were excluded because their location of work was unknown. 

After exclusion, 86.4% (1,302/1,508) of staff and inpatient sequences were included. 

Combining the proportion of sequenced staff and inpatients known cases and included cases 

resulted in an ascertainment parameter of 65.4% (0.755*0.864*100). Assuming 80% of cases 

were detected, the reporting estimate for the model would be 52.3%.  

Wave 2 estimate 

2,021 patient (1183) and staff (838) cases tested positive during this time period. 669/1183 

(56.6%) patient cases and 651/838 (77.7%) staff cases were sequenced to a genome coverage 

of greater than 90%. 332 cases were excluded because they were household contacts (141), 

non-clinical staff (74), community based staff (28) or outpatients (89). 109 staff cases were 

excluded because their location of work was unknown. After exclusion 89.0% (879/988) of 

sequenced staff and inpatient cases were included. Applying the same rationale as above 

results in a reporting parameter of 46.5%.  

Based on these estimates, a sensitivity analysis was carried out varying the parameter from 

20% to 60% for both waves.  
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Symptom onset date imputation 

For 30.1% of wave 1 and 22.0% of wave 2 individuals, the symptom onset was not available. 

To account for these missing data, we estimated the distributions of delay (in days) between 

symptom onset and testing for inpatients and staff for whom this delay was known. For 

inpatients, we further stratified these distributions by six infection categories: Community 

Onset−Community Associated, Community Onset−Suspected Healthcare Associated, 

Hospital Onset−Healthcare Associated, Hospital Onset−Indeterminate Healthcare 

Associated, Hospital Onset−Suspected Healthcare Associated and undefined3. For staff, most 

were classified into a ‘not admitted’ category, with those who required admission  stratified 

into the six categories listed above. All negative delays were removed from these 13 

distributions. Next, for each individual for whom a date of onset was not recorded, we 

randomly sampled a delay between onset and testing from the respective known 

distributions associated with each infection category and individual type (staff or inpatient). 

If a distribution was unable to be defined due to absence of data, we instead sampled from 

the undefined patient or staff category. Finally, we calculated the imputed onset date of 

individuals with a sampled delay between symptom onset to testing by subtracting the 

sample delay from the recorded date of testing.  

 

Proportion of imported cases 

The precise proportion of imported cases was unknown and this uncertainty was captured 

as part of the final global sensitivity analysis. The proportion of imported patient cases was 

estimated from the admission date, symptom onset date and the incubation period. As we 

https://paperpile.com/c/AQWZ3D/CHN7X
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were unable to accurately estimate the proportion of imports for staff the sampling 

distributions outlined below include a staff import proportion ranging from 0% to 100%. The 

rationale for the Wave 1 and Wave 2 import proportions are outlined below. 

Wave 1 import proportion 

The estimated import proportion for patients in Wave 1 was 80% (~624/780; 95% confidence 

interval: 76% - 83%). Combining the inpatient and staff estimate (261/522, 50%) gives an 

estimated import percentage of ~68% (885/1302). Considering both extreme scenarios of no 

staff being imports and all staff being imports gives a range in the import percentage of ~48% 

to ~88%. To account for this uncertainty in the final results the import proportion for Wave 

1 is varied 500 times, sampling from a normal distribution with mean 0.7 and standard 

deviation 0.075. 

Wave 2 import proportion 

Combining the patient (63%, ~365/580; 95% confidence interval: 58% - 67%) and staff 

(150/299, 50%) estimate gives an estimated import percentage of ~59% (515/879). 

Considering both extreme scenarios as above gives a range of ~42% to ~76%. The import 

proportion for wave 2 is sampled from the normal distribution with mean 0.6 and standard 

deviation 0.06. 

 

Parameterisation of the importations 

The Outbreaker2 model requires the number of imports (i.e. community-associated 

infections) to be known in advance. Here, we relaxed this assumption by integrating over the 

distribution of the number of imports in independent MCMC chains, for each of which the 
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number of imports was randomly drawn from a binomial distribution with N trials and a 

probability drawn from a Beta distribution (see proportion of imported cases section below). 

We define N as the total number of cases in the dataset, and the mean of the Beta distribution 

(p) as the probability across all cases that they are community-acquired. We first calculated, 

for each patient, the probability that they acquired the infection in the community as the 

probability that their incubation period was longer than their delay between admission and 

symptom onset. We then calculated the average patient-specific probability of a 

community-acquired infection. As admission data is unavailable for staff, we set bounds for 

the fraction of staff who acquired infection in the community as between 0 and 1. We then 

calculated the fraction of community-acquired infections across the whole dataset as the 

weighted sum of the patient-specific and the staff-specific probabilities as described in the 

proportion of imported cases section above.  

 

To assign the identity of the imports, we calculated the mean individual likelihood 𝛺𝑖 =

𝛺𝑖
1𝛺𝑖
2𝛺𝑖

3𝛺𝑖
4𝛺𝑖

5𝛺𝑖
6of case𝑖 being infected by another individual observed in the dataset in a pre-

run of the MCMC (1100 iterations with a thinning frequency of 1/50 and a burn-in of 500 

iterations). For each MCMC chain in the main analysis, the randomly drawn number of 

imports were randomly assigned identities on the basis of the inverse of the individual 

likelihood 𝛺𝑖 .  
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Outbreaker model run specifications 

Outbreaker was run in parallel integrating across uncertainty in the symptom onset data and 

the number and identity of imports. Specifically, we used a global sensitivity analysis in our 

base case analysis via an ensemble approach in which we generated a total of 10,000 

posterior transmission networks. These 10,000 samples were generated from a sample of 

100 imputed symptom onset datasets. In addition we drew five samples of the number and 

identity of imports and ran an MCMC across all 500 combinations. We then sampled 20 

posterior networks from each of the converged chains of these 500 MCMC runs. Each 

parallel MCMC chain was run for 1100 iterations with a thinning frequency of 1/50 and a 

burn-in of 100 iterations. We ran the analysis using a timescale of quarter-day increments 

consistent with the ward location data being available to the nearest 6-hour interval. 

 

Secondary case distribution 

Our simulations calculate a posterior sample of the distribution of the number of observed 

secondary cases, X, by evaluating, for each case, the total number of connected cases (either 

direct transmission or with intermediate unsampled individuals). To calculate the true 

number of secondary cases (Z), including both observed and unobserved, we define the 

conditional probability, 

𝑃(𝑍 = 𝑗 | 𝑋 = 𝑖)  =  𝑃(𝑌 = 𝑗 − 𝑖) for 𝑗 > 𝑖 

𝑃(𝑍 = 𝑗 | 𝑋 = 𝑖)  = 1− ∑𝑗>𝑖  (1− 𝜋)𝑗−𝑖  for 𝑗 = 𝑖 

𝑃(𝑍 = 𝑗 | 𝑋 = 𝑖)  =  0 ,    else 
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We then calculate the unconditional probability distribution of true cases using the 

expression: 

𝑃(𝑍 = 𝑗)  =  𝛼 ∑

𝑖≤𝑗

𝑃(𝑍 = 𝑗 | 𝑋 = 𝑖)𝑃(𝑋 = 𝑖) 

where 𝛼is the normalising constant to constrain ∑𝑗≥0 𝑃(𝑍 = 𝑗) = 1. 

We define Y as the number of secondary cases that both them and all their descendants are 

unsampled. Specifically, 

𝑃(𝑌 = 𝑘)  =  (∑𝑐≥1 𝑃(𝐶 = 𝑐)(1− 𝜋)𝑐)𝑘 for k>0 

𝑃(𝑌 = 0)  =  1− 𝑃(𝑌 ≥ 1) 

where 𝜋 is the reporting probability and 𝑃(𝐶) is the probability distribution of the number of 

cases in a cluster of descendants (including itself). Specifically, 𝑃(𝐶) can be defined in terms 

of the number of true secondary cases, Z, as: 

𝑃(𝐶 = 1) = 𝑃(𝑍 = 0), 

𝑃(𝐶 = 2) = 𝑃(𝑍 = 1), 

𝑃(𝐶 = 3) = 𝑃(𝑍 = 2) + 𝑃(𝑍 = 1)2, etc.  

Assuming 𝑃(𝑍 = 𝑘)(1− 𝜋)𝑗  ≈  0when 𝑗 > 2, 𝑘 > 1, we can write, 

𝑃(𝑌 = 𝑖)  =  ((1− 𝜋)𝑃(𝑍 = 0) + (1− 𝜋)2𝑃(𝑍 = 1))𝑖 for i>0  

𝑃(𝑌 = 0)  =  1− 𝑃(𝑌 ≥ 1) 

 

Now, we define  

𝑃(𝑌 = 𝑘 | 𝑝, 𝑞)  =  ((1− 𝜋)𝑝 + (1− 𝜋)2𝑞)𝑘 

𝑃(𝑌 = 0| 𝑝, 𝑞)  =  1− 𝑃(𝑌 ≥ 1 | 𝑝, 𝑞) 
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and we generate samples from the two distributions P(X) and P(Y | p, q) to generate a sample 

of Z and, from this sample, we estimate P(Z | p, q). We then calculate the unique p and q that 

satisfies 𝑃(𝑌 = 𝑘 | 𝑝, 𝑞)  =  ((1− 𝜋)𝑃(𝑍 = 0) + (1− 𝜋)2𝑃(𝑍 = 1))𝑘. 

We therefore calculate a secondary case distribution, 𝑃(𝑍ℎ = 𝑖) for each sampled 

transmission tree, h, in the posterior distribution. 
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Supplementary Figure S1. Treemap of all PANGO lineages represented in the Wave 1 and 
Wave 2 datasets.  
The size of each rectangle is proportional to the number of each lineage in the dataset. 
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Supplementary Figure S2. Network of all transmission chains in Wave 1 and 2 
(A) All transmission chains from a representative network in Wave 1. (B) All transmission chains 
from a representative network in Wave 2. Each colour represents a different transmission 
chain. 
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Supplementary Figure S3. Sensitivity analysis of Wave 1.  
eps (𝜎) and pi (𝜋) refer to the probability of 𝛼𝑖 and 𝑖 being registered on the same ward on the day of infection and the proportion of 
cases sampled in the outbreak, respectively (as in the notation Supplementary Table S1). 
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Supplementary Figure S4. Sensitivity analysis of wave 2.  
pi (𝜋) refers to the proportion of cases sampled in the outbreak as in the notation Supplementary table S1. 
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Supplementary Figure S5. Schematic representation of the outbreaker ward model 
Rows represent individual cases, colours indicate the ward a case is registered in, dotted 
outlines indicate unobserved cases. Circles represent infection times, triangles dates of 
symptom onset, squares dates of onward infection. Red curved lines indicate the generation 
time distribution. (A) A case i and its infector are both sampled. The wards of the infectee and 
infector are directly observed and the probability of infection between these wards on the day 
of infection can be directly calculated. (B) A case i and its most recent sampled ancestor 𝛼𝑖 are 
separated by an unobserved case. The ancestral infection time 𝑇𝑖

𝑎𝑛𝑐 is imputed and the potential 
ward states of the unobserved case on the day of infection and day of onward infection are 
integrated over. (C) A case i and its most recent sampled ancestor 𝛼𝑖 are separated by two 
unobserved cases. The ancestral infection time 𝑇𝑖

𝑎𝑛𝑐 is imputed and the ward states of both 
unobserved cases integrated over. 
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Supplementary Figure S6. Integrating over transmission pathways to a given ward l.  
Each row represents a ward. Black circles represent the ward the primary case is infected on. 
Black squares represent the ward of the primary case on the day of onward infection. Grey 
circles represent the ward the secondary case is infected on. A case remains on the ward it was 
infected on with probability 𝜏. An infection occurs within a ward with probability 𝜎. All 
probabilities described in this figure are conditional on the primary case becoming infected on 
that given ward. A) The primary case is infected on ward l, remains on the same ward and 
infection occurs within the ward. B) The primary case is infected on any ward s, moves to an 
intermediate ward that is not s or l, and infects a case on ward l. The probability of this scenario 
must integrate over all potential initial wards s. C) The primary case is infected on a ward s 
that is not l, remains on ward s and causes infection in ward l. D) The primary case is infected 
on a ward s that is not l, moves to ward l and causes infection within ward l. The probability of 
scenarios C) and D) must integrate over all potential initial wards that are not l. Fast 
integration over the transmission pathways given in panels A-D can be achieved by the matrix 
multiplication 𝑌(𝜏) × 𝑋(𝜎). 
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Supplementary Figure S6.  Trace of the log-posterior values and 𝜇 in exploratory runs 
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Supplementary Table S1. Notation of outbreaker2 model  

Symbol Type  Description   Value (when applicable) 

i Data  Index of cases    

N Data  Number of cases in the sample   

𝑠𝑖 Data  Sequence of case i   

𝑡𝑖 Data 
  Collection date of si   

𝑊𝑖,𝑡 Data Registered ward of case i on day t  

w Function  Generation time distribution Discrete Gamma (shape =4.83, scale = 1.05)5,6 

f
  

Function  Incubation period distribution  Discrete Gamma (shape = 5.89, scale=1.07)5,6 

𝑑(𝑠𝑖 , 𝑠𝑗) Function Number of mutations between si and sj  

𝑙(𝑠𝑖 , 𝑠𝑗) Function 
Number of comparable nucleotide positions 
between si and sj 

 

𝛼𝑖

  Augmented data 
Index of the most recent sampled ancestor of 
case i 

 

𝜅𝑖 Augmented data 
Number of generations between αi and i
  

 

𝑇𝑖
𝑖𝑛𝑓 Augmented data Date of infection of i    

𝑇𝑖
𝑎𝑛𝑐 Augmented data 

Date of infection of the earliest unobserved 
case in an unobserved transmission chain 
separating 𝛼𝑖 and i 

 

𝜇 Parameter
  

Mutation rate of SARS-CoV-2, per site per 
generation of infection  

Beta (α = 89.9, β = 809.1)7 

𝜋 Parameter
  

Proportion of cases sampled in the outbreak 0.5 

𝜎 Parameter 
Probability of αi and i being registered on the 
same ward on the day of infection 

0.99 

𝜏 Parameter 
Daily probability of an unobserved case being 
registered on the same ward it was in on the 
day of infection 

 

https://paperpile.com/c/AQWZ3D/USznM+Uxu2O
https://paperpile.com/c/AQWZ3D/USznM+Uxu2O
https://paperpile.com/c/AQWZ3D/hxKVO
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Supplementary Table S2. Percentage of each onset and association with infectors or 

onward secondary infections in the outbreaker model 

 Assigned infector  
(hospital acquired infections) 

 
% (95% Credible interval) 

Secondary infections 

% (95% Credible interval) 

Wave 1 Wave 2 Wave 1 Wave 2 

Community onset community 
associated 

0 0 3.9 
(2.1-6.0) 

3.5 
(1.7-5.9) 

Community onset suspected 
healthcare associated 

35.0 
(24.1-45.6) 

42.2  
(31.3-52.2) 

18.1 
(10.1-26.6) 

24.0 
(14.9-32.8) 

Hospital onset indeterminate 
hospital acquired 

32.1 
(21.3-41.0) 

52.3 
(41.6-61.8) 

27.0 
(18.9-35.1) 

39.1 
(29.5-47.7) 

Hospital onset suspected 
hospital acquired 

71.3 
(56.8-82.4) 

83.6 
(69.3-93.2) 

59.6 
(45.9-72.1) 

52.4 
(42.7-61.8) 

Hospital onset hospital 
acquired 

69.8 
(55.0-80.0) 

77.4  
(61.0-89.0) 

45.2 
(35.0-55.0) 

51.2 
(41.0-60.0) 
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