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Abstract 

The effectiveness of screening travellers during times of international disease outbreak is 

contentious, especially as the reduction in the risk of disease importation can be very small. Border 

screening typically consists of travellers being thermally scanned for signs of fever and/or 

completing a survey declaring any possible symptoms prior to admission to their destination 

country; while more thorough testing typically exists, these would generally prove more disruptive 

to deploy. In this paper, we describe a simple Monte Carlo based model that incorporates the 

epidemiology of COVID-19 to investigate the potential benefit of requiring all travellers to undergo 

thorough screening upon arrival. This is a purely theoretical study to investigate whether a single 

test at point of entry might ever prove to be a way of significantly decreasing risk of importation. We 

therefore assume ideal conditions such as 100% compliance among travellers and the use of a 

“perfect” test. In addition to COVID-19, we also apply the presented model to simulated outbreaks 

of Influenza, SARS and Ebola for comparison. Our model only considers screening implemented at 

airports, being the predominant method of international travel. Primary results showed that in the 

best-case scenario, screening may expect to detect 8.8% of travellers infected with COVID-19, 

compared to 34.8.%, 9.7% and 3.0% for travellers infected with influenza, SARS and Ebola 

respectively. While results appear to indicate that screening is more effective at preventing disease 

ingress when the disease in question has a shorter average incubation period, our results indicate 

that screening alone does not represent a sufficient method to adequately protect a nation from the 

importation of COVID-19 cases.  

 

Data availability 

All results described in the work, in addition to technical descriptions of methods used, are made 

available in the supplementary material. The Python package used to implement these methods and 

obtain our results has been made accessible online[1]. 

 

Introduction  

While international trading and tourism has huge sociological and economic benefits, it also 

markedly increases the vulnerability of national populations to emerging and re-emerging infectious 

diseases. In particular, the ability to travel between almost any two points on the planet within 24 

hours provides the potential for epidemics to rapidly evolve into pandemics[2]–[4]. On the 31st 

December 2019, the Wuhan Municipal Health Commission reported the first cluster of individuals 

infected with COVID-19, at the time being an unknown pneumonia inducing disease[5]. By the end of 

January 2020, cases of COVID-19 had been reported in 26 countries outside of China[6]. Less than 6 
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weeks later, with cases being reported in 114 countries and territories, the World Health 

Organisation declared the COVID-19 outbreak a pandemic[7].  

The World Health Organisation (WHO) recommends in its International Health Regulations[8] that all 

WHO States should have the capability to implement some form of screening at international points 

of entry during times of outbreak. Such screening has previously involved using thermal cameras to 

scan for signs of fever and asking travellers to self-declare any signs of symptoms. These methods 

are both less than perfect and have led many to disagree with the idea that border screening is a 

worthwhile endeavour. In this paper, we look to use mathematical modelling to evaluate whether 

the implementation of a “perfect” border screening policy could theoretically provide any protection 

from disease ingress during the ongoing outbreak. We present a simple mechanistic model that 

represents the process of a COVID-19 infected traveller attempting to undertake international travel 

and gain entry to some destination country where such a border screening policy is being enforced. 

The model is then run repeatedly utilising Monte Carlo simulation, capturing the stochastic nature of 

the various processes involved, to calculate the likelihood that an infected person would be 

presenting detectable symptoms upon arrival at the border of the destination country. The model 

we produce is easily extendable to other diseases and as such, we apply our model to simulated 

outbreaks of Influenza, SARS and Ebola for comparison.    

 

Assumptions 

Work presented in the following is based upon the subsequent set of assumptions: 

• All simulated individuals are assumed to have been infected prior to travelling,  

• The distribution of time of infection, �exp , is uniform across the ranges 0-72, 0-168 and 0-

336 hours prior to flying, simulating where infection has occurred during a short break, a 

holiday, or more longer-term travel 

• Border screening only detects travellers following a period of incubation; prior to completion 

of this they are not detectable 

• Exit screening is being enforced in the country of origin so persons who have become 

detectable before boarding their flight do not fly 

• All persons travelling only take directs flight from their country of origin to the destination 

country 

• The distribution of flight times, ��light, are uniform across the ranges 3-5, 7-9 and 11-13 

hours to represent short, medium and long-haul flights respectively.  

• All people attempting to cross the border are screened 

• Screening does not produce false negatives 

• The number of infected persons remains constant throughout the simulation (transmission 

and death are neglected) 

• Screening detects all infected persons who have incubated 

• Infected people do not attempt to “game” the system by concealing signs of infection  

We reiterate that the presented model assumes a “perfect” border screening process is being used, 

so the above assumptions have been chosen to reflect this.  

 

Methods 
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Our model uses Monte Carlo methods to approximate the likelihood that infected travellers, 

attempting to travel from country A to country B, would be detected on arrival to country B 

following a range of infection and travelling scenarios. We simulate a large number of infected 

travellers, each of which is assigned a time of infection (�exp), an incubation period (�inc) and a flight 

time (t�light), sampled from the distributions �exp , �inc and ��light respectively. These distributions are 

given as parameters to the model and represent the scenario being considered (note that the 

disease being considered is characterised in the model solely through the incubation period 

distribution provided here). For each traveller, these values are compared to determine whether 

they would become detectable prior to departure, during transit or post arrival. Results are then 

compiled, disregarding the travellers that would be detectable prior to departure, to determine 

what probability that infected travellers would detectable (and thus detected) by a perfect screening 

process deployed at country B’s border given that they manage to board their flight. More explicitly:  

• If �inc < �exp, the traveller has become detectable before boarding their flight and therefore 

does not travel (either by not being well enough to fly, or being picked up at exit screening); 

they exit the model being recorded as a non-flier 

• If �exp < �inc  < �exp � t�light, the traveller has become detectable in transit and will therefore 

be detected by screening at country B’s border; they exit the model being recorded as a 

border-detection 

• Else �inc > �exp � t�light, and the traveller has not become detectable prior to arriving at 

country B’s border and thus crosses into country B undetected; they exit the model being 

recorded as undetected. 

 

This is visualised in figure 1: 

 

Figure 1: Depiction of the evaluation of individuals in the border screening model. 

Each scenario is evaluated by simulating 1,000,000 infected individuals. We then take the ratio of 

border-detections against number of infected persons who manage to board their flight to get an 

approximate probability that border screening will capture infected travellers. A pseudo-code 

breakdown of this algorithm is included in the supplementary text, while the Python package used to 

implementing the above model has been made openly available online[1].  

 

Screening for COVID-19 

The below results were obtained by applying our model to COVID-19 across all combinations of 

travel and infection scenarios described above. The incubation period distribution has been 

modelled using a log-normal distribution with parameters µ=1.6112 and σ=0.47238, which was 

obtained by parameterising results taken from [9] (method of parameterisation is included in the 

supplementary text) 

 

Table 1: Detection rates for COVID-19 across considered scenarios  

Screening for Influenza, SARS and Ebola 
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We repeat the above for simulated outbreaks of Influenza, SARS and Ebola, while also including 

results for COVID-19. As the rest of the method remains applicable, we need only substitute in 

incubation period distributions for each of these diseases. These have been taken from [10], [11] 

and [12] for Influenza, SARS and Ebola respectively (for derivation of gamma distribution parameters 

see supplementary text). For brevity, we have averaged the results across flight time ranges for each 

disease (table containing full set of results is included in supplementary text) 

 

Table 2: Detection rates for Influenza, SARS, COVID-19 and Ebola across considered scenarios  

Discussion 

With our best considered scenario suggesting that screening for COVID-19 would detect less than 9% 

of infected travellers, it is quite plain that our model seems to indicate that the implementation of a 

single screening process is not sufficient to cause a significant reduction in the expected number of 

infected travellers entering a destination country during the COVID-19 pandemic. Detection rates 

also clearly decrease with average flight time, meaning screening would be even less effective on 

travellers arriving via short haul flights (which would presumably be the most numerous). The 

intuitive reason for such minimal detection rates would be, considering the average incubation time 

of COVID-19, that the amount of extra time afforded to individuals by their flight is not substantial 

enough to expect a notable proportion of infected travellers to complete their incubation period and 

become detectable prior to arrival (hence also the decrease with shorter flight times).  

 

Figure 2: Modelled detection rates for each of the considered disease 

This argument also appears to be supported by the results obtained when applying our model to 

outbreaks of Influenza, SARS and Ebola; detection rates for which are plotted in the above graph. 

Comparing detection rates between COVID-19 and SARS first (being related diseases that have 

similar incubation periods), we see that detection rates are roughly in the same ballpark across all 

scenarios, with screening still detecting less than 10% in the best case. However, when we consider 

COVID-19 against Influenza or Ebola (both have markedly shorter and longer average incubation 

period respectively), we see from the above that in the best case we may expect to detect just under 

35% of influenza cases and 3% of Ebola cases. What this could indicate is that border screening 

might present a viable intervention for diseases that have incredibly fast incubation periods (such as 

on the scale of hours), or that incorporating some additional step that provides travellers with 

additional time in which they might incubate (such as isolating on arrival) might make this a more 

successful undertaking. However, a reduction of at most 9% of arriving COVID-19 cases would be a 

hard sell to any public health team considering the potential cost. We would therefore conclude by 

stating that the results presented imply that border screening, as we have described it in this paper, 

would not serve as suitable intervention to prevent the ingress of further COVID-19 cases. 

Furthermore, while a possible 35% detection rate for influenza might seem sizeable in comparison to 

the results from the COVID-19 modelling, it still does not offer a reduction on the scale that might be 

anticipated to fully safeguard a nation from the threat of an external outbreak, with a similar 

conclusion being reached on all of the other of the diseases considered.  

The model we described and used to obtain these results is technically simple and can therefore be 

rapidly evaluated with modern computation. Additionally, this simplicity allows our model to remain 

flexible, and easily amended to consider disease, infection and travelling scenarios outside of those 
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considered in this work. One disadvantage though, although such considerations lay outside the 

remit of this work, is that the model does not consider the effects of personal behaviours (i.e. 

infected persons attempting to obscure signs of their infection during screening) or disease 

dynamics (i.e. the infection of fellow travellers during transit). However, our work sought to provide 

an upper bound to the potential benefit of border screening, and as such considerations would act 

to only decrease expected detection rates, these neglections are appropriate for the aims of this 

work. For the consideration of more realistic scenarios, these factors could in future be implemented 

into an extended version of this model. 

 

Conclusion 

In this paper, we have presented a simple and adaptable Monte Carlo based model which can be 

rapidly evaluated across a range of outbreak scenarios. We then used this model to assess whether 

border screening could in theory provide nations with any notable protection from international 

travellers infected with COVID-19. Our model assumed the implementation of a perfect screening 

process and was applied across a range of infection and travel scenarios. Despite this, our model 

indicated that nations could not expect border screening alone to detect more than 9% of arriving 

travellers infected with COVID-19. In addition to this, we also applied the presented model to 

simulated outbreaks of Influenza, SARS and Ebola. Through this, while we managed to infer that 

screening fared slightly better when considering diseases with shorter incubation periods, results 

indicated that screening alone still did not offer sufficient protection from international outbreaks. 

This model may be in future developed by incorporating some aspect of disease transmission and/or 

impropriety in infected travellers. 
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Figure 2 

 

 

 

 

Table 1 

Flight time range Time of infection (before flight) Detection rate 

Uniform (3, 5) Uniform (0, 72) 0.009 

Uniform (7, 9) Uniform (0, 72) 0.019 

Uniform (11, 13) Uniform (0, 72) 0.031  

Uniform (3, 5) Uniform (0, 168) 0.026 

Uniform (7, 9) Uniform (0, 168) 0.051 

Uniform (11, 13) Uniform (0, 168) 0.078 

Uniform (3, 5) Uniform (0, 336) 0.030 

Uniform (7, 9) Uniform (0, 336) 0.059 

Uniform (11, 13) Uniform (0, 336) 0.088 
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Table 2 

    Time of infection (before flight) 

  Flight time range Uniform (0, 72) Uniform (0, 168) Uniform (0, 336) 

Influenza 

Uniform (3, 5) 0.116 0.117 0.116 

Uniform (7, 9) 0.232 0.234 0.232 

Uniform (11, 13) 0.345 0.346 0.348 

SARS 

Uniform (3, 5) 0.010 0.028 0.032 

Uniform (7, 9) 0.022 0.056 0.064 

Uniform (11, 13) 0.035 0.085 0.097 

COVID-19 

Uniform (3, 5) 0.009 0.026 0.030 

Uniform (7, 9) 0.019 0.051 0.059 

Uniform (11, 13) 0.031 0.078 0.088 

Ebola 

Uniform (3, 5) 0.000 0.002 0.010 

Uniform (7, 9) 0.000 0.004 0.020 

Uniform (11, 13) 0.000 0.007 0.030 
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