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Abstract 

UK Biobank (UKB) is a key contributor in mental health genome-wide association studies (GWAS) but 

only ~31% of participants completed the Mental Health Questionnaire (“MHQ responders”). We 

predicted generalized anxiety disorder (GAD), posttraumatic stress disorder (PTSD), and major 

depression symptoms using elastic net regression in the ~69% of UKB participants lacking MHQ data 

(“MHQ non-responders”; NTraining=50%; NTest=50%), maximizing the informative sample for these traits. 

MHQ responders were more likely to be female, from higher socioeconomic positions, and less anxious 

than non-responders. Genetic correlation of GAD and PTSD between MHQ responders and non-

responders ranged from 0.636-1.08; both were predicted by polygenic scores generated from 

independent cohorts. In meta-analyses of GAD (N=489,579) and PTSD (N=497,803), we discovered many 

novel genomic risk loci (13 for GAD and 40 for PTSD). Transcriptomic analyses converged on altered 

regulation of prenatal dorsolateral prefrontal cortex in these disorders.  
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Psychiatric disorders are highly polygenic; thousands of risk loci across the genome contribute to their 1 

liability. Because of this polygenicity, extremely large sample sizes are required to detect the small 2 

individual effects associated with risk alleles.1, 2, 3, 4, 5, 6 Biobanks and consortia play a critical role in 3 

organizing, curating, and facilitating large genetic studies of mental health and psychopathology.7, 8, 9, 10 4 

The UK Biobank (UKB) represents a resource of homogeneously ascertained participants with detailed 5 

information related to physical health, anthropometric measurements, and sociodemographic 6 

characteristics, etc. A primary limitation of UKB for studying mental health is the limited availability of 7 

participant responses to voluntary mental health questions and surveys. Among the approximately 8 

502,000 UKB participants, only 31% completed the online Mental Health Questionnaire (herein termed 9 

“MHQ responders”).11 These missing data impose an upper limit on the UKB sample that is available for 10 

genetic studies using direct information. Indeed, many studies have had only modest success with risk 11 

locus discovery when studying psychopathologies in the subset of MHQ responders.4, 12 12 

We hypothesized that carefully selected features ascertained in the entire UKB could permit 13 

genetic studies of MHQ phenotypes in the UKB participants who did not complete the survey (herein 14 

termed “MHQ non-responders”).13 We demonstrate the reliability of studying the collection of comorbid 15 

phenotypes, hereafter referred as a co-phenome,13 using several independent methods. Here we 16 

maximized the use of unrelated individuals from the UKB – more than doubling the available sample size 17 

relative to only MHQ responders – for genome-wide association studies (GWAS) of generalized anxiety 18 

disorder (GAD) and posttraumatic stress disorder (PTSD) symptoms. In meta-analyses adjusted for the 19 

effects of the major co-phenome correlate and an important transdiagnostic feature of internalizing 20 

psychopathologies, neuroticism, we identified multi-omic and cross-phenotype contributions of genes 21 

expressed in the prenatal brain. Using these novel GAD and PTSD data, we report putative cross-22 

phenotype drug repurposing targets and identify drugs that may induce adverse effects that resemble 23 

anxiety symptoms. Our results provide one roadmap by which sample size and statistical power may be 24 
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improved for gene discovery of incompletely ascertained traits in the UKB and other biobanks with 25 

limited mental health assessment.  26 

Results 27 

A study overview is provided in Fig. 1. 28 

 29 

Feature Selection and Elastic Net Regression 30 

GAD-7 (GAD 7-item survey), PCL-6 (PTSD Checklist 6-item survey), and PHQ-9 (depression 9-item 31 

survey) quantitative scores were derived in MHQ responders according to previous studies11 (see 32 

Methods). After multiple testing correction for 772 phenotypes tested (see Methods; FDR<0.05), GAD-7, 33 

PCL-6, and PHQ-9 were correlated with 327, 363, and 373 phenotypes, respectively (Supplementary 34 

Table 1).  We evaluated different combinations of training-test ratios and feature inclusion thresholds 35 

(defined as Spearman’s rho (ρ) relative to GAD-7, PCL-6, and PHQ-9; Supplementary Table 2).14 Among 36 

MHQ responders, correlation between observed and predicted GAD-7, PCL-6, and PHQ-9 across elastic 37 

net training and test ratios were consistent at all parameter tuning combinations. We predicted each 38 

outcome in MHQ non-responders using the elastic net regression parameters with the lowest root mean 39 

square error and highest magnitude of Spearman’s ρ between predicted and true outcomes. Using 40 

ρ>0.20 as a feature inclusion threshold, we predicted GAD-7 with 19 phenotypes (observed versus 41 

predicted among test data ρ=0.33, P<2x10-16), PCL-6 with 15 phenotypes (observed versus predicted 42 

among test data ρ=0.21, P<2x10-16), and PHQ-9 with 17 (observed versus predicted among test data 43 

ρ=0.33, P<2x10-16) phenotypes. 44 

The correlated trait “neuroticism score” (Field ID 20127) was the feature that was most strongly 45 

associated with, and a major predictor of, internalizing symptoms in elastic net regression (“neuroticism 46 
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score” versus GAD-7 ρ=0.482, P<4.13x10-307, elastic net β=0.286; “neuroticism score” versus PCL-6 47 

ρ=0.378, P<4.13x10-307, elastic net β=0.103; “neuroticism score” versus PHQ-9 ρ=0.41, P<4.13x10-307, 48 

elastic net β=0.03). The remaining predictors of internalizing symptoms capture relevant relationships 49 

with these traits, including features such as “tenseness” (Field ID 1990), “frequency of tiredness in the 50 

last two weeks” (Field ID 2080), and “overall health rating” (Field ID 2178). Supplementary Table 3 51 

shows all predictors and their elastic net regression weights in the UKB.  52 

 53 

Characteristics of MHQ responders and non-responders 54 

Co-phenome risk scores (PheRS) are a weighted sum of the co-phenome questionnaire 55 

responses based on weights derived from elastic net regression described above. PheRS were more 56 

strongly correlated with predicted internalizing outcomes (MHQ non-responder data) than the same 57 

outcome directly ascertained in MHQ responders likely due to the independence of MHQ responder 58 

data relative to the lack of independence of these variables in MHQ non-responders (Supplementary 59 

Table 4). All predicted quantitative outcomes were greater in magnitude among the MHQ non-60 

responders suggesting more severe symptoms compared to MHQ responders. While the difference was 61 

minor for PCL-6 (MHQ responder mean=6.69, s.d.=3.65; non-responder mean=6.82, s.d.=1.80; Cohen’s 62 

d=-0.048, P=9.96x10-27) and PHQ-9 (MHQ responder mean=11.73, s.d.=3.67; non-responder 63 

mean=12.02, s.d.=2.32; Cohen’s d=0.096, P=2.21x10-144), it was more pronounced for GAD-7 scores 64 

(MHQ responder mean=8.97, s.d.=3.09; non-responder mean=12.36, s.d.=4.78; Cohen’s d=-0.749, 65 

P=1x10-322).  66 

In single-variable generalized linear models, “neuroticism score” (a summary score of 67 

neuroticism based on 12 neurotic behaviors; β=-0.080, s.e.=0.001, P<2x10-16), “average household 68 

income before tax” (β=0.239, s.e.=0.003, P<2x10-16), PCL-6 score (β=-0.052, s.e.=0.002, P<2x10-16), GAD-69 
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7 score (β=-0.202, s.e.=0.001, P<2x10-16), PHQ-9 score (β=-0.031, s.e.=0.002, P<2x10-16), and others were 70 

all associated with whether UKB participants responded to the MHQ (Supplementary Table 5). In a 71 

multivariable analysis of MHQ participation that also accounted for birthplace (north and east 72 

coordinates), age, and sex (full model R2=0.300, P<2.2x10-16), all variables remained significant 73 

(Supplementary Table 5). However, the effect of “neuroticism score” showed a significant opposite 74 

effect direction when accounting for the effects of the other variables included in the multivariable 75 

model (single-variable β=-0.080, s.e.=0.001, P<2x10-16; multivariable β=0.376, s.e.=0.003, P<2x10-16). 76 

This effect was due to the interplay of “neuroticism score” with GAD-7 symptoms (multivariable 77 

interaction term neuroticism score×GAD-7 β=-0.086, s.e.=0.001, P<2x10-16), but it was independent of 78 

PCL-6 and PHQ-9 symptoms. Upon excluding GAD-7 from the multivariable model, “neuroticism score” 79 

was a negative predictor of MHQ participation (β=-0.094, s.e.=0.002, P<2x10-16). Conversely, removing 80 

PCL-6 or PHQ-9 while keeping GAD-7 in the multivariable model, did not produce the same change 81 

(β=0.381, s.e.=0.003, P<2x10-16 and β=0.335, s.e.=0.003, P<2x10-16). Based on these observations, UKB 82 

participants with the highest “neuroticism scores” (i.e., 12; mean MHQ participation probability=97.7%, 83 

s.d.=0.151) were 6.04 times more likely to contribute to the MHQ than those with the lowest 84 

“neuroticism score” (i.e., 0; MHQ participation probability=16.2%, s.d.=0.872, Pdiff=1.03x10-203; Fig. 2). 85 

This effect appeared strongest among participants with medium (GAD-7=14) and low (GAD-7=7) GAD 86 

scores but was attenuated in the high GAD group (GAD-7=21). All samplings of GAD-7 and neuroticism 87 

score combinations are provided in Supplementary Table 5. Given the major contribution of 88 

“neuroticism score” in the elastic net prediction of GAD-7 (ρMHQ-responders=0.482, P<4.13x10-307; ρMHQ-non-89 

responders=0.984, P<4.13x10-307), this result may highlight residual participation bias transcending GAD, 90 

PTSD, and depression psychopathologies. We detected only modest evidence of multicollinearity in the 91 

model: neuroticism score variance inflation factor (VIF)=2.57, GAD-7 VIF=2.46, PCL-6 VIF=1.94, and PHQ 92 

VIF=2.27. A VIF > 10 is generally considered an indicator of high correlation and high multicollinearity.15 93 
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Because the correlation between GAD-7 and neuroticism score is modest (ρ=0.644), and the VIF for 94 

GAD-7 (2.46) and neuroticism score are relatively low, we can exclude multicollinearity is affecting our 95 

model of MHQ participation (Supplementary Table 5 and Supplementary Results).  96 

 97 

SNP-based Heritability  98 

We describe below a series of tests to verify that elastic net-predicted GAD, PTSD, and 99 

depression outcomes and PheRS capture the same genetic liability as true observations of each 100 

outcome.  101 

We performed three GWAS for each trait: quantitative score, PheRS, and binary case-control 102 

status derived from the quantitative scores. All GWAS included age, sex, age×sex, and ten within-103 

ancestry principal components as covariates. While elastic-net prediction accuracies were relatively low, 104 

genetic analyses of predicted values captured similar information to that of direct-report internalizing 105 

phenotype scores. The SNP-based heritability (h2) for each GWAS was significantly different from zero 106 

(Supplementary Table 6). Due to the strong contribution of “neuroticism score” to elastic net 107 

predictions, the detected difference between MHQ responder and non-responder neuroticism scores, 108 

and the well-documented heritable and polygenic architecture of neuroticism,16 we analyze GWAS only 109 

after subjecting their effect sizes to multi-trait conditioning with a GWAS of neuroticism.16, 17, 18 This 110 

approach facilitated an understanding of how much polygenicity and GWAS biological annotation 111 

findings could be attributed to the relatively large heritable component of neuroticism versus that of the 112 

PheRS and quantitative traits. After conditioning, all GWAS still had h2 estimates that differed 113 

significantly from zero (GAD phenotype range: MHQ-responder GAD-7-PheRS [h2=0.81%, s.e.=0.40, 114 

P=0.043] to MHQ non-responder GAD-7-PheRS [h2=3.52%, s.e.=0.32, P=3.82x10-28]; PTSD phenotype 115 

range: MHQ responder PTSD [h2=1.88%, s.e.=0.21, P=3.55x10-19] to MHQ responder PCL-6 [h2=5.57%, 116 

s.e.=0.46, P=9.35x10-35]; depression phenotype range: MHQ non-responder current depression 117 
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[h2=1.61%, s.e.=0.10, P=2.55x10-58] to MHQ non-responder PHQ-9 [h2=5.89%, s.e.=0.39, P=1.62x10-51]). 118 

Supplementary Table 6 shows h2 estimates for all traits before and after multi-trait conditioning with the 119 

GWAS of neuroticism. Unless otherwise noted, we focus all analyses on the internalizing traits that were 120 

subjected to multi-trait conditioning with neuroticism. However, the Supplementary Material 121 

corresponding to each analysis presents results prior to multi-trait conditioning so that comparisons and 122 

contrasts may be drawn. There were several h2 estimates that differed significantly between the MHQ 123 

responder and non-responder GWAS, but there was no evidence of a systematic over- or under-124 

estimation of SNP-h2 in either cohort (Fig. 3 and Supplementary Table 6).  125 

 126 

Genetic Overlap between MHQ-responder and MHQ non-responder Traits 127 

Genetic correlations (rg) between GWAS performed in MHQ responders and non-responders 128 

were statistically significant and relatively high when comparing the same trait: MHQ responder versus 129 

non-responder GAD-7-PheRS rg=1.55, s.e.=0.406, P=1.0x10-4; PCL-6-PheRS rg=1.19, s.e.=0.097, 130 

P=2.05x10-34; PHQ-9-PheRS rg=1.15, s.e.=0.084, P=3.52x10-42. The rg estimates among all other trait 131 

combinations are provided in Supplementary Table S7. Each UKB phenotype (assessed in MHQ 132 

responders and non-responders) was genetically correlated with the corresponding Million Veteran 133 

Program (MVP) phenotype Supplementary Table 7 and after multiple testing correction for the number 134 

of rgs tested there were no differences in rg with MVP phenotype between MHQ responders and non-135 

responders. All internalizing outcomes were negatively genetically correlated with subjective well-being 136 

(FDR<0.05, Supplementary Table 7).  137 

We next evaluated how genetic effects detected in the MVP cohort predicted internalizing 138 

outcomes in MHQ responders and non-responders (Fig. 3 and Supplementary Fig. 2). The MHQ non-139 

responders generally had greater PRS z-scores and R2 relative to the responders (Supplementary Table 140 

8). The PCL-6 phenotype variance explained was notably greater in the MHQ non-responders (e.g., MHQ 141 
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responders minimum P-value=2.93x10-21, variance explained (R2)=0.063% and MHQ non-responders P-142 

value=2.86x10-40, R2=0.092%, PT=1x10-5 at PT=1x10-5) likely reflecting greater statistical power due to the 143 

PTSD informativeness of the MHQ non-responder sample. Regression coefficients for GAD and PTSD 144 

PheRS and predicted case-control status presented similar power improvements in the no-MHQ cohort 145 

(Supplementary Table 8). Due to complete sample overlap between UKB depression data and the MVP 146 

broad depression GWAS,3 PRS were not performed for predicted PHQ-9.  147 

 148 

Gene Discovery through Meta-Analysis 149 

High genetic correlation and strong polygenic prediction between MHQ responder and non-150 

responder GWAS support the reliability of the genetic information derived from MHQ non-responders. 151 

Accordingly, we combined the predicted data (MHQ non-responder) with the direct-report information 152 

(MHQ responder) available for GAD and PTSD. First, we meta-analyzed the UKB MHQ responders and 153 

non-responders to describe how using the entire UKB enhances gene discovery. Second, we meta-154 

analyzed the two UKB cohorts with other available datasets. Here, we present data from the meta-155 

analysis of UKB MHQ responders, non-responders, and MVP subjected to multi-trait conditioning with 156 

neuroticism. Results from meta-analyses not subjected to multi-trait conditioning with neuroticism are 157 

provided in Supplementary Material and should be interpreted with the expectation that much of the 158 

detected signal may be attributable to genetic liability to neuroticism. Results of meta-analyzed 159 

depression (UKB only) offered no increase in sample size or h2 relative to MVP broad depression,3 and 160 

therefore was omitted from in silico analyses.  161 

Quantitative traits and PheRS revealed slightly different risk loci for each outcome 162 

(Supplemental Table 9 and Supplementary Fig. 1) but these differences may reflect random sampling 163 

noise as there was no statistical difference in the genome-wide significant variants effects 164 

(Supplementary Table 10). Applying a genome-wide multiple testing correction (P<5x10-8), we 165 
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discovered (i) 10 and 12 risk loci for GAD when meta-analyzing with GAD-7 and GAD-7 PheRS, 166 

respectively and (ii) 32 and 26 risk loci for PTSD when meta-analyzing with PCL-6 and PCL-6 PheRS, 167 

respectively. We defined a credible set of likely causal loci: 70% of GAD-7 loci, 50% of GAD-7 PheRS loci, 168 

46.8% of PCL-6 loci, and 23.1% of PCL-6 PheRS loci (Supplementary Table 11). Some loci that positionally 169 

mapped (2-kb windows; 1-kb window on both sides to capture cis-regulatory effects)19 to genic regions 170 

have prior evidence of involvement in GAD (e.g., PHF2-rs12376738 and resistance to depression- and 171 

anxiety-like symptoms20 and memory consolidation21), PTSD (e.g., IL2-rs45510091 and low dose cytokine 172 

treatments to reverse anxious symptoms), or related symptoms.22  173 

After study-wide multiple testing correction (Padj<1.25x10-8 = 5x10-8/2 traits/2 definitions of each 174 

trait), 7 and 6 loci were associated with GAD based on meta-analyses with GAD-7 and GAD-7 PheRS, 175 

respectively and 22 and 19 loci were associated with PTSD based on meta-analyses with PCL-6 and PCL-6 176 

PheRS, respectively (Fig. 4 and Supplementary Tables 9 and 10). Six genes were positionally mapped to 177 

genomic risk loci detected in GAD and PTSD GWAS: ADAD1-IL2-IL21-KIAA1109 gene cluster, CRHR1-178 

MAPT-NSF-PLEKHM1-WNT3 gene cluster, FAM120-FAM120AOS-PHF2 gene cluster, MAD1L1, SOX6, and 179 

TMEM106B. 180 

Out-sample PRS and functional annotation in the following sections were performed using the 181 

most powerful conditioned meta-analysis for each outcome (i.e., highest h2 z-score): meta-analysis of 182 

GAD using GAD-7 PheRS (h2=2.96%, s.e.=0.16, P=2.06x10-76) and meta-analysis of PTSD using PCL-6 183 

PheRS (h2=4.08%, s.e.=0.18, P=8.86x10-114; Fig 3. and Supplementary Table 12). 184 

 185 

Out-Sample PRS 186 

Out-sample PRS were calculated two ways. First, we evaluated overlap between the meta-187 

analyses from this study with previous GWAS of anxiety and PTSD traits from FinnGen 188 

(KRA_PSY_ANXIETY N=15,770 cases and 161,129 controls; F5_PTSD N=781 cases and 161,390 controls), 189 
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the PGC (PTSD v1 N=2,424 cases and 7,113 controls)23, and ANGST (N=17,310).24 At all P-value 190 

thresholds (PT), GAD and PTSD GWAS from this study predicted all out-sample GWAS (P<0.05; 191 

Supplementary Table 13). The maximum association for each trait was: GAD versus FinnGen 192 

KRA_PSY_ANXIETY (R2=0.029%, PT=0.1, P=2.34x10-13) and PTSD versus PGC PTSD v1 (R2=0.006%, PT=0.3, 193 

P=6.03x10-4). 194 

Second, GAD and PTSD meta-analyses were used to predict GAD and PTSD symptoms in 195 

individual-level data from the Philadelphia Neurodevelopmental Cohort25, 26 and Yale-Penn27, 28 (Fig. 5). 196 

All PRS models were significant with at least one PT (P<0.05) but GAD (R2=0.103%, PT=5x10-8, P=0.015) 197 

and PTSD meta-analyses (R2=0.874%, PT=1x10-7, P=1.57x10-4) best predicted corresponding symptoms in 198 

the PNC. 199 

 200 

Prenatal Transcriptomic Enrichment  201 

GWAS of GAD and PTSD were enriched for loci associated with multiple brain tissues 202 

(Supplementary Table 14). Brodmann Area 9 (BA9, a component of the dorsolateral prefrontal cortex) 203 

was enriched in both traits (GAD β=0.022, s.e.=0.007, P=9.07x10-4; PTSD β=0.030, s.e.=0.007, P=2.85x10-204 

5). Each GAD and PTSD GWAS also was associated with transcriptomic profiles from the prenatal 205 

developmental stage (Fig. 6): GAD and late-mid prenatal tissue (β=0.041, s.e.=0.014, P=0.003); PTSD and 206 

late-mid prenatal tissue (β=0.042, s.e.=0.015, P=0.003; Supplementary Table 15). We attribute these 207 

enrichments to greater sample size and improved power relative to prior studies rather than multi-trait 208 

conditioning with neuroticism score as evidenced by detection of concordant enrichments in the 209 

unconditioned results (Supplementary Tables 14 and 15). 210 

To investigate further the enrichment of prenatal tissue effects, we performed 3-D chromatin-211 

aware gene-based association of GAD and PTSD GWAS using fetal brain tissue. We uncovered 135 GAD 212 

and 927 PTSD associated genes (FDR<0.05) in the context of fetal chromatin interactions including 213 
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CRHR1 (GAD P=1.54x10-5; PTSD P=1.75x10-8), THSD7A (GAD P=1.27x10-8; PTSD P=1.29x10-7), and LAMB2 214 

(GAD P=5.16x10-5; PTSD P=4.44x10-7). After study-wide multiple testing correction (FDR<0.05), 86 and 215 

584 genes were associated with GAD and PTSD, respectively (Supplementary Table 16). 216 

Consistent with tissue and 3-D chromatin analyses, cell-type enrichments reinforce the 217 

contribution of prenatal development in the liability for GAD and PTSD outcomes (Supplementary Table 218 

17 and 18). GAD and PTSD GWAS were enriched for independent signals from post-conception 219 

prefrontal cortex neurons.29 In PTSD, two brain cell types had cross-dataset significant effects: 220 

GABAergic neurons from gestational week 26 (GW26) prefrontal cortex tissue (β=0.041, s.e.=0.012, 221 

P=2.64x10-4) and from the midbrains of 6-to-11-week-old embryos (β=0.246, s.e.=0.050, P=5.58x10-7). In 222 

GAD, the same two cell types were observed but did not survive multi-trait conditioning with 223 

neuroticism. Cross-data set analyses support partial independence of these signals with primary effects 224 

from 6-to-11-week-old midbrain neurons (proportional significance of midbrain GABAergic neurons 225 

given prefrontal cortex GABAergic neurons: PSMid_NbGaba,GW26_Gaba=0.700; PSGW26_NbGaba,Mid_Gaba=0.269).19  226 

 227 

Drug Targets and Repositioning 228 

 We investigated two means of drug targeting for the GAD and PTSD outcomes studied. First, we 229 

tested for rg and evidence of latent causal effects (LCV) between GAD, PTSD, and medication use 230 

GWAS.30, 31 GAD and PTSD GWAS were most strongly genetically correlated with opioid use (GAD 231 

rg=0.530, s.e.=0.035, P=1.08x10-50; PTSD rg=0.603, s.e.=0.028, P=1.27x10-100) and antidepressant use 232 

(GAD rg=0.597, s.e.=0.041, P=1.94x10-48; PTSD rg=0.632, s.e.=0.035, P=3.23x10-74). There were no 233 

significant differences in medication use rg due to multi-trait conditioning with neuroticism 234 

(Supplementary Table 19). We detected a single putative causal relationship (FDR<0.05) between use of 235 

vasodilators and GAD (genetic causality proportion=0.093, s.e.=0.285, P=1.04x10-4; Supplementary Table 236 

20). Two-sample Mendelian randomization based on non-overlapping datasets (MVP GAD two-item 237 
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questionnaire and UKB “use of vasodilators”) was insufficiently powered to confirm this causal 238 

hypothesis (Supplementary Results and Supplementary Table 21).  239 

 Second, we applied gene-ontology based drug repurposing. Gene-ontology enrichments were 240 

performed by mapping each LD-independent locus to a single gene to avoid redundant signals from 241 

nearby genes. Relative to the lead SNP in each LD-independent genomic risk locus we retained the 242 

nearest gene with the highest probability of loss of function intolerance (9 GAD and 17 PTSD genes; 243 

Supplementary Table 22) and detected 87 GAD and 28 PTSD gene-sets (FDR<0.05, Padj=4.55x10-6 based 244 

on 72,394 human gene sets,32 Supplementary Table 23). Forty-five drugs were nominally associated with 245 

both GWAS (Supplementary Table 24) highlighting compounds with evidence as treatment for anxiety 246 

disorders (e.g., dexpropranolol33, 34 GAD P=0.006, EScore=0.308; PTSD P=0.032, EScore=0.434). After 247 

multiple testing correction (FDR<0.05 applied per trait) we uncovered (i) upregulation of GAD gene-sets 248 

in the context of aminohippuric acid, a putative biomarker of depression and anxiety disorders 249 

(P=1.08x10-5, EScore=0.917).35 250 

Discussion 251 

Extremely large cohorts are required to discover polygenic signals associated with anxiety12, 24, 36, 252 

37 and PTSD.4, 5, 23, 38 Biobanks, such as UKB, offer a unique opportunity to boost sample size, power, and 253 

trait ascertainment homogeneity. In practice, studying mental health in the UKB is limited by the 254 

number of MHQ responders (only 31% of participants8, 11, 12) and the non-random missingness in the 255 

questionnaire participation. Due to the large proportion of missingness in the UKB MHQ, we aimed to 256 

maximize the sample size informative for GAD and PTSD by predicting quantitative and case-control 257 

phenotypes using elastic net regression in the UKB MHQ non-responders, then using the predicted traits 258 

in GWAS. We extend this prediction by using elastic net regression weights to calculate co-phenome 259 

PheRS.  260 
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We found that predicted GAD and PTSD outcomes and co-phenome PheRS reliably capture the 261 

genetic architecture of these traits of interest. Unsurprisingly, neuroticism score was a major correlate of 262 

each outcome and contributed substantial predictive power to the elastic net regression. We showed 263 

that in the context of income and internalizing spectrum psychopathologies, higher neuroticism scores 264 

were paradoxically associated with higher probability of participating in the MHQ. However, this effect 265 

appears to be driven by UKB participants with low-to-medium GAD-7 scores. While models of MHQ 266 

participation included GAD-7, PCL-6, and PHQ-9, all of which rely on the neuroticism score in their elastic 267 

net prediction, we captured independent effects such that accounting for GAD-7 changes the effect 268 

direction of neuroticism in a way that PCL-6 and PHQ-9 do not. This indicates that the change in the 269 

effect direction is not an artifact of co-phenome prediction and is also consistent with prior evidence of 270 

a two-factor model of neuroticism.39 The effect of neuroticism on MHQ participation may be due to 271 

liability of a subtype rather than neuroticism more broadly. Our data suggest that the interplay between 272 

neuroticism and GAD directly affect the MHQ participation bias. This could be due to the elevated 273 

anxiousness/tenseness elements rather than worry/vulnerability elements of neuroticism.39 Neuroticism 274 

is a transdiagnostic psychosocial factor, and this observation may indicate that (i) MHQ responders are 275 

characterized by less severe internalizing symptoms, (ii) MHQ responders may over-report the severity 276 

of these symptoms, and (iii) MHQ responders represent a subset of the UKB of greater socioeconomic 277 

status than non-responders.39, 40 We initially hypothesized that prior internalizing studies in the UKB 278 

were under powered due to sample size but the data reported here support a more refined hypothesis. 279 

Following previous evidence of a two-factor model of neuroticism, the depletion of a subtype (e.g., 280 

worry/vulnerability factor) in MHQ responders relative to non-responders may at least partially explain 281 

why previous GWAS of anxiety and PTSD traits in the UKB had only limited success and perhaps 282 

reinforces the relationship between neuroticism subtype, socioeconomic status, and mental health.17, 39 283 

We leverage the higher neuroticism scores of MHQ non-responders to more than double the sample size 284 
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upper limit for GWAS of GAD and PTSD outcomes while enriching the sample for individuals with 285 

objectively more severe symptoms. This procedure resulted in detection of more than twice the 286 

genomic risk loci associated with anxiety and PTSD relative than any of the previous studies.  287 

Meta-analyses using PheRS were more powerful than meta-analyses using predicted 288 

quantitative traits. Though h2 differences between PheRS and quantitative outcomes were relatively 289 

small, we hypothesize that PheRSs capture slightly more accurate information about each trait because 290 

they are derived from tangential responses to questions not ascertained in the context of mental health 291 

(i.e., as part of the MHQ). In other words, studying the genetic liability of PheRS in combination with a 292 

directly ascertained quantitative symptom count may help reduce analytic noise associated with self-293 

reported symptoms.41  294 

 Several approaches to risk locus functional annotation converged on fetal/prenatal biology. 295 

These findings are interesting given the childhood to mid-adult onset of internalizing disorders.42 We 296 

attribute this observation to the statistical power increases due to a larger sample size rather than multi-297 

trait conditioning with neuroticism.16, 17 Consistent with previous studies,43, 44 the dorsolateral prefrontal 298 

cortex (DLPFC) was identified here as a tissue of interest for GAD and PTSD by GTEx tissue-wide analysis. 299 

We extended these observations to cell-type and 3-D chromatin interaction data to detect gestational 300 

week GABAergic neurons and several key genes of interest with significant effects in fetal brain tissue 301 

(GAD: TMEM106B; PTSD: CRHR1, LAMB2). In a prior single-cell RNA-seq study of the DLPFC (N=1,057 302 

neurons), late gestational periods detected in our study were most enriched for genes related to axon 303 

guidance, neuron differentiation, axonogenesis, and regulation of neuron projection development.29, 45  304 

 We utilized the improved power of our meta-analyses to identify potential drug targets and/or 305 

drugs that induce anxiety and/or PTSD symptoms as adverse effects. The strongest genetic correlate of 306 

each trait was antidepressant use. We also detected a relationship between use of vasodilators and GAD 307 

using the LCV approach that could not be confirmed using a two-sample MR approach but has been 308 
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detected by prior epidemiology research.46 The partial causal effect size of vasodilator use on GAD was 309 

small, so MR might be under-powered to detect this result considering (i) the requirement for non-310 

overlapping samples and (ii) biases in LCV estimates in the presence of strong pleiotropic effects among 311 

highly polygenic traits.31 The discordance between these methods may reflect a causal relationship 312 

between GAD and vasodilator use that transcends a genetically-regulated molecular relationship (e.g., 313 

regulatory or proteomic elements).  314 

The results from our study recapitulate and expand prior findings on the biology of GAD and 315 

PTSD but there are several key limitations to be considered. First, while capturing very similar genetic 316 

liability to GAD and PTSD, the elastic net-predicted phenotypes used in meta-analyses were weakly 317 

correlated with corresponding known GAD-7 and PCL-6 scores among UKB responders. Thus, there is no 318 

utility of these values for epidemiological studies of GAD or PTSD. However, they are valuable in genetic 319 

studies that aim to uncover biological mechanisms underlying psychopathology. Second, our study is 320 

restricted to participants of European ancestry and may/may not generalize to individuals of other 321 

ancestries. This lack of proven generalizability may be attributed both to genetic differences and 322 

documented variability in how racial and ethnic groups access and experience healthcare systems.47 In 323 

future work, our group and others will aim to recognize and reduce these health disparities using 324 

carefully tailored co-phenomes for these populations.13 Third, machine learning (i.e., elastic net 325 

regression) identifies patterns in data, not necessarily trait relationships. Thus, our analysis identified 326 

mathematically informative and biologically meaningful relationships with which to predict GAD and 327 

PTSD symptoms. However, these features, their predictive patterns, and the regression weights 328 

reported here may not translate outside the UK Biobank. Future studies will need to investigate how 329 

well PheRS created in one cohort may generalize to other cohorts. Finally, solutions to non-random 330 

missingness can be influenced by the proportion of missingness in a given dataset. Our data support the 331 

non-random nature of UKB MHQ missingness with respect to certain features of mental health (e.g., 332 
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higher neuroticism scores) but this attribute of data missingness may not generalize to other biobanks. 333 

Future work on the generalizability of these findings will require detailed investigation of the type of 334 

missingness observed, its proportion relative to non-missing data, and how best to fill those gaps 335 

including the utility of other machine learning and/or imputation pipelines.  336 

The elastic net predicted phenotypes derived here permit studies of GAD and PTSD in the whole 337 

UKB cohort. Our results provide one roadmap by which the community may improve sample size, and 338 

statistical power, for enhanced risk locus discovery in the context of incompletely ascertained traits in 339 

the UKB and other biobanks with limited mental health assessment. We use these data to present 340 

biological underpinnings uncovered from analysis of the largest GWAS meta-analysis of these traits to 341 

date. 342 

Online Methods 343 

Participants 344 

 The UKB is a large population-based cohort of over 502,000 participants between the ages of 37 345 

and 73 at the time of recruitment. UKB assesses a wide range of factors in a generally healthy cohort 346 

including physical health, anthropometric measurements, circulating biomarkers, and sociodemographic 347 

characteristics. A subset of individuals (N=157,366) completed an ancillary online mental health 348 

questionnaire (MHQ)11 covering topics of self-reported mental health and well-being.  349 

 350 

GAD-7 Definition 351 

 GAD-748 represents the summed score of seven questions from the UKB MHQ all of which are 352 

ranked by participants from 1=”Not at all,” 2=”Several days,” 3=”More than half the days,” to 4=”Nearly 353 

every day” with respect to how frequently they have been bothered by a given problem over the last 354 

two weeks. GAD-7 symptom items are Field ID 20505 “recent easy annoyance of irritability,” Field ID 355 
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20506 “recent feelings of nervousness or anxiety,” Field ID 20509 “recent inability to stop or control 356 

worrying,” Field ID 20512 “recent feelings of foreboding,” Field ID 20515 “recent trouble relaxing,” Field 357 

ID 20516 “recent restlessness,” and Field ID 20520 “recent worrying too much about different things.11” 358 

The mean GAD-7 score among UKB MHQ responders of European ancestry was 8.97 ± 3.09 (N=124,534). 359 

GAD-7 scores were stratified into current anxiety symptoms cases and controls using a cutoff threshold 360 

of GAD-7 ≧ 10 (Ncase = 81,072; Ncontrol = 108,811).12 361 

 362 

PCL-6 Definition 363 

PCL-649 represents the summed score of six questions from the UKB MHQ. Five questions are 364 

ranked by participants from 0=”Not at all,” 1=”A little bit,” 2=”Moderately,” 3”Quite a bit,” to 365 

4=”Extremely” with respect to a list of problems and complaints experienced in response to extremely 366 

stressful experiences over the past month. One questions (Field ID 20508) was ranked by participants 367 

from 1=”Not at all,” 2=”Several days,” 3=”More than half the days,” to 4=”Nearly every day” with 368 

respect to how frequently they have been bothered by a given problem over the last two weeks.  PCL-6 369 

symptom items are Field ID 20494 “felt irritable or had angry outbursts in past month,” Field ID 20495 370 

“avoided activities or situations because of previous stressful experience in past month,” Field ID 20497 371 

“repeated disturbing thoughts of stressful experience in past month,” Field ID 20498 “felt very upset 372 

when reminded of stressful experience in past month,” and Field ID 20508 “recent trouble concentrating 373 

on things.11” The mean PCL-6 score among UKB MHQ responders of European ancestry was 6.59±3.68 374 

(N=126,219). PCL-6 scores were stratified into cases and controls using a cutoff threshold of PCL-6>13 375 

(Ncase=3,663; Ncontrol=181,232).4 376 

 377 

PHQ-9 Definition 378 
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PHQ-948 represents the summed score of nine items from the UKB MHQ the UKB MHQ all of 379 

which are ranked by participants from 1=”Not at all,” 2=”Several days,” 3=”More than half the days,” to 380 

4=”Nearly every day” with respect to how frequently they have been bothered by a given problem over 381 

the last two weeks. PHQ-9 MHQ items are Field ID 20507 “recent feelings of inadequacy,” Field ID 20508 382 

“recent trouble concentrating,” Field ID 20510 “recent feelings of depression,” Field ID 20511 “recent 383 

poor appetite or overeating,” Field ID 20513 “recent thoughts of suicide or self-harm,” Field OD 20514 384 

“recent lack of interest or pleasure in doing things,” Field ID 20517 “trouble falling or staying asleep, or 385 

sleeping too much,” Field ID 20518 “recent changes in speed/amount of moving or speaking,” Field ID 386 

20519 “recent feelings of tiredness or low energy.11” The mean PHQ-9 score among UKB Europeans who 387 

completed the MHQ was 11.73±3.67.  388 

 389 

Million Veteran Program Phenotypes 390 

 GAD-2 represents the summed score of self-report responses to two-questions regarding how 391 

bothered they felt by the following problems: (i) feeling nervous, anxious, or on edge and (ii) not being 392 

able to stop or control this worrying. Each question was ranked from 0=”Not at all” to 3=”Nearly every 393 

day” and was contextualized with feelings experienced over the two weeks prior to responding. The 394 

GAD-2 GWAS consisted of 175,163 participants of European ancestry producing an estimated GAD-2 395 

h
2=5.75%±0.42.36 396 

 PCL-Total (or PCL-17) is the summed score of 17 questions about the extent to which a 397 

participant has been affected by a given experience. Each question was ranked from 1=”Not at all” to 398 

5=”Extremely” with respect to experiences over the past month. The PCL-Total GWAS consisted of 399 

186,689 participants of European ancestry producing an estimated GAD-2 h2=8.84%±0.48.5 400 

 The GWAS of broad depression3 included 1,154,267 individuals from the MVP, 23andMe Inc., 401 

UKB, and FinnGen.1, 50 The MVP cohort included cases with at least one inpatient code or two outpatient 402 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted July 15, 2021. ; https://doi.org/10.1101/2021.07.13.21260369doi: medRxiv preprint 

https://doi.org/10.1101/2021.07.13.21260369


21 
 

codes for major depressive disorder and controls with no record or in- or outpatient codes for 403 

depression. Subjects with only one outpatient depression code were excluded. Eighteen ICD codes were 404 

considered for case inclusion. The h2 of broad depression in this large meta-analysis was 11.3%±0.38. 405 

 406 

First-Pass Feature Selection  407 

 The UKB contains thousands of potentially informative phenotypes for predicting a given 408 

outcome. We narrowed our focus to a subset of these with which to perform elastic net regression (see 409 

Elastic Net Regression Parameter Optimization). We selected phenotypes with more than 200,000 410 

responses, not part of the MHQ, and lacking highly dimensional structure (e.g., ICD-9/10 codes, 411 

medication endorsements (Field ID 20003)), and those attributes available through special requests 412 

(e.g., greenspace (Field ID 24500) and water percentages (Field ID 24502)). The final feature set included 413 

772 phenotypes.  414 

 415 

Elastic Net Regression Parameter Optimization 416 

To focus the selection of co-phenome features, we tested for phenome-wide Spearman correlations 417 

between GAD-7 and PCL-6 and all 772 features in the UKB MHQ responders of European ancestry (total 418 

N=132,016). Removing related individuals was done per trait such that the member of each related pair 419 

with the larger symptom count could be retained.  Using the magnitude of rho for all nominally 420 

significant features of the phenome, we performed elastic net regression three ways to determine 421 

optimal model parameters with which to predict GAD-7 and PCL-6 in the UKB sample lacking MHQ data. 422 

Three training and test proportions (25%train|75%test, 50%train|50%test, and 75%train|25%test) were tested 423 

for four thresholds of rho used to include features in the regression: ρ>0.3, >0.25, >0.2, >0.15. Elastic net 424 

regression was performed with the glmnet R package51 for each parameter setting using standardized 425 

50-fold cross validation using the best-fit penalizing parameter lambda. Parameter combination success 426 
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was determined by comparing predicted GAD-7 and PCL-6 to MHQ-derived GAD-7 and PCL-6 using 427 

Spearman correlation. Test results are described in Supplementary Table 2. Using the optimal feature 428 

inclusion settings, feature weights (elastic net β) were extracted with which to calculate co-phenome 429 

risk scores (see Creation and Reliability of Co-Phenome Risk Score).  430 

 431 

Creation and Reliability of Co-Phenome Risk Scores 432 

 Phenotype risk scores were calculated as described previously.13 Briefly, we calculated GAD and 433 

PTSD risk scores as the weighted sum of the co-phenome. Each phenotype was weighted by the effect 434 

size obtained from 50-fold cross validation elastic net regression. GAD and PTSD co-phenome 435 

����� �  ∑ 	�
�,�
��
��� , where Np is the number of comorbid phenotypes determined by Spearman ρ, xi,p 436 

is set to 0 if the trait response was coded as missing, “prefer not to answer,” or a comparable derivative 437 

indicating a non-answer to the UKB question and wp is the effect size (β) obtained from elastic net 438 

regression.  439 

We determined the reliability of predicted GAD and PTSD outcomes and co-phenome PheRS 440 

several ways. First, within the MHQ responders and MHQ non-responders, we correlated quantitative 441 

outcomes, co-phenome PheRS, and categorical diagnoses. Second, based on GWAS of each GAD and 442 

PTSD outcomes, we performed genetic correlation within and between MHQ responders and MHQ non-443 

responders. As a positive control with positive rg, we included the GWAS of neuroticism from the Social 444 

Science Genetic Association Consortium (SSGAC);16 as a positive control with negative rg, we included 445 

the GWAS of subjective well-being from SSGAC.16 Third, we calculated polygenic risk scores for each 446 

unrelated European-ancestry participant in the UKB using GAD-2 (GWAS N=199,611)36 and PTSD PCL-17 447 

(GWAS N=186,689)5 from the Million Veteran Program (MVP). To our knowledge, these GWAS represent 448 

the largest and most powerful genetic assessments of GAD and PTSD outcomes with no known overlap 449 

with UKB. PRS were calculated with PRSice v252 with the following clumping parameters to select linkage 450 
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disequilibrium independent variants: r2=0.001, P=1, in 10,000-kb windows. The range of GAD SNPs 451 

included in the PRS at minimum and maximum P-values thresholds (PT) was 5 (PT=5x10-8) to 4,060 (PT=1); 452 

the range of PTSD SNPs included in the PRS at minimum and maximum P-value thresholds: 14 (PT=5x10-453 

8) to 10,264 (PT=1). Relationships between PRS, co-phenome PheRS, quantitative outcomes, and case-454 

control diagnoses were tested using age, sex, age×sex, and the first ten within-ancestry principal 455 

components as covariates.  456 

 457 

Modeling MHQ Participation 458 

 We build a logistic regression model of MHQ participation using UKB participants who 459 

completed the online MHQ (Supplementary Table 5a). To evaluate the effects of each predictor, we 460 

estimated predicted probabilities of MHQ participation using the R package effects.53 In R, the top 461 

two predictors of MHQ participation were sampled 100 times at each stratum of neuroticism score 462 

(range 0-12). Multicollinearity among model predictors was tested using mctest.54 Briefly, mctest 463 

computes overall (i.e., model-level) and individual (i.e., variable-level) multicollinearity diagnostics. The 464 

package therefore permits the identification of which predictors are the source of collinearity. 465 

 466 

GWAS of GAD and PTSD Co-Phenome Risk Scores and Predicted Outcomes 467 

 Genotyping and imputation of the UKB cohort has been previously described.8 Briefly, UKB 468 

participants were genotyped using custom Axiom array with marker content chosen to capture genome-469 

wide genetic variation and short insertion/deletions, including coding variants across a range of minor 470 

allele frequencies and markers providing good coverage for imputation in European ancestry 471 

populations. UKB was imputed using the Haplotype Reference Consortium reference panel.  472 

 Genome-wide association studies (GWAS) of GAD and PTSD were performed in two ways: (i) in 473 

the subset of UKB MHQ responders and (ii) in the UKB MHQ non-responders using predicted GAD and 474 
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PTSD outcomes. For this study, all GWAS were restricted to UKB participants of European ancestry as 475 

identified by a two-stage ancestry assignment and pruning procedure from the Pan-UKB. Briefly, PCA 476 

was performed on unrelated individuals from a combined reference panel from the 1000 Genomes 477 

Project and Human Genome Diversity Project. A random forest classifier was trained to assign 478 

continental ancestry assignments based on six principal components. Unknowns from the UKB were 479 

assigned to an ancestry group if their random forest probability was >50%. This list was further refined 480 

to remove ancestry outliers based on within-population PC distances from 3-5 centroids. Detailed 481 

description of these methods is provided at https://pan.ukbb.broadinstitute.org/docs/technical-482 

overview.   483 

Linear regression was performed in PLINK 2.0 using SNPs with imputation INFO scores > 0.8, 484 

minor allele frequencies > 0.01, missingness < 0.05, and Hardy-Weinberg equilibrium P-values > 1x10-10. 485 

We included age, sex, age×sex, and the first ten within-ancestry principal components as covariates in 486 

each GWAS. GWAS of each trait were meta-analyzed with the MVP counterpart GWAS using METAL.55 487 

Per meta-analyzed GWAS, we applied a genome-wide significance threshold of 5x10-8. To account for 488 

multiple testing correction, we also considered a study-wide significance threshold of 1.25x10-8 = 489 

0.05/1,000,000 LD independent SNPs in EUR/2 meta-analyses/2 internalizing traits.  490 

 491 

Locus Fine-mapping 492 

We fine-mapped the association statistics of four phenotypes (GAD and PTSD phenotype risk 493 

scores and two quantitative outcomes) for a 1MB region around the LD-independent significant SNPs as 494 

identified by FUMA (FUnctional Mapping and Annotation (FUMA v1.6a; r2=0.6 in 2-kb windows; 1-kb 495 

window on each side19). Each region for the respective association was fine-mapped to determine the 496 

95% credible set using susieR56 with at most 10 causal variants. The credible set reports whether each 497 

identified variant is among a set of most likely causal variants and the marginal posterior inclusion 498 
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probability (PIP) for causal set membership. PIPs range from 0 to 1 with values closer to 1 indicating 499 

greater causal probability. 500 

 501 

LDSC and SNP-based Heritability 502 

 Observed-scale heritability was calculated for each GWAS using Linkage Disequilibrium Score 503 

Regression (LDSC)30 with the 1000 Genomes Project European ancestry reference LD panel. LDSC also 504 

was used to calculate (i) genetic correlation between GWAS in MHQ responders and MHQ non-505 

responders, (ii) genetic correlation between GAD and PTSD outcome GWAS from the UKB and MVP, and 506 

(iii) genetic correlation between medication use traits from UKB and meta-analyzed GAD and PTSD 507 

outcomes (i.e., UKB + MVP). Liability-scale h2 estimates were generated using the sample case 508 

prevalence (Supplementary Table 6) and population-prevalence as following: GAD = 16%,57 PTSD = 7%,58 509 

MDD = 20%.59 510 

 511 

Functional Annotation 512 

 GAD and PTSD outcome liability loci were positionally mapped with Multi-marker Analysis of 513 

GenoMic Annotation (MAGMA v1.08) implemented in FUMA v1.6a60 using 2-kb positional mapping 514 

around each lead SNP.19 Linkage disequilibrium independent genomic risk loci are defined by their lead 515 

SNP (P<5x10-8) and all surrounding SNPs with r2>0.6 with the lead SNP.  516 

 Enrichment of tissue transcriptomic profiles was tested relative to Genotype-Tissue Expression 517 

(GTEx v861) 53 tissue types and the BrainSpan Atlas of the Developing Human Brain62 29 brain ages 518 

ranging from 8 weeks post-conception to 40 years old and 11 general developmental stages of the brain 519 

ranging from early prenatal to middle adulthood.  520 

 Cell-type transcriptomic profile enrichments were performed using 13 human-specific 521 

transcriptomic profile datasets related to the brain: PsychENCODE_Developmental, 522 
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PsychENCODE_Adult, Allen_Human_LGN_level1, Allen_Human_LGN_level2, Allen_Human_MTG_level1, 523 

Allen_Human_MTG_level2, DroNc_Human_Hippocampus, 524 

GSE104276_Human_Prefrontal_cortex_all_ages, GSE104276_Human_prefrontal_cortex_per_ages, 525 

GSE67835_Human_Cortex, GSE67835_Human_Cortex_woFetal, 526 

Linnarson_GSE101601_Human_Temporal_cortex and Linnarson_GSE76381_Human_Midbrain. Cell-type 527 

transcriptomic profiles were assessed in three ways as per the FUMA analysis pipeline: (1) enrichment of 528 

cell-type transcriptomic profiles within each selected dataset, (2) within-dataset conditionally 529 

independent cell-type transcriptomic profile enrichments and (3) across-dataset cell-type transcriptomic 530 

profile enrichments.19 531 

For analyses within datasets, cell type conditional significance is evaluated per dataset against P-532 

values for all other cell types in that dataset. The output from these analyses identify cell types within a 533 

dataset whose transcriptomic profiles are enriched in a given GWAS independently of the signal from all 534 

other cell-type transcriptomic profiles in the same dataset. 535 

Cell types from the same dataset may be similar. Using within-dataset significant cell types 536 

identified above, conditional analysis identifies cell-type transcriptomic profiles enriched in a given 537 

GWAS independent of all other cell types from the selected dataset by setting thresholds for 538 

proportional significance (PS) of the conditional P-value of a cell type relative to the marginal P-value. PS 539 

and conditional independence of cell-type pairs indicate that enrichment of these cell types in a given 540 

GWAS is driven by independent genetic signals. The PS of cell type a given cell type b is ���,� �541 

	
���
���,��

	
���
����
 where Pa is the marginal P-value for cell-type a using the baseline model of cell-type 542 

enrichment (�� �  �
 
 ����� 
  ��� 
 ��� 
 �) and Pa,b is the conditional P-value for cell-type a 543 

given the effects of cell-type b (��,� �  �
 
  ����� 
 ���� 
  ��� 
 ��� 
 �). For a given pair of cell 544 

types, PSa,b ≥ 0.8 and PSb,a ≥ 0.8 indicates independent genetic signals for cell types a and b. 545 
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Interpretation of additional PS thresholds for each cell type in a given pair can be seen in detail online 546 

(https://fuma.ctglab.nl/tutorial#celltype) or in Watanabe et al.19 547 

Conditional analyses may also be applied across datasets using all possible combination of 548 

within-data set independent signals. Similar to conditioning within a dataset, the cross-data conditional 549 

P-value of a cell type is compared to the cross dataset marginal P-value for the same cell type, resulting 550 

in a cross-dataset PS value.  551 

 552 

Medication Use GWAS 553 

 Twenty-three GWAS of medication use were evaluated for genetic overlap and causal 554 

relationships with GAD and PTSD. Each medication use GWAS63 tested for association between 555 

approximately 7 million SNPs and the endorsement of medication in a category (e.g., diuretics, opioids, 556 

antidepressants, etc.) in more than 320,000 European ancestry participants from the UKB. Data may be 557 

accessed here: https://cnsgenomics.com/content/data. 558 

 The SNP-h2 of all 23 medication use GWAS were significantly different from zero; however, one 559 

(L04-Immunosuppressants) was insufficiently powered for genetic correlation (h2 z-score=3.28) as 560 

recommended by the LDSC developers. Twenty-two suitably powered medication use GWAS (h2 z-561 

score>4), were tested for genetic correlation with each trait based on the 1000 Genomes Project LD 562 

reference using LDSC.  563 

 Latent causal variable (LCV31) analysis infers genetic causal relationships between trait pairs 564 

using SNP effect size estimates or Z-scores from GWAS summary association data. The LCV model 565 

assumptions are notably weaker than traditional Mendelian randomization assumptions. First, LCV 566 

assumes that the distribution of effect sizes for a given trait pair represents one distribution of 567 

proportional effects in both traits and a second distribution of effects specific to the outcome trait. In 568 

other words, LCV assumes that symmetry in shared genetic architectures between traits arises from the 569 
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action of a latent genetic component rather than a non-genetic confounder commonly elucidated by 570 

MR. Second, LCV assumes a single latent factor mediating trait relationships; however, when more than 571 

one latent factor was simulated, LCV was unlikely to detect a causal effect. There are no assumptions of 572 

parametric effect size distributions under the LCV model, but LCV is less well powered for highly 573 

polygenic traits.  574 

LCV modelling was implemented in R using the 1000 Genomes Project phase 3 European 575 

reference panel. GWAS summary data were filtered to include only SNPs with minor allele frequencies 576 

greater than 5% and the major histocompatibility region was removed due to its complex LD structure. 577 

LCV model output distinguishes whether genetic correlations support genetic causation and the degree 578 

to which (that is, the gĉp) genetic risk for trait 1 is causal for trait 2. LCV gĉp estimates range from 0 to 1 579 

with values closer to 1 indicating full causality between two traits. Gĉp estimates were only interpreted 580 

for trait pairs where both traits exhibit LCV-calculated h2 Z-scores ≥7. 581 

 582 

Drug Repurposing 583 

Drug repurposing was performed using the Gene2drug computational tool.64 Gene2drug applies 584 

pathway-set enrichment analysis to a group of gene-sets to reveal pathways of genes up- or down-585 

regulated by a drug based on gene expression profiles from ConnectivityMap.65 Given a set of pathways 586 

or gene-sets, Gene2drug reports a P-value for the Kolmogorov-Smirnov statistic. Each drug is assigned 587 

an enrichment score (“EScore”) to describe the magnitude and direction of dysregulation with positive 588 

EScores indicating upregulation and negative EScores indicating downregulation.  589 

To select Gene Ontology terms as standard input for Drug2gene, we positionally mapped the 590 

lead SNP from each genomic risk locus to its nearest gene. When more than one gene mapped to a lead 591 

SNP, we prioritized retention of the gene with the greatest probability of loss of function intolerance. 592 
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This list of genes was submitted to ShinyGO.32 We extracted all significant GO terms after multiple 593 

testing correction (FDR<0.05, Padj=4.55x10-6 based on 72,394 human gene sets) as input for Gene2drug. 594 

 595 

External Cohort Polygenic Risk Scoring 596 

Yale-Penn participants were collected from five study sites in the eastern United States for 597 

studies of the genetics of substance dependence and anxiety traits using the Semi-Structured 598 

Assessment for Drug Dependence and Alcoholism (SSADDA).27, 28 Participants provided written informed 599 

consent through a protocol approved by the institutional review board at each participating site (Yale 600 

Human Research Protection Program (protocols 9809010515, 0102012183, and 9010005841), University 601 

of Pennsylvania Institutional Review Board, University of Connecticut Health Center Institutional Review 602 

Board, Medical University of South Carolina Institutional Review Board for Human Research, and the 603 

McLean Hospital Institutional Review Board).  604 

The Philadelphia Neurodevelopmental Cohort (PNC)
25, 26 consists of youths aged 8-21. PNC was 605 

designed to study the genomics of complex pediatric disorders but is not enriched for any specific 606 

disorder; the cohort is considered generally healthy. All participants underwent clinical assessment, 607 

including a neuropsychiatric structured interview and review of electronic medical records. They were 608 

also administered a neuroscience based computerized neurocognitive battery (CNB) and a subsample 609 

underwent neuroimaging. Clinical testing for each participant included (1) GOASSES (a modified version 610 

of the Kiddie-Schedule for Affective Disorders and Schizophrenia), demographic and medical history, 611 

Global Assessment of Functioning, and general interviewer observations, (2) a psychopathology 612 

symptom and criterion-related assessment of mood disorders, anxiety disorders, behavioral disorders, 613 

psychosis spectrum, eating disorders, suicidal thinking and behavior, and treatment history, and (3) an 614 

abbreviated form of the Family Interview for Genetics Studies to assess major domains of 615 

psychopathology in the proband’s first-degree relatives. A neurocognitive battery was performed for 616 
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each PNC proband to measure accuracy and speed of executive control functions, episodic memory, 617 

social cognition, and sensorimotor and motor speed. For a complete list of neurodevelopmental 618 

domains, see https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000607.v3.p2. 619 

We calculated PRS for each unrelated European participant of the Yale-Penn and PNC, for each 620 

GAD and PTSD symptoms: (i) reexperiencing (NPNC=2,796 (18% cases); NYale-Penn=1,117 (84% cases)) and 621 

self-reported anxiousness (NPNC=3,053 (58% cases); NYale-Penn=3,416 (25% cases)). Per cohort, European 622 

ancestry was defined by clustering principal components with the 1000 Genomes Project European 623 

reference population using the --cluster flag in plink. PRS were calculated in PRSice v252 with the 624 

following clumping parameters to select linkage disequilibrium independent variants overlapping 625 

between this study’s meta-analysis and the SNP arrays for each cohort: r2=0.001, P=1, in 10,000-kb 626 

windows. In Yale-Penn, we used between 1,546-1,570 SNPs LD-independent SNPs; in PNC, we used 627 

between 1,501-1,514 LD-independent SNPs. Association between PRS and internalizing symptom 628 

included age, sex, age×sex, and the first ten within-ancestry principal components as covariates. We 629 

tested 11 P-value thresholds for SNP inclusion: 5x10-8, 1x10-7, 1x10-6, 1x10-5, 1x10-4, 0.001, 0.05, 0.1, 0.3, 630 

0.5, 1. 631 

GWAS summary association data were retrieved from the Psychiatric Genomics Consortium,23 632 

Anxiety NeuroGenetics STudy (ANGST37), and the FinnGen initiative (Release 4; http://r4.finngen.fi/). 633 

With PRSice v1.2566 we performed a strict LD-clumping using r2=0.001, P=1, in 10,000-kb windows and 634 

testing 11 P-value thresholds: 5x10-8, 1x10-7, 1x10-6, 1x10-5, 1x10-4, 0.001, 0.05, 0.1, 0.3, 0.5, 1. 635 

 636 

Mendelian Randomization 637 

 We performed Mendelian randomization to test the relationship between vasodilator use and 638 

GAD using non-overlapping GWAS summary association data from Levey, et al. (GAD-2 in the MVP36) 639 

and Wu, et al. (vasodilator use in the UKB63). We performed two analyses in a bidirectional manner (e.g., 640 
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GAD-2�vasodilator use and vasodilator use�GAD-2): (i) using LD-independent genome-wide significant 641 

variants from the exposure GWAS (P<5x10-8) and (ii) using all LD-independent variants from the 642 

exposure GWAS. Similar to prior studies,67, 68, 69 we attempted a third MR instrument selection 643 

procedure using variants associated with the exposure at a P-value threshold producing the greatest 644 

polygenic prediction of the outcome (i.e., derived from PRS between exposure and outcome); however, 645 

this approach identified genome-wide significant threshold (P<5x10-8) as the most suitable threshold to 646 

test vasodilator�GAD-2. 647 

 MR relies on three assumptions about the genetic instrument: (i) SNPs are associated with the 648 

exposure variable, (ii) SNPs are not associated with confounding factors linking the exposure to the 649 

outcome, and (iii) SNPs are associated with the outcome only through its association with the exposure. 650 

Using the R package TwoSampleMR, we tested different MR methods: random-effect inverse variance 651 

weighted (IVW), MR-Egger, weighted median, simple mode, and weighted mode.70, 71, 72, 73 These 652 

different approaches have different sensitivities with respect to different causal scenarios. We also 653 

conducted sensitivity tests for the presence of horizontal pleiotropy in the genetic instrument (MR-654 

Egger regression intercept and MR-PRESSO (Pleiotropy RESidual Sum and Outlier) global test) and to 655 

investigate the heterogeneity of variants.74, 75 FDR multiple testing correction was applied to account for 656 

the number of MR tests performed.  657 

Data availability 658 

 All data used to generate figures for this study are provided as Supplementary Material. Elastic 659 

net weights are provided as Supplementary Material. GWAS summary data are accessible at 660 

10.5281/zenodo.4767570. This research has been conducted using the UK Biobank Resource 661 

(application reference no. 58146) and is available to bona fide researchers through approved access. 662 

Out-sample polygenic risk scoring utilized the Yale-Penn cohort (dbGaP Study Accession: 663 
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phs000425.v1.p1) and the Philadelphia Neurodevelopmental Cohort (dbGaP Study Accession: 664 

phs000607.v3.p2). The dbGAP data used herein is available for approved access download from dbGAP 665 

data request portal. 666 

Code availability 667 

Previously developed pipelines were used to produce the results for this study. No custom code 668 

was developed to generate the data used to draw any of our conclusions. 669 
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In-Text Figures  

 

Fig. 1 | Study design for understanding the genetic architectures of internalizing co-phenomes. 

Features (i.e., comorbid phenotypes) were correlated with GAD-7, PCL-6, and PHQ-9. Outcomes were 

predicted using elastic net regression in two ways: (i) each quantitative outcome was predicted as the 

dependent variable in elastic net regression and (ii) elastic net regression weights were used to calculate 

a co-phenome risk score.  

 

Fig 2. | Probability of MHQ survey participation. (a) Probability of participating in the MHQ survey 

based on neuroticism score and three samplings of GAD-7 (low = 7, medium = 14, high = 21). In (b), the 

relationship between GAD-7 and neuroticism scores. All data describing these effects are provided in 

Supplementary Table 5. 

 

Fig. 3 | Verifying the concordant genetic architectures of true and predicted internalizing outcomes. a, 

SNP-heritability (h2) of each internalizing outcome and the current largest unrelated sampling of a 

corresponding phenotype (GAD-2, PCL-17, and broad depression) after multi-trait conditioning with 

neuroticism. Each data point is the trait h2 point estimate and error bars represent the 95% confidence 

interval (CI) associated with each estimate.  b, Genetic correlation (rg) within and between internalizing 

outcomes derived from the Mental Health Questionnaire (MHQ responders) and those predicted in the 

MHQ non-responders of the UKB before (bottom left triangle) and after (top right triangle) multi-trait 

conditioning with neuroticism. Pale text indicates a phenotype from the MHQ non-responders and dark 

text indicates a phenotype from the MHQ responders. Each rg heatmap contains a positive control with 
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positive rg (largest Million Veteran Program (MVP) corresponding phenotype) and positive control with 

negative rg (subjective well-being) phenotype. All rgs survive multiple testing correction (FDR<0.05). 

 

Fig. 4 | SNP annotation of GAD and PTSD GWAS. The bottom row shows Manhattan plots for each trait. 

Two horizontal dashed lines in each plot show the genome-wide significance threshold per phenotype 

(P<5x10-8) and study-wide (Padj<1.25x10-8). Above each Manhattan plot are Combined Annotation 

Dependent Depletion (CADD) scores and RegulomeDB scores for each genome-wide significant locus.  

 

Fig. 5 | Out-sample polygenic prediction of relevant phenotypes. Maximum observed association (R2) 

between polygenic risk scores (PRS) for GAD and PTSD outcomes in this study and out-sample GAD and 

PTSD phenotypes from large consortia (ANGST, FinnGen, and PGC using summary-level PRS in PRSice 

v1.25) and individual-level cohorts informative for mental health outcomes (Philadelphia 

Neurodevelopmental Cohort (PNC) and Yale-Penn using PRSice v2). 

 

Fig. 6 | Prenatal transcriptomic signatures of GAD and PTSD outcomes. a, Enrichment of transcriptomic 

profiles from prenatal tissue based on BrainSpan 11 developmental stages. Each bar represents the 

results from one-sided tests for enrichment of a given transcriptomic profile. Effect size estimates (β) 

are color coded. Dashed horizontal lines indicate the significance threshold after multiple testing 

correction (FDR<0.05) across all tests. b, Manhattan plots of Hi-C coupled gene-based association 

studies of GAD and PTSD in fetal paracentral tissue. Each data point represents a single gene positionally 

aligned across each autosome. The height of each point along the y-axis indicates the significance of 

association between gene and phenotype with each colored data point indicating a significantly 

associated gene after analysis-wide multiple testing correction (P<9.43x10-7). A subset of genes are 

labeled and all genes are provided in Supplementary Table 16.  
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