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1 Introduction 
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been globally affecting 
societies and economies for more than a year and classical strategies have not been 
successful to prevent further spreading of the virus. To support evidence-based decision 
making during this ongoing crisis, the scientific community has made great efforts to analyze 
the available data (selected reviews: (1–5)), to predict virus propagation and the influence of 
different societal aspects, such as age or contact levels (6–8), to analyze the underlying 
networks of outbreaks (9), and to provide scientific evidence for the efficacy of different 
mitigation measures, testing or vaccination strategies (selected reviews: (10–12)). With the 
Global Epidemic and Mobility (GLEaM) framework there is a stochastic computational scheme 
that integrates worldwide high-resolution demographic and mobility data to simulate disease 
spread on the global scale (13). Still, in a recent comment, Bouffanais and Lim pinpointed the 
discrepancy between the detail levels of available data and mathematical models versus the 
requested and required information to effectively prevent uncontrollable virus spreading (14). 

Classical SIR-models (15, 16) are commonly based on population-wide assertions, thereby 
omitting the variability of the infection transition process between individuals. Traditional 
agent-based models (17) capture stochasticity in agent behavior, but are highly limited in size 
by computing capacities. Others have attempted to overcome these limitations: Already in 
2005, Ferguson et al. (18) published an agent-based model considering statistical distributions 
of transmission events in households, building types and alike, while Chao and coworkers 
considered data on personal contacts back in 2009 (19). More recently, (20) simulated 
infection transmission throughout Bogotá representing the city’s population by 1000 agents 
and (21) created a simple model to analyze the effect of traveling between cities in China, but 
without realistic individual agents. Quilty et al. (22) predicted quarantine and test strategies. 
Still, they all attempt to describe the infection process on population level, thus relying on a 
coarse-grained representation by a limited number of agents. Alternatively, (23) developed an 
ODE model that describes increased social distancing by decreasing the basic reproduction 
number (R value). (24) modeled presymptomatic and non-diagnosed transmissions, (7) 
provided valuable age specific data on contact patterns in the Chinese population, and (8) 
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assessed the effect of alternative working schedules. (25, 26) estimated the rate of detection 
of symptomatic cases of COVID-19 in France after lockdown and suggested school reopening 
scenarios using data coupled with mathematical transmission models. Mistry et al. (27) 
derived contact matrices to model virus spread and show that sub-national heterogeneities in 
human mixing patterns, however they employed ODE whereby theneglected the derived 
detailed household structures again. Also (22) derived contact patterns of UK adults before 
and during lockdowns from questionnaires. 

While certainly all of those models administer important information for decision processes 
during a pandemic, they still focus on population dynamics, i.e. the macroscopic view, and 
consider only specific aspects of the virus transmission process. In contrast, virus outbreaks 
are fundamentally non-linear, stochastic, and highly network-based. Additionally, the 
propagation between human individuals depends on the specific geospatial and 
demographical context. Consequently, quantitative assessment of non-linear integrative 
effects might be key to developing suitable intervention and vaccination strategies (6, 14, 28). 
To efficiently predict virus propagation on a more specific, not necessarily global level, we 
require heterogeneous models that take into account not only age cohorts and social activity 
levels but many other types of heterogeneities such as households (of different sizes) or 
different types of locations, like schools or workplaces (6). 

We developed a new integrative concept for modeling of virus spreading that focuses on 
individual virus transmission events in a defined community based on real-world data. To this 
end, we complement an expanded SIR model with information on heterogeneity in the 
population. The resulting GEoReferenced Demographic Agent-based (GERDA) model allows 
simulation of a multitude of consecutive and comparative scenarios providing locally specific 
information on infection hubs and a variety of population subgroups. Showing bimodal 
simulation outcomes for the same scenario proves GERDA’s capability to capture the 
stochasticity of the virus transmission process. Comparative simulations allowed us to 
evaluate the efficacy of different vaccination strategies. Finally, the ability to adapt simulation 
scenarios to the current situation in real-time, the potential applicability of the approach to any 
virus, and the capability to deal with various levels of detail for the different input data, render 
this approach highly valuable in the current but also in future pandemics.The model entities, 
parameters, and other important symbols used throughout this document are summarized in 
Table S1. 

 
Symbol Name Detail Property/Dependency Type Reference 

MW Modeled world Reflects real-world community/town, 
composed of locations and agents 

Custom Model object  

loc Location Container for agents with geographical 
coordinates, reflects, real-world building 
or open space 

workplaces, schools, public 
places, hospitals, morgue, and 
households or mixing location 

Model entity OpenStreetMap (OSM) 

 Agent Reflects human individual agent ID, home location, age, 
schedules, health state 

Model entity https://ergebnisse.zensu
s2011.de 

nloc Agents per 
location 

Number of agents present at a specific 
location at the same time 

Location type, location size, 
time, schedules 

Time dependent 
simulation output 

 

μ Global interaction 
frequency 

Mean interaction frequency of agents  Input parameter Wallinga et al., 2006 
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Pintab Interaction 
probability 

Interaction probability of two agents a 
and b per time step at specific location 

M, nloc, xa , xb and μ Emerging parameter  

M Interaction matrix Matrix coefficients specify the 
probability with which any pair of agents 
may interact at a given location and 
time (xi xj) 

Interactivity, schedule, location Emerging parameter  

kI Global infection Reflects the overall infectivity User dependent Input parameter  

Pinfab Infection 
probability 

Probability of an infected agent to 
transmit the virus to a susceptible 
interaction partner 

Age, infected agent time of 
infection 

Input parameter He et al., 2020 

Xij State transition Infected agents undergo various health 
state transitions reflecting disease 
progression until they either recover or 
die. Xij, Si!"!#j with Si, Sj being health 
(sub-)states 

Si health (sub-)states, state 
transition probabilities PXijt 

Model entity  

Pcij Cumulative 
transition 
probability 

Transition probability, with i, j being 
health (sub-)states. 

 Input Parameter RKI Factsheet; 
Karagiannidis et al., 2020 

PXijt, PXijT Transition 
probability 

Time and age dependent gaussian 
distributed transition probabilities with i, 
j being health (sub-)states and time t 

 Input Parameter  

pXijt, pXijT Conditional 
transition 
probability 

Time and age dependent conditional 
transition probabilities with i, j being 
health (sub-)states and time t 

 Input Parameter  

 Infectivity 
distribution 

Poisson distribution reflecting infection 
time dependent differences in infectivity 

Time of infection Input Parameter He, et al., 2020 

t, T Time Discrete time step (per hour)   Mossong et al., 2008 

S or S1 Susceptible Default state. Agents have never been 
subject to the infection and neither are 
immune to it 

Simulation, state transition 
probabilities 

Health state  

I or S2 Infected Comprise presymptomatic, 
asymptomatic and symptomatic infected 
individual 

Simulation, state transition 
probabilities 

Health state  

Id or S3 Diagnosed Recognized infections including the 
cases with or without symptoms, 
irrespective of how they were identified. 

Simulation, state transition 
probabilities 

Health (sub)state  

IdH or S4 Hospitalized Cases of moderate severity, 
hospitalization on the normal ward 

Simulation, state transition 
probabilities 

Health (sub)state  

IdICU or S5 In ICU Agents that need treatment in an 
intensive care unit comprising the 
critically severe cases 

Simulation, state transition 
probabilities 

Health (sub)state  

R or S6 Recovered Agents have survived an (either 
asymptomatic or symptomatic) 
infection, are not infectious anymore, 
and are considered immune 

Simulation, state transition 
probabilities 

Health state  

D or S7 Dead Condition of the agents that have not 
recovered from the infection and died 

Simulation, state transition 
probabilities 

Health state  
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 Regular 
schedules 

Regular behavior of agents. A schedule 
covers 7 days (168 hours). 

Age, occupation, health status Model entity  

 Specific 
schedules 

Schedules that determine agents 
(restricted) movements under defined 
circumstances. This comprises 
diagnosed, hospital schedule, death, 
non-pharmaceutical intervention 

Health status, non-
pharmaceutical interventions, 
locations, non-compliant 
probability 

Model entity  

xa Interactivity Probability for any agent a to interact 
with any other agent 

Custom Input parameter  

pinfab conditional 
probability for 
infection 
transmission 

Infection transmission probability given 
an interaction occurred between an 
infected agent a and a susceptible 
agent b 

Infectivity, infectivity distribution, 
time 

Input parameter  

IIa(t) Infectiousness Infectiousness of a given infected agent 
a at time t 

Time since infection, infectivity, 
infectivity distribution 

Emergent parameter  

floc Location-specific 
factor 

Represents the infection risk at specific 
location type loc 

Custom Input parameter  

yinf Specific 
transmission 
coefficient 

Specific coefficients for infected agent 
modulating the transmission probability 
between interacting agents 

Custom Input parameter  

ys Specific 
transmission 
coefficient 

Specific coefficients for susceptible 
agent modulating the transmission 
probability between interacting agents 

Custom Input parameter  

PSiT Remaining in 
state probability 

Probability for being in state Si until time 
T 

Probabilities to leave the state 
Si before T 

Emergent parameter  

Ptij Remaining in 
state probability 

Probability for staying in state Si at time 
t 

   

Ni age-resolved case 
numbers 

number of cases in an age group  Input Data RKI Factsheet 

μtij State transition 
mean time 

The probability for each state transition 
Xij is Gaussian distributed with mean at 
the reported or assumed average time t. 

 Input parameter an der Heiden & Buchholz 
2020 

σtij State transition 
standard deviation 
time 

The standard deviation of Gaussian 
distribution equals its mean 

 Input parameter  

PMF Probability mass 
function 

Function that gives the probability that a 
discrete random variable is exactly 
equal to some value. 

 Mathematical function  

pncomp Non-compliance 
probability 

Reflects (sub)population fraction not 
complying with non-pharmaceutical 
interventions 

Custom Input parameter  

ttrace Tracing time Time frame in which retrospective 
contact tracing takes place 

Custom Input parameter  

Table S1: Symbols and abbreviations reference table. Description and dependencies for the 
different model entities and calculations of this document. 
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2 Model Design 
To investigate the infection dynamics in a real-world community, e.g. Gangelt in Germany, a 
simulation environment is required that reflects local peculiarities, like amount and position of 
buildings and outdoor locations or size and demographic composition of the population. 
Furthermore, it is important to account for individual behavior of the members of the modeled 
population, like household interactions or (age-dependent) daily occupations. Finally, 
specifically in the context of an acute pandemic, the possibility to evaluate the effectiveness 
of non-pharmaceutical intervention strategies is required. Here, we provide a detailed 
documentation of the design and computational setup of GERDA, including a description of 
how we made use of external data and of the pipelines used to convert data into model input. 
Below, the design principles of GERDA are summarized, followed by sections about the 
parametrization and the computational analysis. 

The GERDA model has been designed with three main goals: i) Simulation and analysis of 
transmission events, e.g. SARS-CoV-2 virus transmissions; ii) Applicability to different 
communities/Consideration of local peculiarities for simulations; iii) Creation of a test 
environment for the effect of (non-pharmaceutical) interventions. Those goals directly translate 
into three major design principles: first, the agent-based modeling approach, second, easily 
exchangeable external data input files, and third, a strict separation of a) model initialization, 
b) model parameterization, and c) model simulations. Those principles have been consistently 
applied throughout the entire development process.  

The major object of GERDA is a so-called modeled world (MW) that provides the basic 
structure required to simulate virus propagation throughout the community. The MW is 
composed of locations (reflecting real-world buildings and outdoor spaces) and inhabited by 
agents (representing human individuals). To assure a realistic representation, locations and 
agents are initialized based on external input data and connected via households at model 
initialization. According to their schedules, agents visit locations at which they can interact with 
each other during a simulation. Upon interaction, an infection is potentially transmitted 
between individual agents. Infected agents can undergo various health state transitions 
reflecting disease progression until they either recover or die. 

2.1 Locations   

In the MW and throughout simulations, locations serve as containers for agents and, thereby, 
define the interaction topology in which agent-agent interactions and virus transmission take 
place. Hence, locations represent the spatial structure of the model. Every location is assigned 
to a predefined location type and has its spatial coordinates stored to allow distance-related 
distinction of locations for agents. Sets of locations in spatial proximity can be clustered into 
neighbourhoods to further structure the MW. An outstanding feature of GERDA is the 
possibility to generate locations on the basis of geographical data (Sec. 3.1) to reflect the 
interaction and infection dynamics of real world communities. Alternatively, locations can be 
generated according to alternative principles or arbitrarily for comparison with a randomized 
case.    

The assignment of locations into predefined location types allows agents to visit appropriate 
locations according to their specific daily or weekly routines. Furthermore, it provides the 
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possibility to adjust particular model parameters for a specific location type, for example when 
testing non-pharmaceutical intervention strategies applied only to schools. 

2.1.1 Location Types 

In the current version of GERDA, seven predefined location types are defined, i.e. workplaces, 
schools, public places, hospitals, morgue, homes and a mixing location, each with unique and 
common properties.   

Workplaces are locations which are regularly visited by the agents assigned to the group of 
employees during their schedule-defined work hours. The work place of an agent is chosen 
with a likelihood inverse to the spatial distance to the home assigned to that agent. Pure 
workplaces represent, for example, office buildings, farms, or factories. 

Public spaces can be visited throughout the day by all agents, which are not restricted 
otherwise (e.g. being in hospital). Additionally, they are assigned to a fraction of the agents 
representing employees as workplaces. The location type public space stands for a variety of 
different real world locations, such as parks, city halls, or restaurants. 

Schools are daily visited by underage agents throughout the weekdays and are assigned to 
teachers as location of work. A specific location of type school is chosen for each underage 
agent according to the least distance to its assigned home location. In the current version of 
GERDA, schools comprise among others: kindergartens, elementary schools and high 
schools. 

Hospitals are locations with two functions. On the one hand, they are assigned to medical 
personnel as workplaces and, on the other hand, they serve as containers for agents with 
severe or critical disease progression, i.e. being in the states IHd or IICU

d as explained below.  

Morgue is the unique location foreseen for “deceased” agents. This location is required to 
prevent non-realistic interactions with agents of that status while keeping  the agent number 
of the MW constant. At least one hospital and one morgue are required in any MW to assure 
functionality of the model, and they are automatically added if they are not present in the  
modeled community.  

Home is the location type, which serves as a reference location for each modeled agent. Each 
agent is assigned to only one home, but one location of type home can serve as reference to 
more than one agent. Agents with the same home are referred to as one household.  

The mixing location is an artificially introduced unique location. It is not required for real-world-
related simulations, but is used to compare with simulations of a homogeneously mixed world.  

 

2.2 Agents 

The population of the MW consists of agents representing human individuals. The population 
can not be set independently but instead results from the number of created locations of type 
home, i.e. the households. Based on the number of households and the demographic input 
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data (described 3.2), the model generates a population of agents which represents realistic 
distributions of ages and household sizes. 

2.2.1 Agent Properties 

Through the household initialization process, each agent obtains an age in years and an age-
related occupation. Occupations resemble child/student for younger agents, employees in 
middle ages, and pensioners for older agents (more details below). Each agent is uniquely 
identifiable by an ID. 

Agents have two major properties that define their potential operations: a weekly schedule 
and a health state. The schedule specifies the agent’s time-dependent presence at locations 
and, thereby its potential to interact with other agents and become infected. The health state 
can change depending on interactions with infected individuals or during the disease 
progression. It modifies the potential operations of the agent leading to altered schedules. 
GERDA includes four main health states, namely susceptible (S), infected (I), recovered (R), 
and dead (D) with the default health state S (Figure S1). 

 

Figure S1: Health states and potential transitions. Agents can be susceptible (S), infected (I), 
recovered (R), or dead (D). The group of infected agents comprises the presymptomatic or 
asymptomatic infected (plain I), the diagnosed infected (Id), the hospitalized infected (IdH) and the 
infected requiring intensive care unit (IdICU). The transitions indicated by solid arrows are implemented, 
the transitions indicated by dotted arrows are foreseen, but not used in the current simulations 
(probabilities set to zero). 

Below, we describe first the schedules and the resulting potential interactions between agents. 
Then, we introduce the infection transmission process, which links the concept of schedules 
and locations with the concept of health states. Eventually, we explain the considered health 
states and transitions between them in detail.  
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2.2.2 Agent Operations - Schedules and Occupation 

Every agent has a weekly schedule, which is assigned based on age and a given schedule 
distribution for the corresponding age group during agent initialization. This schedule 
determines the locations visited by the agent over the period of one week in an hourly 
resolution. Different agent subgroups share a certain schedule type, i.e. their schedules 
comprise the same location types, but differ in the exact location and the exact times of 
movement. These subgroups are underage, working adult, teacher, medical professional, 
public worker and pensioner and reflect the occupation of an agent. Each subgroup consists 
of a fraction of people within a specific age section (0-17: underage; 18-66: working adults, 
teachers, medical professionals, public workers; 67+: pensioners). The schedules are 
designed in a way that every agent spends some time at its home (typically the nights). During 
the day, underaged visit schools and (working) adults visit workplaces. Teachers, medical 
professionals or public workers, visit schools, hospitals, and public places in a comparable 
regular fashion, respectively. All agents occasionally visit public places during weekdays and 
more extensively on weekends.  

In addition to the regular schedule, all agents share the so-called specific schedules that 
determine their (restricted) movements under defined circumstances, in the model usually 
represented by defined health (sub-)states, such as a diagnosed schedule, a hospital 
schedule, and a death schedule (see Figure S3). These schedules constantly assign the 
corresponding agent to a single location, i.e. either the agent’s home, a hospital or the morgue, 
as long as the agent's state is Id (diagnosed), IdH (hospitalized), IdICU (in ICU) or D (dead), 
respectively. The only exception to this are non-compliant agents, who refuse to stay at home 
when they are diagnosed (Id), but keep on following their regular schedule instead of a 
diagnosed schedule. Examples for schedules are given in section 3.3.2. 

During a simulation, one schedule, by default the regular schedule, is set to active. The agents 
follow their active weekly schedules in the exact same way every week. The active schedule 
is changed to a specific schedule when an agent changes its health state. When non-
pharmaceutical measures (e.g. lockdown) are requested (for all agents or a subgroup of 
agents), the schedules get modified accordingly for the duration of the implemented measures, 
i.e. such that agents stay in their respective homes, instead of visiting specified location types. 

The schedules are the basis of the agents’ interaction network. It is important to note that while 
agents visit the same locations at the same time each week, they possibly interact with 
different other agents on each visit. The interaction network is the basis for potential infection 
transmission resulting in the agent’s health state transitions over time. As stated above, health 
state transitions can feed back into schedule activation (principles illustrated in Figure S2). 
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Figure S2 - Schedule assignment and modification. Agents have an active schedule at any time. By 
default, this is the regular schedule, which can be changed upon health state transition or application 
of non-pharmaceutical interventions. While regular schedules differ between agents, diagnosed, 
hospitalized, and dead schedules are specific schedules that place an agent 24/7 at home, in the 
hospital, or on the morgue, respectively. For non-compliant agents, the mitigation or lockdown 
schedules can be set equal to their regular schedule. 

2.2.3 Motion Between Locations According to Schedules 

During a simulation, each agent sequentially visits different locations, defined by its schedule. 
The resolution for location changes is per hour, in consistency with (29) which showed that 
70% of the social contacts last an hour or more . Several agents can visit the same location 
at the same time (Figure S3). This spatio-temporal overlap of agents creates their network of 
possible interactions and it further facilitates the network for infection spreading.  

 

Figure S3: Schematic representation of agents visiting locations at different times t. At time t, six 
susceptible agents are at location #23 and one susceptible and one infected at location #9. In the next 
time step (t+1), one susceptible agent from location#23 and the infected agent from location #9 move 
to location #341. Here, they interact and transmit the infection. At time t+2, the newly infected agent 
moves back to location #23, while the first infected agent continues to location #101. Two other infected 
agents have moved to location #23 between times t and t+2. 
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2.2.4 Agent-agent Interactions  

During a simulation, all agents with spatio-temporal overlap, i.e. being at the same location at 
the same time step, have the possibility to interact with each other. Interacting pairs are 
determined, regardless of their health state, by a stochastic process. Each of the nloc agents 
in a location loc at time t has the possibility to interact with each of the nloc-1 other agents with 
a given probability. We define a global interaction frequency 𝜇. Due to the stochastic nature 
of the interaction mechanism, some agents have more than the expected number of 
interactions while others do not have any. 

 

Figure S4: Schematic representation of agent-agent interactions. Left: Each agent has a certain 
probability to interact with each other agent having spatio-temporal overlap. Right: realized interactions. 

The probability for any agent	𝑎 to interact with any other agent 𝑏	 in the same location is 
dependent on their specific interactivities	𝑥& and	𝑥', the global interaction parameter 𝜇	and 
the number of agents per location 𝑛)*+ = 𝑛)*+(𝑡) (where 𝑛)*+ ≥ 	2	 in order to enable an 
interaction). 

Equation (1) defines the interaction probability 𝑃&'345	of two agents 𝑎 and 𝑏 per time step (at 
specific location):  

𝑃&'345 =
𝑀𝑖𝑛𝑖𝑚𝑢𝑚(𝑛)*+ − 1, 𝑥&𝑥'𝜇)

𝑛)*+ − 1
 

Equation (1) 

This interaction probability is calculated for all potential pairs of agents present at the same 
time at the same location. The interaction is realized if a random number between 0 and 1 is 
smaller than the interaction probability. 

Specific interactivities of agents,𝑥&, are set to 1 as default value, but can be set differently to 
reflect specific individual behavior (e.g. socially active or shy individuals). 

The global interaction frequency 𝜇 is the expected number of interactions per time step for 
sufficiently occupied locations and 𝑥& = 𝑥' = 1. The realized number of interactions depends 
on the number of agents currently present at the specified location. Since an agent can 
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maximally interact with nloc- 1 other agents at any given time, the real mean of interactions 
may be lower than 𝜇, if nloc- 1 is smaller than 𝜇. 

2.2.5 Infection Transmission 

𝑃&'
34=(𝑡, 𝑙𝑜𝑐)is	the probability for the infection transmission from agent 𝑎	to	agent 𝑏	at location 
𝑙𝑜𝑐, where t		denotes the infection duration of agent 𝑎	in hours. 

Given an interaction occurred between an infected agent 𝑎 and a susceptible agent 𝑏, the 
conditional probability for infection transmission is defined as: 

𝑝&'
34= = 𝑝&'

34=(𝑡, 𝑙𝑜𝑐) = 𝑀𝑖𝑛𝑖𝑚𝑢𝑚F1,𝑘H ∙ 𝐼&H (𝑡)K	

Equation (2) 

with 𝐼&H (𝑡)	being the infectiousness of the infected agent and 𝑘H	 a	globally fitted infection 
parameter. The approach can be extended such that parameter	𝑘His		

𝑘H = 𝑘HF𝑦&
34=, 𝑦'

34=, 𝑓)*+K	

Equation (3)	

where 𝑓)*+	 is a location-specific factor representing the infection risk at different types of 
locations (offices, hospital, outside areas) and 𝑦34= presents specific coefficients for the 
interacting agents modulating the transmission probability (e.g. representing protective gear). 

Hence, the probability for the infection to get transmitted from agent 𝑎 to agent 𝑏 at location 
𝑙𝑜𝑐	and	at time 𝑡 is the product of the conditional probability for the infection transmission and 
the probability for an interaction to occur, 

𝑃&'
34= = 𝑝&'

34= ∙ 𝑃&'345 . 

Equation (4) 

Values for the infection-duration dependent infectiousness 𝐼&H (𝑡) are given in section 3.5 and 
Table S26 (E).  

2.2.6 Health States  

As mentioned above, agents can assume different health states, namely susceptible (S), 
infected (I), recovered (R), and dead (D) with the default health state S. In the previous section, 
we described the infection transmission, i.e. the transition from state susceptible to state 
infected (see Figure S1). Here, we provide more details about the infected substates and 
about transitions between all health states.  

The four major health states (S,I,R,D) specify the epidemiological conditions of the agents. 
They are the basis for simulating virus infection progression in the modeled population and to 
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analyze transmission chains on individual level. In order to cover disease progression for 
individual agents more precisely, the infected state is divided into four sub-states that can be 
associated with severity of progression and are described in detail below. In summary, this 
gives us seven distinguishable health states (see Figure S1), of which the four representing 
different infected states are transient, i.e., no agent can remain infected infinitely. Agent 
behavior is influenced by the health state: Being susceptible or infected without diagnosis, an 
agent follows its regular schedule while upon infection diagnosis the diagnosis schedule gets 
activated.  

Susceptible agents have never been subject to the infection and neither are immune to it. 
They can become infected based on an interaction with an infected agent. They follow their 
regular schedule. 

Recovered agents have survived an (either asymptomatic or symptomatic) infection, are not 
infectious anymore, and are considered immune. The model allows for loss of immunity by a 
transition from state R to state S, in order to account for the latest discussions about potential 
SARS-Cov2 antibody loss. However, this transition is disabled in the presented study (by 
parameterization with zero), due to lack of sufficient evidence.  

Infected agents comprise presymptomatic, asymptomatic, and symptomatic infected 
individuals. In order to specify and distinguish between different types of severity of the 
infection, various attributes are associated with the different substates of the infection. Those 
attributes affect agent behavior, e.g. by activating the diagnosed schedule, and ultimately 
reflect the information available during a real-world pandemic. The plain infected state (I) 
represents the unrecognized cases, i.e. the vast majority of presymptomatic or asymptomatic 
cases. The diagnosed state (Id) represents the recognized infections including cases with or 
without symptoms, irrespective of how they were identified. These diagnosed cases may 
escalate towards two subsequent stages of severity. These are either hospitalization on the 
normal ward for cases of moderate severity (IdH) or the treatment in an intensive care unit 
(ICU) for the critically severe cases (IdICU). 

Due to parameterization (as explained in section 3.4), all infected states are transient. 

Infected individuals have a probability to either recover or to die. Birth and death processes of 
the susceptible or recovered states are neglected in the current version of the model.  

Dead agents are assigned to the morgue. 

Throughout the manuscript and simulations, we use the following color code: susceptible – 
blue, recovered – green, infected – red, dead – black. In addition, for the subgroups of infected 
holds: diagnosed – orange, hospitalized – brown, in ICU – magenta (compare Figure S1). 

Formally, we will refer to the states 𝑆3, 𝑖 = 1, . . ,7. The assignment of states to numbers is 
given in Table S2. 

State S  I  Id IdH IdICU R D 

Symbol 𝑆R 𝑆S 𝑆T 𝑆U 𝑆V 𝑆W 𝑆X 



16 

Table S2: Numbering of health states for formal analyses. 

 

2.2.7 Health State Transitions 

At each time step, an infected agent can either remain in its current state, progress to another 
infected state, recover, or die (Figure S1 and Table S3). This is determined by a discrete 
stochastic decision process, based on the respective probabilities given in Tables S26 (A-E), 
which is detailed in section 3.4. 

 𝑆R 𝑆S 𝑆T 𝑆U 𝑆V 𝑆W 𝑆X 

𝑆R	 𝑋RR 𝑋RS 0 0 0 0 0 

𝑆S 0 𝑋SS 𝑋ST 0 0 𝑋SW 𝑋SX 

𝑆T 0 0 𝑋TT 𝑋TU 0 𝑋TW 𝑋TX 

𝑆U 0 0 0 𝑋UU 𝑋UV 𝑋UW 𝑋UX 

𝑆V 0 0 0 0 𝑋VV 𝑋VW 𝑋VX 

𝑆W 𝑋WR 0 0 0 0 𝑋WW 0 

𝑆X 0 0 0 0 0 0 𝑋XX 

Table S3: Possible Transitions Xij in agreement with the network shown in Figure S1. 

Formally, we will refer to the allowed state transitions by 𝑋3[  with	 𝑖, 𝑗 = 1, . . ,7,	as	shown in 
Table S3. In order to determine whether a health state transition occurs, we used the following 
probabilities: 

𝑃3]^ is the probability for being in state 𝑆3  at time 𝑇. 

𝑃3[+ 	is the cumulative probability for transition from 𝑆3  to  𝑆[  (total probability). 

𝑃3[5` 	is the probability for transition from 𝑆3  to  𝑆[  (per time step).   
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 𝑝3[5` 	is the conditional probability for transition from 𝑆3  to  𝑆[  (per time step).  

Together with the transition from susceptible to infected, we consider in total 13 potential 
transitions in the model, as listed below together with the respective probabilities: 

 

State Transition Symbol transition probability 

#!"!$ 𝑋RS 𝑝RS5`  

I!"!Id 𝑋ST 𝑝ST5`  

I!"!R 𝑋SW 𝑝SW5`  

I!"!D 𝑋SX 𝑝SX5`  

Id!"IdH 𝑋TU 𝑝TU5`  

Id"!R 𝑋TW 𝑝TW5`  

Id"!D 𝑋TX 𝑝TX5`  

IdH"!IdICU  𝑋UV 𝑝UV5`  

IdH!"!R 𝑋UW 𝑝UW5`  

IdH!"!D 𝑋UX 𝑝UX5`  
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IdICU!"!R 𝑋VW 𝑝VW5`  

IdICU!"!D 𝑋VX 𝑝VX5`  

R " S 𝑋WR 𝑝WR5`  

Table S4: Health state transitions and the respective cumulative transition probabilities. 

Considering all possible state transitions 𝑋3[to change from state 𝑆3 to 𝑆[,the probability for 
each transition then is given by: 

𝑃3[]` 	= 	𝑃	(𝑋3[, 𝑇) = 𝑃(𝑋3[, 𝑇	|	𝑋33, 𝑡	 = 	1, . . . , 𝑇 − 	1) ⋅ 𝑃(𝑋33, 𝑡		 = 	1, . . . , 𝑇 − 	1), 

Equation (5) 

where the probability (𝑃3]^ )	to remain in the state 𝑆3 	until time T is one minus the sum of the 
probabilities to leave the state before T: 

	𝑃𝑖𝑇𝑆 = 	𝑃(𝑋33, 𝑡		 = 	1, . . . , 𝑇 − 	1) 	= 	1 − ∑𝑇−1𝑡=1 ∑𝑛𝑆𝑗=1 𝑃𝑖𝑗𝑡𝑋 . 

Equation (6) 

 We now can rewrite the Equation (5)  for the state transition at time 𝑇 	to:	

𝑃3[]` = 𝑝3[]` ∙ 𝑃3]^ .	

Equation (7) 

Hence the required conditional probability for a state transition at each time step used in the 
GERDA-model follows as . 

𝑝3[]` =
efgh
i

efh
j =

efgh
i

Rk∑hlmnom ∑pjgom efgn
i , 

Equation (8) 

which is the required conditional probability for a state transition at each time step used in the 
GERDA-model. 

The derivation of numerical values for the transition probabilities from published data is 
detailed in Sec 3.4.2.  
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3 Model Initialization and Data Integration 

The model is initialized in three steps: 

(i) Locations are initialized either from real geographical data (default) or arbitrarily (for 
alternative scenarios or as randomized comparison). The location type home defines the 
number of households. 

(ii) Households are initialized based on data of German zensus assigning household types to 
all home locations (1:1 ratio) and defining a respective number of household members (1:n 
ratio). Households are only relevant for initialization; they are not stored as simulation objects. 

(iii) Agents are initialized according to households and with a number of attributes that either 
depend on their household membership or on additional data. Agents obtain an occupation 
and a weekly schedule that is related to their occupation. 

Underlying data and details are explained below. Details of code are described in GitLab. 

 

3.1 Location Initialization 

3.1.1 Principles of Location Initialization 

The initial step in GERDA is the generation of an in silico representation of the real-world 
community of interest through the creation of distinct locations. These locations define the 
space in which the agents can interact, and, in addition, the size of the agent population as 
described in Sec. 2.2 and further explained below in Sec. 3.2.  

In general, locations are initialized from an input data file (see Sec. 3.1.2) specifying the floor 
area, the geographical coordinates and, if appropriate, the neighborhood identifier of that 
location. The input data contains further annotations of each building in one of the following 
annotation categories: building, amenity, shop, leisure, sport or healthcare. According to these 
annotations, each building is assigned a specific location type as introduced in Sec. 2.1. For 
the municipalities Heinsberg and Gangelt an assignment table (Table S5) was created which 
ought to  be extended, when including further geolocations. 

If a building is not annotated otherwise, its location type is set to home during initialization. 
Further if any of the two required locations, morgue or hospital, are not assigned to at least 
one location, they are added as an initialized location at the border of the generated world. 
Alternatively to the described procedure, one location called mixing location is initialized to 
allow for comparison with non-localized agent based models. 
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location type resp. specific annotations annotation category 

workplace industria, greenhouse, cowshed, shed, commercial, 
warehouse, office, farm, fire station, farm auxiliary, 
retail 

 

public place public, chapel, church, parish hall, townhall, 
restaurant, grocery store, cafe, sports centre 

leisure, sport 

school school, university, kindergarten  

hospital   healthcare 

morgue - - 

home residential building   

excluded 
building garage, roof, shed, bungalow, silo, barn  

Table S5. Location type assignment. All initialized buildings are assigned one location type, if 
applicable, according to the distinct annotation category and, otherwise, according to a specific 
annotation.   

 

3.1.2 Data used for Location Initialization 

To generate the geospatial maps, we utilized OpenStreetMap (OSM), an editable map 
database built and maintained by volunteers, distributed under the Open Data Commons 
Open Database License, and available from https://www.openstreetmap.org. OSM data 
retrieval is facilitated by the OSMnx package for python (30) and was integrated generically. 
Using the OSM addresses of sufficiently annotated administrative regions, such as the 
community Gangelt, data on area, street network, and buildings is downloaded. Area and 
street network data is used for visualization purposes only. All retrieved buildings of the 
community of interest, whose  floor area is above a predefined threshold, are considered as 
locations in the model. Thresholding is necessary since not all buildings in the OSM database 
are sufficiently large to be considered a location with respect to our model categories. The 
building data is cropped to those relevant to determine the building functionality and extended 
by a manually curated neighborhood identifier to subdivide locations in functional clusters.   

 

3.2 Household Initialization 

3.2.1 Principles of Household/Population Initialization 

To create a realistic population, the agents of a MW are initialized based on the concept of 
households. By iterating over all locations of type home and assigning them a household type 
and size from a data-based distribution, a respective number of agents is initialized. Each 
agent belongs to a unique household. This way, we create a reasonable demographic as well 
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as a family structure of the agent population. Several agent properties depend directly on the 
agent’s household, while further properties are added consecutively. The data that was used 
for agent initialization and the dependencies of agent properties on that data and on each 
other are detailed in the following subsections.  

 

3.2.2 Data for Household Initialization 

For the definition of households, we used data from the German Zensus 2011 database that 
is available online (https://ergebnisse.zensus2011.de). The data can be obtained either in form 
of predefined tables (https://ergebnisse.zensus2011.de/#StaticContent:00,,,) or by specifying 
the combination of desired information in the dynamic table section 
(https://ergebnisse.zensus2011.de/#dynTable:). If not specified otherwise, the tables in this 
subsection were predefined. To use the latest age distribution, the age distribution for the 
German population of 2020 was integrated from 
(https://service.destatis.de/bevoelkerungspyramide). All data described in this subsection has 
been released by the German government and details on data collection and processing are 
described at the given webpage for each table. Tables S6 to S12 listed below are available 
in our separate Supplementary Tables file. 

● Table S6: Household type frequencies. Absolute and relative frequencies of 
household/family types in Germany. The table content has been translated to English, original 
German content is kept in brackets and small font to allow comparison with the original source. 

https://ergebnisse.zensus2011.de/#StaticContent:00,BEG_3_1,m,table 

● Table S7: Absolute distribution of households according to type and size. Original 
information obtained from German Federal Government by using the dynamic table section of 
the Zensus 2011 database. The table content has been translated to English, original German 
content is kept in brackets and small font to allow comparison with the original source. 

https://ergebnisse.zensus2011.de/#dynTable:statUnit=HAUSHALT;absRel=ANZAHL;
ags=00;agsAxis=X;xAxis=HHGROESS_KLASS;yAxis=HHTYP_FAM 

● Table S8: Age distributions per household type. Total number of people in each age range 
(11 groups) per household type. The table content has been translated to English, original 
German content is kept in brackets and small font to allow comparison with the original source. 
As there was no specific information provided concerning the underage members of couples 
without kids and they only compose a very minor fraction of the population (<0.1%), we omitted 
the numbers grayed out. 

https://ergebnisse.zensus2011.de/#StaticContent:00,BEV_10_25,m,table 

● Table S9: Current age distribution in Germany. This table was extracted from the 
'Bevölkerungspyramide' (i.e. ‘age pyramide’) and shows the complete age distribution of the 
German population for 2020. 

https://service.destatis.de/bevoelkerungspyramide/#!y=2020 



22 

According to our concept to initialize the modeled population based on available home 
locations, the household data used is based on occupied flats/houses and not on families. The 
GERDA model in its current version allows five household types: Single person household, 
couple without kids, couple with kid(s), single parent household, and multi-person household 
without nuclear family. Household sizes range from one to six agents, with bigger households 
being included in size category ‘6+’ in the data. For sake of simplicity, a few assumptions have 
been made when integrating the data. Household types that compose a minor fraction of the 
population have been included within the five types introduced above. E.g. couples without 
kids can only have a household size of two, thereby omitting specific households like 
grandparents with children. The omitted special cases as well as multi-generation households 
are included in the household category multi-person households without nuclear family. An 
algorithm was created to combine the above described data into probability distributions from 
which the number of agents per household and ages of the resulting household members are 
drawn. It is outlined below. The distributions used for GERDA simulation are listed below:  

● Table S10: Relative household type distribution. Calculated from Table S6. 
● Table S11: Relative household size distribution. Household-type-dependent; calculated 

from Table S7. For simplicity in implementing household initialization, the household type 
‘couples without kids’ can only be of size 2, thereby ignoring very specific family types, such as 
grandparents with a kid. Those ignored family types compose about 1.6% of the total 
population. Used as input for GERDA simulation. 

● Table S12: Relative age distribution per household type. Calculated from Tables S8 and 
S9. 

3.2.2.1 Algorithm 

For household initialization, the probabilistic relative distributions obtained from the tables 
introduced above are used in the following order: First, the household type is sampled (Table 
S10). Second, the household size is sampled in a household-type dependent manner (Table 
S11). Finally, the age(s) of the agents living in the household (number of agents = household 
size) are sampled. This last step is achieved using a probabilistic distribution based on 
mapping the real distribution of ages in Germany 2020 (Table S9) as weights to the household 
type age distribution (Table S8). This results in the calculation of the relative age-dependent 
frequencies for each household-type (0-99 years) (Table S12). 

As a result, agents are initialized with a unique ID, a home location, and an age. Age 
assignment of all agents of a household is accomplished in a household type-dependent 
manner: i) If the household contains kids (couple with kids or single parent household), the 
algorithm starts sampling the kid(s) (number of kids = n-2 or n-1, respectively), and then the 
parent(s) age(s) are sampled from a shifted normal distribution depending on the age of the 
eldest kid. The age-offset for kids, i.e. their maximum age, is set to 30 years. The sampling of 
sibling(s) is made by a shifted normal distribution, assuming on average an age difference of 
3 years and a standard deviation of 1.5 years. To avoid negative ages, absolute values are 
taken. ii) In case of a couple without kids, the first member is sampled and the generated age 
of this member is used to make a normal distribution with a standard deviation of 1/10 of this 
age. The age of the second member is obtained based on the aforementioned normal 
distribution. iii) In the rest of the cases the age is obtained by the corresponding probability 
distribution of ages per household type. 
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The output of the algorithm provides a household with type, size, and ages of the respective 
number of household members for each home location.  

 

3.3 Agent Initialization 

3.3.1 Principles of Agent Initialization 

For each member of a household, an agent is initialized with a unique ID, the household’s 
location as home location, a household-dependent age, and, by default, the health state 
susceptible. Based on its age a schedule is created for this agent that also defines the 
occupation. This schedule determines the agent’s movement during a simulation. The details 
about schedule creation during model initialization are described in the following subsection.  

The subsequent subsection outlines the optional possibility to set an agent’s health state to 
infected upon initialization. 

 

3.3.2 Schedule Generation for Agents 

Schedules are created individually for each agent during agent initialization. The age and the 
home location of an agent are required to create its regular schedule. To this end, an input 
table that defines the possible schedule types has to be provided. Conceptually, there is no 
limit to the number of possible schedules that can be defined in the input table. Instructions 
on how such a table can be set up are given in the GitLab repository (https://tbp-
klipp.science/GERDA-model/). The predefined schedules are specific for different age 
categories, such that typical occupations for people of different ages can be accounted for. 
Within each age category, a set of possible schedules and their proportion are defined. The 
proportion reflects the fraction of people in the corresponding age category that should follow 
the respective schedule. Thereby, each schedule belongs to a type that is defined in the input 
table. This type does not have to be exclusive, so there can be many schedules of type medical 
professionals, for example, reflecting agents with the same occupation, but different shifts or 
free time habits.  

For each agent, the regular schedule is drawn from the set of schedules within its age 
category. The mentioned proportions serve as probabilities for each schedule to be drawn. By 
definition, a schedule covers 7 days (168 hours), to allow for differences in agent movements 
and localizations between different days, e.g. during work days and weekends. The schedules 
contain a list of times (hours of the week) or time spans with a resolution of one hour and a 
list of location types. The times determine the hours of the week at which the agent moves 
from its current location to the next. If a time span is provided, the exact time for the movement 
is drawn from a uniform distribution within the time span. When the exact times are defined, 
the agent gets assigned a set of explicit locations. For each location type in the schedule an 
explicit location of the corresponding type is drawn with a probability linearly decreasing with 
their relative distance to the agent’s home location. Relative distance means that all existing 
locations of this type are ranked by their distance to the home location, such that only the 
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order of distances and not the real geographical distance is of importance. If there are several 
locations of the same type in a schedule, they are denoted with a number (e.g. public 1, public 
2). For each number, a different location of this type is drawn that stays associated with this 
number for this agent. For example, public 1 is always the same location of type public 
whenever it appears in the agent’s schedule. Now all the exact times and locations are set for 
this agent, representing its regular schedule.  

During the simulation, the agent can, instead of the regular schedule, get assigned a 
diagnosed or hospitalized schedule, respectively. The diagnosed schedule reflects quarantine 
rules, i.e. the agent has to stay at home. In case of non-compliance, the agent continues to 
follow its regular schedule. With a hospitalized schedule, the agent stays in the hospital.   

Each agent has an active schedule at each time that specifies its movements between 
locations over time. Table S13 shows three typical regular schedules of different types and 
one diagnosed schedule. Figure S5 shows a snapshot of the complete input table for 
schedules to be drawn from, which is available in the additional file for Supplementary 
Tables, Table S14. For detailed information about creation of schedules, please refer to  
https://tbp-klipp.science/GERDA-model/schedule. 

schedule 
type 

 
pensioner   

working adult   
underage   

diagnosed 

time, h 
( week) location  time location  time location  time location 

 0 home  0 home  0 home  0 home 

 10 public 1  8 work  7 school  9 home 

 11 home  16 public 1  15 public 1  14 home 

 36 public 2  18 home  18 home  19 home 

 37 home  32 work  32 school  33 home 

 55 public 3  40 public 2  39 public 2  38 home 

 56 home  42 home  44 home  43 home 

 82 public 1  56 work  56 school  57 home 

 85 home  64 public 3  62 public 3  62 home 

 112 public 3  65 home  68 home  67 home 

 113 home  80 work  80 school  81 home 

 127 public 2  88 public 1  85 public 1  86 home 

 128 home  89 home  93 home  91 home 

 156 public 4  104 work  104 school  105 home 

 157 home  112 public 3  110 public 3  110 home 

    114 home  115 home  115 home 

    133 public 4  132 public 4  129 home 

    138 home  138 home  134 home 
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    154 public 5  155 public 5  139 home 

    163 home  162 home  153 home 

          158 home 

          163 home 

Table S13. Example schedules. Agent-specific schedules with fixed hours, possibly ranging from 0 to 
167 hours (over the course of a week) defining the agents’ movements during a simulation.  

 

Figure S5: Snapshot of the schedule input table. The possible schedules are defined by an input 
table that determines age categories and different schedule versions within each category that reflect 
typical schedules for different occupations. The corresponding complete Table S14 is found in the 
additional Supplementary Tables file, detailed instructions on schedule creation are found at  
https://tbp-klipp.science/GERDA-model/schedule. 

 

3.4 Health State Transitions 

3.4.1 Principles 

As introduced in section 2.2.6, in the GERDA-model agents can assume four main different 
health states: susceptible S, infected I, recovered R or dead D (Figure S1, Table S2). Once 
infected, an agent can successively assume four different infection sub-states: The (a-
/presymptomatic) infected I can possibly become diagnosed Id, subsequently hospitalized IdH, 
and further referred to ICU IdICU. Alternatively, the infected agent - generally from all of its 
different sub-states - can recover (transition to state R) or die (transition to state D) (Table 
S3). 

Because all state transitions are irreversible (compare unidirectional arrows in Figure S1), this 
leads to a total number of thirteen possible health state transitions. However, due to the lack 
of sufficient data on reinfection with SARS-CoV-2 when already having recovered from it, 
represented by state transition X61, loss of immunity is not considered in the presented GERDA 
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model. This is technically achieved by setting the respective cumulative state transition 
probability 𝑃WR+  to zero. Furthermore, we exclude cases of dying from COVID-19 without being 
recognized, assuming that any deceased gets tested and a positively tested deceased is 
counted as COVID-19-related death. The cumulative probability 𝑃XS+  of the corresponding state 
transition X72 is set to zero. Transitions with probability zero are depicted by dotted arrows in 
Figure S1 and omitted in the tables of the following subsections. 

For the remaining eleven state transitions, simulation of GERDA requires not only cumulative 
state transition probabilities 𝑃3[+  (i.e. how likely is it that a diagnosed individual has to got to 
hospital), but hourly resolved conditional transition probabilities 𝑝3[5`  for transition from state	i	
to state	j	at time	t.  These probabilities depend on the duration of the infection and the time 
being in the current state, respectively. These probabilities also depend on the age of the 
agent. The following subsections outline how data from different sources have been combined, 
complemented with educated guesses, and processed to calculate those conditional hourly 
probabilities 𝑝3[5`  for all state transitions and different age groups. 

 

3.4.2 Input Data for Health State Transition Rates 

If referenced by RKI Factsheet, we refer to the weekly status report of the Robert-Koch-
Institute (RKI) from the 14th of March 2020 (31). From this factsheet, we extracted information 
related to COVID-19 provided in Tables S15, S16, S17 given in the separate file 
Supplementary Tables:  

● Table S15: Reported COVID-19 cases. Source: RKI Factsheet (31). 201 cases have been 
omitted due to lacking age information. For the remaining cases we calculated the total number 
(age group 'all'). 

● Table S16: Deceased COVID-19 cases. Source: RKI Factsheet (31). Six cases were omitted 
due to incomplete information. For the rest we calculated the gender-independent numbers 
(column 'total') and the overall cases (age group 'all'). 

● Table S17: Hospitalization information for COVID-19 cases. Source: RKI Factsheet (31). 

Age distributions not included in the RKI Factsheet have been taken from (32).  

● Table S18: Age group dependent information on hospitalization and referral to ICU. 
Source: (32).  

German Census data is used to determine the demography of our susceptible model 
population (state S1) and, due to lack of age-dependent data on infection probability, also for 
infected agents (state S2). 

● Table S19: Demography Germany 2011. Source: German Zensus 2011 database.  

To estimate the diagnosis probability (𝑃ST+ ), we used the homepage of the municipality Gangelt 
(https://www.gangelt.de/news/226-erster-corona-fall-in-nrw) and an early report about 
COVID-19 dynamics in Gangelt from (33). Gangelt, a small town in the district of Heinsberg, 
was one of the first ‘Corona hotspots’ in Germany, where a lot of residents got infected during 
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a large carnival event (“Kappensitzung”, Feb 15, 2020). Being of high interest for the 
understanding of SARS-CoV-2 and COVID-19, the entire population of Gangelt got tested, 
giving rise to the usually unknown dark number of infected individuals and, subsequently, the 
total diagnosis probability including not only symptomatic but also cases diagnosed based on 
contact information.  

The usage of the above introduced data, the required assumptions, and the calculations 
applied to ultimately obtain age-dependent conditional probabilities 𝑝3[5`  for all possible state 
transitions Xij between states 𝑆3 and 𝑆[ per time step t are outlined in the following subsections. 

 

3.4.3 Probability Calculations 

3.4.3.1 Age-independent state transition probabilities 

In section 2.2.7, we explained how to calculate cumulative and time-dependent conditional 
probabilities for the transitions between different states. Here and below, we outline how to 
convert input data with different levels of detail into the input information for the state transition 
probabilities required for GERDA simulation.  

First, we extracted the age-independent cumulative state transition probability 𝑃3[+  from the 
data listed in section 3.4.2. For the cases released from ICU, we know exactly how many have 
been discharged alive and how many dead, resulting in 𝑃VW+  and 𝑃VX+ . For cases with 
hospitalization information, we know how many are hospitalized (resulting in 𝑃TU+ ) and how 
many of them are referred to ICU (resulting in 𝑃UV+ ). For specific transitions, namely, we can 
derive the probabilities directly from the available data as follows.  

Since we know how many people died out of all reported cases (see Table S16) and how 
many are released dead from ICU (IdICU"%&!𝑋VX) we can infer the total number of people that 

died either in hospital (IdH"%&𝑋UX) or somewhere else (Id"%&𝑋TX). However, we do not know 
the exact numbers for these two state transitions separately. We assume that people with 
more severe symptoms are people with a more severe disease progression. Those people 
are more likely to be referred to hospital, and more likely to die. Consequently, it should be 
more likely to die from state IdH than from state Id. For lack of other information, we assumed 
that 90% of the deaths not occuring in ICU occur in hospitals. For the given numbers, this 
results in 1657 people who died in hospital but not in ICU and 184 people who died elsewhere. 
The number of reported cases serves as the reference group for the 184 people who died 
elsewhere and by knowing the probability to get hospitalized, we can calculate the reference 
group for the 1657 people who died in hospital, i.e. the number of people referred to hospital 
assuming hospitalization information for all reported cases. This allows to calculate the 
respective cumulative state transition probabilities 𝑃TX+  and 𝑃UX+ . 

The probability to get diagnosed (𝑃ST+ ) was inferred from two different sources, a report from 
(33) and the Gangelt homepage (https://www.gangelt.de/news/226- erster-corona-fall-in-nrw). 
Assuming further that nobody remains in one of the different infected substates but that 



28 

everybody eventually leaves this state, we could infer the remaining cumulative state transition 
probabilities 𝑃SW+ , 𝑃TW+ , and  𝑃UW+ , i.e., the probabilities to recover from states 𝑆S (I), 𝑆T (Id), and 
𝑆U (IdH). 

$'!()'*+,-*!*)!*./!-*,*/!*+,'-0*0)'-!1/-(+02/1!,2)3/&!4.0(.!-)5/56!1/7/'1!)'!*./!-*,*/!*./!,8/'*!

0-!0'!,'1!*./!*09/!-7/'1!0'!*.0-!-*,*/&!*./!-*,*/!*+,'-0*0)'!#"$!:𝑋RS) depends on different factors 
namely 

● the interaction with an infected agent in state I (schedules, locations) 
● the infection time dependent infectivity of interaction partner in state I (simulation input 

parameter infectivity) 

That was explained in sections 2.2.4 and 2.2.5, respectively, and results in 𝑃RS+  being the 
product of these two probabilities (compare Equation 8). The determination of the infectivity 
is further detailed in section 3.5. The resulting cumulative state transition probabilities are 
summarized in Table S20.  

transition 
symbol 

value reference comments 

S "!$ 
𝑃RS+  

variable - see section 2.2.5 
 

I "!Id 
𝑃ST+  

0.3 (33), Gangelt homepage  3940566 

I "!; 
𝑃SW+  

0.7 -   remaining fraction of 
infected 

I "!% 
𝑃SX+  

0 - COVID-19 related deaths 
automatically count in 
reported cases as well 

Id "!IdH 
𝑃TU+  

0.15  Table S17 hospitalized fraction 
(reference group: cases 
with hospitalization info) 

Id "!; 
𝑃TW+  

0.84 -  remaining fraction of 
diagnosed 

Id "!% 
𝑃TX+  

0.0017  Tables S16, S17   assuming 10% of deaths 
not in ICU from Id  state 
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IdH "!!IdICU 
𝑃UV+  

0.39 Tables S17  ICU fraction from 
hospitalized 

IdH "!; 
𝑃UW+  

0.42 -   remaining fraction of 
hospitalized 

IdH "!!% 
𝑃UX+  

0.19 Tables S16, S18  assuming 90% of deaths 
not in ICU from state IdH 

IdICU "!!; 
𝑃VW+  

0.71 Table S18   fraction released alive 
from ICU 

IdICU "!!% 
𝑃VX+  

0.29 Table S18  fraction released dead 
from ICU 

;!"!# 
𝑃WR+  

0 - - 

Table S20: State Transitions and corresponding overall (age- and time-independent) cumulative 
probabilities. 

3.4.3.2 Age-dependent state transition probabilities 

To calculate age-dependent cumulative state transition probabilities 𝑃3[+ (𝑎𝑔𝑒), in addition to 
the age-independent transition probabilities 𝑃3[+  listed in Table S20, we require age 
distributions for the different states 𝑆3 with 𝑖, 𝑗 = 1, . . ,7. From the input data, we obtain three 
consensus age groups in addition to the age-independent group 'all' (Sec. 3.4.2.1): 

● 0 - 59 
● 60 - 79 
● 80 - 99 

Combining the information from German Zensus and RKI Factsheet provides the following 
(age-dependent) information for those consensus age groups (Table S21). 

age 
group 

people in 
Germany 

reported 
cases 

hospitalized 
cases 

cases in 
ICU 

cases released 
from ICU 

cases released 
dead from ICU 

deceased 
cases 

0-59 58998759 87375 - - - - 134 

60-79 17007688 23795  - - - - 922 

80-99 4213248  11645  - - - - 1737 
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all 80219695 122815 14554 5700 3253 952 2793 

Table S21: Consensus age group dependent information combined from the different data sources 
described above (compare Tables S15-S19). cases refer to COVID-19 cases. 

To calculate age distributions, we first require age-resolved case numbers 𝑁3 for all states 𝑖 ∈
{1, . . . ,7} (Table S22). One exception is state R (𝑆W), which emerges based on the others. As 
outlined above, the infection probability 𝑃RS+  is age-independent (compare section 3.4.3.1). 
Therefore, the information from Table S21 provides the age frequencies 𝑁3 for the four states 
S (𝑆R), I (𝑆S), Id (𝑆T), and D (𝑆X). For the remaining two states IdH (𝑆U) and IdICU (𝑆V), we used 
age frequencies reported for a subset of hospitalized cases (case study size n=10021) in (32). 

age 
group 

num. of people 
in S and I 

num. of people 
in Id 

num. of people 
in IdH 

num. of people 
in IdICU 

reported COVID-19 
related deaths 

0-59 58998759 87375 2896 422 134 

60-79 17007688 23795  3779 917 922 

80-99 4213248  11645  3346 388 1737 

all 80219695 122815 10021 1727 2793 

Table S22: Age group frequencies obtained from diverse input data. Numbers of people in S and I, in 
Id, and the reported deaths are taken from the RKI factsheet ((31)), numbers of people in  IdH and in 
IdICU from Karagiannidis et al. ((32)). Please note, that as the numbers are obtained from different data 
sources, they cannot be related directly between each other.  

By dividing the number of cases in an age group 𝑁3(𝑎𝑔𝑒) by the number of cases in age group 
'all' of the same state 𝑁3(𝑎𝑙𝑙) the age group distribution for a state i was calculated (Table 
S23). 

  age group fraction 
in S and I 

fraction 
in Id  

fraction 
in IdH 

fraction 
in IdICU 

fraction 
in D 

0-59 0.74 0.71 0.29 0.24 0.05 

60-79 0.21 0.19  0.38 0.53 0.33 

80-99 0.05  0.2  0.33 0.23 0.62 

all 1 1 1 1 1 
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Table S23: Age group distributions for different health states. The age group-dependent number of 
people in the reference state (compare Table S22) has been divided by the number for age group 'all'. 

With this information and the overall cumulative state transition probabilities from Table S20, 
we calculated age group-dependent cumulative state transition probabilities 𝑃3[+ (𝑎𝑔𝑒). 
Because the numbers in Tables S22 and S23 cannot be related between all the different 
states directly, we first created an example with age frequencies consistent between the 
different states for age group ‘all’. To this end, we applied the age-independent probabilities 
𝑃3[+ 	(compare Table S20) to a fictive infected population of size n = 1000000, starting from 
state 𝑁S(𝑎𝑙𝑙), resulting in a number of people for each state: Out of state 𝑁S(𝑎𝑙𝑙) 	=
	1000000 30% get diagnosed, resulting in state 𝑁T(𝑎𝑙𝑙) 	= 	300000. Out of those 15.44% 
end up in hospital, i.e. state 𝑁U(𝑎𝑙𝑙) 	= 	46313. 39.16% are referred to ICU (𝑁V(𝑎𝑙𝑙) 	=
	18138) from which 29.27% are released dead (𝑁X(𝑎𝑙𝑙) 	= 	5308). By splitting the resulting 
numbers of people per state into their age group fractions (compare Table S23), we obtain 
age group-dependent estimates for the expected number of people in each state for the 
example scenario. For each state transition, the age group-dependent transition probability 
𝑃3[+ (𝑎𝑔𝑒) equals the number of people in the end state divided by the number of people in the 
start state: 

𝑃3[+ (𝑎𝑔𝑒) =
𝑁[(𝑎𝑔𝑒)
𝑁3(𝑎𝑔𝑒)

	

Equation (9) 

with 𝑖, 𝑗 ∈ {1, . . . ,7}	and 𝑎𝑔𝑒 ∈ {0 − 59,60 − 79,80 − 99, 𝑎𝑙𝑙}. State transition probabilities 
𝑃3[+ (𝑎𝑔𝑒) ≠ 0	 are summarized in Table S24. Please be aware that rounding resulted in 
several probabilities appearing to be equal to zero while in reality they are small but non-zero. 

age 
group 

$"Id $"; Id"IdH Id"; Id"% IdH"IdICU IdH"; IdH"% IdICU"; IdICU"% 

0-59 0.29 0.71 0.06 0.93 0.00 0.33 0.64 0.03 0.94 0.06 

60-79 0.27 0.73 0.3 0.7 0.00 0.55 0.28 0.16 0.82 0.18 

80-99 0.54 0.46 0.54 0.45 0.01 0.26 0.39 0.35 0.19 0.81 

all 0.3 0.7 0.15 0.84 0.00 0.39 0.42 0.19 0.71 0.29 

Table S24: Age group-dependent state transition probabilities 𝑃3[+  for all state transitions 𝑋3[	with	𝑖, 𝑗 ∈
{1, . . . ,7}. Please note that probabilities equal to zero in this table only do so due to rounding, in Tables 
S26 (A-D) the same probabilities are given in %, thus avoiding the zeros. 

By definition of a non-chronically disease state, this state is transient, i.e. the probability to 
remain in a state	𝑆3	with 𝑖, 𝑗 ∈ {2, . . . ,5} vanishes in the long term. That means that the sum of 
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cumulative state transition probabilities 𝑃3[� 	away from each infected (sub)state i must equal 1, 
i.e.: 

1 = ∑X[�R 𝑃3[+ 		∀𝑖 ∈ {2, . . . ,5}	. 

Equation (10) 

3.4.3.3 Time-Dependent Conditional State Transitions 

As explained in section 2.2.7, each agent being in a certain state at a certain time has a 
probability to stay in that state or leave towards selected other states within the next time step. 
To this end, we calculated hourly transition probabilities that depend on how long the agent 
was already in the given state: 𝑝3[5` 	is the required conditional state transition probability per 
hour for all considered state transitions 𝑋3[. Based on the age group-dependent cumulative 
transition probabilities 𝑃3[�  (Table S24), we determined age-dependent conditional state 
transition probabilities for 𝑝3[5` (𝑎𝑔𝑒), using the following assumptions: 

1. The transition occurs within a given maximum time (50 days). 

2. The probability for each state transition 𝑋3[ is Gaussian distributed with mean at the reported 
or assumed average time	𝜇3[

5 . 

3. The standard deviation of this Gaussian distribution equals its mean, i.e. 𝜎3[5  = 𝜇3[
5  

From the data, we extracted cumulative transition probabilities 𝑃3[�  of a state transition 𝑋3[	in a 
defined time frame and the reported average time 𝜇3[

5  for the transition to occur. For example, 
if 30 % of cases died after being transferred to ICU and half of them died during the first 10 
days after being transferred to ICU, the cumulative transition probability 𝑃VX+ would be 0.3 and 
the mean time would be	𝜇45

5 = 10	[𝑑𝑎𝑦𝑠]. 

From assumption 2 it follows that the transition probabilities are drawn from a probability mass 
functions (PMF), generated from a Gaussian probability distribution and weighted by  𝑃 3[

+ 	of 
the respective transition. 

𝑃 3[5
` = 𝑃 3[

+ ⋅ 𝑃𝑀𝐹 (𝑡: 𝜇3[5 , 𝜎3[5 )	  

Equation (11) 

The required weighted distributions were calculated from information about the average 
transition times determined by the model from (34), Figure 1). For all distributions, we assume 
the maximum transition time to be 50 days and the mean day was taken from this reference, 
re-drawn here in English for readability (Figure SY). 

Because the underlying model of an der Heiden & Buchholz does not consider death from 
states other than ICU, we assume the same total average time from time of infection until 
death for the different states. Due to irreversibility of state transitions it is not possible to be 
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referred back to hospital from ICU in the GERDA model. Therefore, we assume the average 
duration in ICU (state IdICU) before recovery to be 13 days (until the average release from 
hospital when referring to the time of infection). In summary, we used the mean transition days 
given in Table S25 to generate Gaussian distributed transition probabilities 𝑃3[5` : 

transi
tion 

$"Id  $"; $"%! Id"IdH Id"; Id"% IdH"IdICU IdH"; IdH"% IdICU"; IdICU"% 

mean 
day 

5 13 19 4 9 15 1 14 11 13 10 

Table S25: Average day after state entering for a state transition to occur. For complete model input 
tables used to calculated the final hourly resolved dependent state transition probabilities 𝑃 3[5

`  
compare supplementary tables file, Tables S26 (A-D). 

From the weighted distributions and the age group-dependent overall probability to undergo a 
specific state transition, we calculated the conditional transition probabilities per time step as 
explained in 2.2.7. An illustration of the resulting probabilities is provided in Figure S6. 

 

Figure S6: Schematic representation of the conditional probability for transition from 𝑺𝒊 to 𝑺𝒋 
(per time step, plotted against time after infection in days). GERDA considers 11 transitions with 
non-zero probability. At each time step, an infected agent (states 𝑆S − 𝑆V) can either remain in its current 
state, progress to another infected state or to one of the final states R (𝑆W) and D (𝑆X). Here, we show 
for a 64 year old agent the weighted distributions for the time-dependent probability to undergo a specific 
state transition. The probability for each state transition is Gaussian distributed with mean at the 
reported or assumed average time 𝑡� 	and standard deviation equal to mean, i.e., 𝑡� = 𝑡𝜇 . The 
dashed line represents the average time to symptoms onset and the colored circles the mean 
occurrence times for state transitions. 

 

3.5 Infectiousness of an infected agent 

The infectiousness𝐼	&H (𝑡)	of an infected agent 𝑎 is a function of time, starting with the time of 
infection. Background is that the reported time-dependent development of symptoms and viral 
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load (representing the individual infectivity) do not coincide (35). Instead, the infectivity peaks 
on day 2 after infection before symptoms onset on day 3. To represent pre- and asymptomatic 
transmission in GERDA, we used a Gaussian probability mass function to calculate the 
individual infectiousness. Its mean and standard deviation have been set to day 2, similar as 
described for the Gaussian distributions in subsection 3.4.3 (Table S26 (E)). Although data on 
the timing of infectiousness is available (35), information on the intensity is still missing, 
therefore we weighted the obtained time-dependent probability distribution for the 
infectiousness by a global infection parameter 𝑘H  (compare next section 3.6).	

	

3.6 Additional Parameters 

As a design principle, the parameter values required for the simulation of GERDA are not 
hard-coded, but simulation input. They can either be calculated from input data, as explained 
above, or they can be specified by the user when setting up the simulation. This allows us to 
change the parameter set between individual simulation runs, as explained below. 

In section 3.4, we have described the time-dependent probabilities for state transitions. More 
parameters have to be set in order to enable a simulation. These are: 

● global infection parameter kI	(short: infectivity; required), 
● global interaction frequency μ (required),	
● non-compliance probability pncomp (optional).  

Note that these parameters can be set for the entire population or for population subgroups 
only. 

Furthermore, start and end times for lockdown (closure) and reopening for all or for specific 
location types can be defined. For the required commands to set those parameters manually, 
please checkout the readme on our public GERDA Gitlab repository (https://tbp-
klipp.science/GERDA-model/readme). 
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4 Simulation and Analysis of GERDA 
Providing a simulation origin (an initialized MW) and the required and optional input 
parameters, GERDA can be applied for simulation of infection transmission throughout an 
agent population. At each simulation time step, for each agent it is resolved i) which of its 
putative interactions take place, ii) which of its realized interactions bear the potential of an 
infection transmission, and iii) which of its realized interactions effectively result in an infection 
transmission (subsection 2.2.4). In addition, for infected agents it is determined how the 
infection proceeds based on given state transition probabilities that depend on the time of 
infection and the agent’s age. The calculation of cumulative time and age-dependent transition 
probabilities is detailed in subsection 3.4. 

Alternatively, the simulation can also be started from a previous simulation output. This allows 
for the comparison of different scenarios starting from a given time point. 

The simulation can be run from GitLab. The GitLab repository (https://tbp-
klipp.science/GERDA-model/) also provides ample information about code, settings, and 
parameters. We provide a “cookbook” for interested users explaining which data and 
information to use in order to apply the model to different locations.  The major functionalities 
are described in the following.  

Below, we briefly summarize the basic output of the simulation of GERDA. Of course, it is 
always possible to add more functionalities for further analysis, which shall be omitted here. 

 

4.1 Simulation time course and outputs  

The time course of a simulation describes for each agent at each time step its 

● location, 
● health states (including infection sub-states), 
● interaction partners, 
● agent from which an infection was obtained. 

Additional information, such as interaction and infection networks, frequencies and 
distributions of state transitions and durations for the transient infection states, or household-
related transmissions can be directly inferred. This allows us to monitor infection spreading 
and disease progression on the individual level, thereby providing unprecedented insight into 
the effects of non-pharmaceutical intervention strategies, preventive measures like contact 
tracing, and the individual compliance. 

It is possible to store complete and partial time courses. Time course simulations can be 
repeated (either full simulations or simulations starting from a given time point) in order to 
analyse the effect of stochasticity on the course of infection spreading. 
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4.1.1 Simulation object at final time step 

Together with the locations the agent population at simulation end time is combined into a 
simulation object that shares most of its properties with a MW object. In addition, it contains 
the simulation time course to allow plotting and analysis of consecutive simulation runs. It can 
optionally be stored (memory and time consuming). 

 

4.2 Simulation of specific scenarios 

In order to investigate the effect of infection spreading, non-pharmaceutical interventions or 
vaccination strategies, it is possible to simulate specific scenarios.  

The following scenarios are currently foreseen:  

● Baseline scenario (spread of infection starting with one or few infected agents, 
Figure 1F,G) 

○ Location-dependent behavior versus homogenous mixing (as control, 
see section 4.7) 

● Non-pharmaceutical interventions, including 
○ Lockdown (temporarily or continued, Figure 1H and section 4.3) 
○ Selective lockdown of specific location types  
○ Lockdown and full or selective reopening (section 4.3) 
○ Re-infection, test for community protection 

● Non-compliance with non-pharmaceutical interventions such as lockdown 
(Figure 1K, section 4.3) 

● Combinations of the above 

In the baseline scenario, we change the state of 4 random individuals from S to I and let the 
infections spread through the population according to the stochastic interactions that agents 
have when visiting locations corresponding to their schedule. No mitigation measures are 
applied. Default parameter values are infectivity kI	=0.3 and global interactivity μ=2. 

Lockdown describes in our model a situation, where agents stay at home instead of going to 
school, to workplaces or to public places. Agents, who are scheduled to go to hospital, 
continue so (medical personal or hospitalized agents). Selected lockdown means that only 
one or two location types out of {schools, workplaces, public places} are closed and individuals 
stay at home instead of visiting them. 

Lockdown light represents closing public spaces only. 

Reopening means that all agents follow their normal schedules (if in state S, I, or R) or their 
quarantine (Id) or hospitalization (IdH, and IdICU). Selective reopening indicates that the 
respective location can be visited again.  

Non-compliance: We also investigated what happens if a number of individuals will not follow 
the order for closure of all locations. This reflects either non-compliance (e.g. civil 
disobedience) or the fact that some people in systemically relevant jobs have to go to work or 
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need to send their children to school (or daycare) to be able to go to work themselves. Already 
small levels of non-compliance have severe effects (section 4.4). 

 

4.3 Duration between agents’ state transitions 

In order to test whether the state transition rates, defined as input to the model, result in 
simulated distributions, which are similar to the empirical ones; the distributions of durations 
between specific state transitions in a simulated baseline scenario are presented together with 
the empirical distributions in Fig. S7 below. 

 

Figure S7: Comparison of input distributions for the agents’ state transitions to distributions 
resulting from the simulations. Presented are the distributions of the indicated transitions.  
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4.4 Sensitivity analysis 

In order to better understand the impact of the choice of parameter values as well as the 
capabilities of our model, we can perform sensitivity analysis. Specifically, one can 

● vary the global infection rate kI (Fig S8) 
● vary the global interaction frequency μ, (Fig S9)	
● vary the non-compliance probability pncomp		(Fig S10) 
● change start and end times of non-pharmaceutical intervention measures (Fig 

S11 - variation of lockdown start time, Fig S12 - variation of reopening times, 
Fig S13 - variation of reopening times for public places only, Fig S14 - variation 
of reopening times for schools only, Fig S15 - variation of reopening times for 
workplaces only, Fig S16 - variation of start times for lockdown light) 

● apply specific measures to either specific age groups, groups with different 
occupations (e.g. pensioners), or specific locations. 

● vary the fraction of non-susceptible individuals, i.e.  either recovered or 
vaccinated individuals, at the start of simulation (section 4.6) 

● study the impact of the infection rate on the attack rate and bimodality (Fig S17) 

Sensitivity analysis enables systematic comparison of model results with input data. It also 
points to specific behaviors of the model that only occur for specific parameter values.  
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Figure S8: Infectivity scan from 0.05 to 0.5 (Gangelt). Resulting time courses for agent health states 
S (blue), I (red), R (green), and D (black) from 100 simulations for varying infectivity ki. 
 

 
Figure S9: Product composition scan (global infectivity ki * global mean interaction frequency μ 
= 0.6; varying ki from 0.075 (μ=8) to 1.2 (μ=0.5); Gangelt). Resulting time courses for agent health 
states S (blue), I (red), R (green), and D (black) from 100 simulations for varying interaction frequency 
and infectivity (keeping their product constant). 
 

 
Figure S10: Non-compliance fraction scan from 0.0 to 0.45 (Gangelt). A scenario with lockdown 
starting at 200h has been simulated. The indicated fraction of individuals did not or could not obey the 
lockdown, but followed instead their normal schedules.  Resulting time courses for agent health states 
S (blue), I (red), R (green), and D (black) from 100 simulations for varying fractions of non-compliant 
agents.  
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Figure S11: Lockdown start time scan from t= 100 hours  to t = 550 hours (Gangelt). Resulting 
time courses for agent health states S (blue), I (red), R (green), and D (black) from 100 simulations for 
varying lockdown start times. 
 

 
Figure S12: Reopening times scan from t = 500 to t = 1500 (reopen all; Gangelt). Resulting time 
courses for agent health states S (blue), I (red), R (green), and D (black) from 100 simulations for 
varying reopening times after closing all at t=200. 
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Figure S13: Reopening times scan from 500 to 1500 (reopen public places; Gangelt). Resulting 
time courses for agent health states S (blue), I (red), R (green), and D (black) from 100 simulations for 
varying reopening times after closing all at t=200. 
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Figure S14: Reopening times scan from 500 to 1500 (reopen schools; Gangelt). Resulting time 
courses for agent health states S (blue), I (red), R (green), and D (black) from 100 simulations for 
varying reopening times after closing all at t=200. 
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Figure S15: Reopening times scan from 500 to 1500 (reopen work; Gangel). Resulting time courses 
for agent health states S (blue), I (red), R (green), and D (black) from 100 simulations for varying 
reopening times after closing all at t=200. 
 

 
Figure S16: Lockdown light starting times scan (Gangelt). Resulting time courses for agent health 
states S (blue), I (red), R (green), and D (black) from 100 simulations for varying lockdown start times. 
Lockdown light is represented by closing public spaces only. 
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Figure S17: Attack Rate vs. Infectivity (Gangelt). Attack rate (total infected / initial susceptible) for 
100 simulations and different kI. Note bimodal outcome for the range 0.03 <kI <0.09. 
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4.5 Network analysis 

4.5.1 Interaction networks 

The complete simulation time course allows us to reconstruct the (time-dependent) interaction 
network after a simulation. The complete network graph is built by adding new edges (and 
corresponding nodes if not yet existing) for each first appearance of a unique pairwise 
interaction over the entire simulation time. It is possible to define specific time frames to create 
and analyze subsets of interactions. Counting the number of occurrences for unique pairwise 
interactions provides a weighted graph. 

4.5.2 Infection networks 

The infection network is a directed subset of the interaction network, including only those 
interactions during which the infection was transmitted to a new agent. This enables us to 
follow individual infection transmission chains. An example of the emerging network is 
represented in Fig. S18. 

 

 

Figure S18: Infection networks in Gangelt unfolding within 300 hours (single simulation). Starting 
from four infected individuals other individuals get infected creating initially unconnected networks 
(which may or may not become connected later). 
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4.5.3 Overrepresentation and underrepresentation of specific groups in 
the infection process 

For example, comparing the distributions of agents that transmit infections and of locations at 
which infections are transmitted to the respective distributions of initialized agents and 
locations, provides a possibility to investigate the impact of specific population subgroups and 
location types on infection spreading. In particular, we analyzed the difference in the 
contribution to infection spreading between different occupations, as can be seen in the over- 
and underrepresentation plots (Fig S19). Additionally, we analyzed the average infection 
caused by an emitter, resolved for its occupation (Fig. S20). 

 

 

 

 

Figure S19: Over and under representation of agents with specific schedule types in the 
fractions of top spreaders. Difference in the fraction of spreaders with specific schedule type to the 
fraction of this type in the population. 
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Figure S20: Pattern in schedule type dependent infection rates. Average infections caused by 
each agent resolved for schedule type and sorted for percentage of top spreaders. Shaded area 
corresponds to standard deviation of mean. 

 
 

4.6 Immunization Scans 

In order to analyze the effect of immunization on the infection dynamics, we set a fraction of 
individuals to status R, since recovered individuals are not considered susceptible to infections 
anymore. Hence, the amount of initially recovered individuals can mimic the fraction of 
vaccinated or immunized individuals. Systematically introducing infections in such a partially 
vaccinated population allows us to analyze the robustness of the vaccination and the 
remaining burden.  

All simulations are based on the same modeled world, e.g. the same locations, the same 
agents and the same daily routines. Prior to the simulations we defined sorted lists of 
individuals, reflecting different immunization strategies. The simulations were initialized with 
different ratios of susceptible and recovered agents, by setting individuals to health state R 
based on their occurrence in our predefined sorted lists. We scanned ratios of susceptible and 
recovered individuals ranging from 0.1 to 0.9 with a step size of 0.04 (Figs S21-S24). All ratios 
were repeatedly simulated for 3000 hours one hundred times (N=100) with four initial infection 
emitters chosen from the remaining pool of susceptible individuals. All simulations were 
analyzed with respect to appearance of an infection wave (i.e. showing more than 80 infection 
events during the simulation), the fraction of infections relative to the remaining susceptibles, 
the fraction of deceased individuals relative to the remaining susceptibles, and the number of 
ICU cases per 100 000 based on the whole population (the maximal number reached during 
the simulation). 

Sorting algorithms for the analyzed immunization strategies: 

● forecasted 
Before carrying out the simulations with a given percentage of individuals set to 
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immunized, pre-simulations have been performed to forecast potentially infected 
individuals. The lists are based on 100 complete infection chains from 100 preceding 
simulations starting always with the same initial infection emitters. Resulting infection 
receivers were sorted by infection time and the precise given percentage was set to R.   
 

● random 
100 different lists of individuals were shuffled randomly and the given percentage set 
to R.  
 

● age 
One list of all inhabitants of the community was used, sorted by decreasing age of the 
individuals. 
 

● interactions 
One list was used, sorted by decreasing mean absolute contact numbers, again 
resulting from 100 preceding simulations, but here without infection spreading. 
 

● overrepresentation 
One list was used, sorted by occupations, starting with occupations showing the 
strongest overrepresentation in infection (Figure 2F) to occupations with the least 
overrepresentation in infection. (UA, AD, TE, MP, PW, PE)  
 

● combined 
One list of three consecutive blocks was used. The first block contained all individuals 
above age 60 with decreasing age (as in list “age”). The second block contained all 
individuals from age 13 to age 59 sorted for mean absolute contacts as in 
“interactions”. The third block contained all individuals below age 12 with decreasing 
age. 

It is important to note, that the performance of the different strategies depends on the infectivity 
kI, i.e., while the general pattern between the different strategies is preserved, the exact 
numbers change for preventing an infection wave or reducing the hospitalizations or ICU beds 
required below health care capacities (Fig. S25). A ranking of vaccination strategies for 
infectivity kI = 0.3 is shown in Fig. S26. Fig. S27 analyses the effect of threshold values for 
deciding if the number of infections amounts to a next infection wave. 
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Figure S21: Interaction-dependent recovery fraction scan for a share of 0.54 to 0.9 non-
susceptible individuals (Gangelt). Resulting time courses for agent health states S (blue), I (red), R 
(green), and D (black) from 100 simulations for varying fractions of recovered (vaccinated) agents.  
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Figure S22: Random recovery fraction scan for a share of  0 to 1 non-susceptible individuals  
(Gangelt). Resulting time courses for agent health states S (blue), I (red), R (green), and D (black) from 
100 simulations for varying fractions of non-susceptible  (recovered or vaccinated) agents.  
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Figure S23: Recovering (vaccination) by schedule type scan (Gangelt). Resulting time courses for 
agent health states S (blue), I (red), R (green), and D (black) from 100 simulations for recovering 
(vaccinating) a specific schedule type. 
 

 
Figure S24: Comparison of the effect of immunizing (set to R) either pensioners or underage 
individuals (Gangelt). Time courses for agent health states S (blue), I (red), R (green), and D (black) 
from 100 simulations for recovering (vaccinating) a specific schedule type. Immunization of (the whole 
group of) pensioners leads to comparatively low death numbers but still significant infection dynamics, 
while immunization of (the whole group of) underaged lowers the infections, but essentially not the 
death toll. 
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Figure S25: Vaccination performance with respect to minimize fatalities. Strategies (rows) perform 
better (blue) or worse (red) above the shown values compared to strategies shown in the columns. 
Values represent the non-susceptible population fraction as a measure for vaccination coverage. 
Parameter value kI=0.3. 
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Figure S26: Vaccination performance dependent on infectivity ki. Vaccination by interactions, age, 
random, and forecasted for infectivities 0.15 and 0.30, purple, yellow, green and orange, respectively. 
Dark colors correspond to infectivity 0.3, light colors to infectivity 0.15. A Fraction of infected agents 
with respect to remaining susceptible agents, B fraction of deceased agents with respect to remaining 
susceptible agents, C fraction of simulations (total N=100) with significant infection wave (>80 
subsequent infections), and D maximal ICU demand per 100000 individuals, black dotted line 
represents capacity of ICU beds in Germany. A,C Herd immunity threshold calculated from the 
estimated R0 of 2.71 and 4.87 for infectivities 0.15 (arrow left) and 0.30 (arrow right) are clearly 
consistent with the random vaccination strategy. Simulations are based on the German municipality 
Gangelt with 10.351 agents. 
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Figure S27: Effect of threshold size on herd effect analysis (vaccination strategy: random). Total 
number of infected agents after 3000 hours was counted. Outbreaks with more infected agents than 
the given threshold were considered as an emerged infection wave.  
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4.7 Comparison to Homogeneous Mixing Approach 

Classically, SIR modeling uses a homogeneous mixing (HM) approach, i.e. the modeled 
population is not distinguished by age, locations, or any other attribute that would entitle them 
to show distinguishable behavior. Our geospatial, demography-based agent-based approach 
reflects heterogeneity in the behavior of individuals, which is essentially different from the 
homogeneous mixing approach. This is also reflected in the outcome of various scenarios. 
The baseline scenario in Gerda shows greater variety in dynamics than the HM (Fig. S28). 

 Homogeneous Mixing    GERDA 

 
Figure S28: Health states homogeneous mixing baseline scenario (left) and in the original Gerda 
baseline scenario (right) for Gangelt. Resulting time courses for agent health states S (blue), I (red), 
R (green), and D (black) from 100 simulations for the homogeneous mixing baseline scenario for 
Gangelt. 
 
 
Interactions between individuals as recorded in the HHIN as well as infections (iHHIN) also 
differ significantly between the two approaches. Figure S29 shows the total and unique 
number of interactions as well as daily interactions between age groups and daily infections 
as heat maps. 
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Figure S29: Comparison of interaction- and infection patterns between homogeneous 
heterogeneous simulations. (a) Distributions of average total and unique interactions among 
individuals of different occupations, in the heterogeneous model. (b) See description of (a), results 
obtained for the homogeneous mixing model where the age-distribution is still contained. (c) Mean daily 
unique interactions between different age-cohorts for the heterogeneous model. (d) See description of 
(c), results obtained for the homogeneous model. (e) Mean daily infection-transmissions between 
different age-cohorts for the heterogeneous model. (f) See description of (e), results obtained for the 
homogeneous model.  
 
 
Also, the over- or underrepresentation of occupation groups looks different between 
homogeneous and heterogeneous approaches (Fig S30). Homogeneous approaches don’t 
show over- or underrepresentation (number not exactly zero result from stochastic noise). 
 

 
Figure S30: Comparison between homogenous and heterogenous mixing with respect to the 
over and under representation of agents with specific schedule types in the fractions of top 
spreaders. Difference in the fraction of spreaders with specific schedule type to the fraction of this type 
in the population. 
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4.8 Exemplary application to other communities 

While all major outcomes of the model approach have been presented for the municipality 
Gangelt, we have applied the method to other European towns, namely Heinsberg, Simbach, 
Linsengericht, and Oranienbaum in Germany, Vaxholm in Sweden, Epping in UK and Zhikron 
Ya’akov in Israel. We see differences in the precise response to infections or to NPIs which 
can be explained by the size, the demography and the composition of locations of each town. 
Figure S31 shows exemplarily the effect of lockdown and reopening for different towns. 
Figure S32 presents the analysis of the so-called November lockdown in Germany depending 
on the incidence value at which different communities started the lockdown. 
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Figure S31: Effect of lockdown duration in different European towns. The municipalities Heinsberg (DE, 
ca 40.700 inhabitants), Gangelt (DE), Epping (UK, ca 11.000 inhabitants), and Vaxholm (SE, ca 4.850 
inhabitants) have been considered. Lockdown starts at 200h. All parameter values are like in the 
baseline scenario for Gangelt. 
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Figure S32: Effect of the November (2020) lockdown in different German towns. The lockdown has 
been simulated for about four weeks. Importantly, the towns started with different incidence values.  

 

 

4.9 The Movie 

Movie S1 [https://www.tbp-klipp.science/GERDA-model/Movie-1.mp4] visualizes the 
temporal and spatial dynamics of infection spreading resulting from the simulation of the 
baseline scenario with a still image in Fig. 1B. Note that the daily rhythm shown in the movie 
results from individuals moving between their respective homes and workplaces. The 
infection starts with two infected individuals in one household at time 0 h. At times 100 h and 
200 h more and more infected agents are observed, especially at the geospatial hubs (e.g., 
center of the town). 
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