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Significance 19 

Empirical evidence on detailed transmission patterns of influenza among students within and between 20 

classes and grades and how they are shaped by school population structure (e.g. class and school 21 

sizes) has been limited to date. We analysed a detailed dataset of seasonal influenza incidence in 29 22 

primary schools in Japan and found that the reproduction number at school did not show any clear 23 
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association with the size or the number of classes. Our findings suggest that the interventions that only 24 

focus on reducing the number of students in class at any moment in time (e.g. reduced class sizes and 25 

staggered attendance) may not be as effective as measures that aim to reduce within-class risk (e.g. 26 

mask-wearing and vaccines).  27 

Abstract 28 

Schools play a central role in the transmission of many respiratory infections. Heterogeneous social 29 

contact patterns associated with the social structures of schools (i.e. classes/grades) are likely to 30 

influence the within-school transmission dynamics, but data-driven evidence on fine-scale 31 

transmission patterns between students has been limited. Using a mathematical model, we analysed a 32 

large-scale dataset of seasonal influenza outbreaks in Matsumoto city, Japan to infer social 33 

interactions within and between classes/grades from observed transmission patterns. While the 34 

relative contribution of within-class and within-grade transmissions to the reproduction number varied 35 

with the number of classes per grade, the overall within-school reproduction number, which 36 

determines the initial growth of cases and the risk of sustained transmission, was only minimally 37 

associated with class sizes and the number of classes per grade. This finding suggests that 38 

interventions that change the size and number of classes, e.g. splitting classes and staggered 39 

attendance, may have limited effect on the control of school outbreaks. We also found that 40 

vaccination and mask-wearing of students were associated with reduced susceptibility (vaccination 41 

and mask-wearing) and infectiousness (mask-wearing) and hand washing with increased 42 

susceptibility. Our results show how analysis of fine-grained transmission patterns between students 43 

can improve understanding of within-school disease dynamics and provide insights into the relative 44 

impact of different approaches to outbreak control. 45 

Background 46 
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 Influenza virus and other directly transmitted pathogens typically spread over social contact 47 

networks involving frequent conversational or physical contacts (1–4). There is evidence that schools 48 

are important social environments that can facilitate the transmission of influenza via close contacts 49 

between students (5–9). Previous studies have collected contact data between students using 50 

questionnaires and wearable sensor devices and found strong assortativity of contact rates within 51 

classes and grades (10–14), which is likely relevant to the within-school transmission dynamics of 52 

respiratory infections and the effectiveness of school-based interventions. However, such insights 53 

from contact data also need to be validated with real-world outbreak data because contacts as 54 

measured in those studies may not necessarily be fully representative of the types of contacts that lead 55 

to transmission (e.g. with regards to proximity and duration). In this light, the differential transmission 56 

rates of influenza associated with classes and grades have also been estimated from empirical 57 

outbreak data in a few studies (6, 15, 16). However, those studies are limited to the analysis of only 58 

one or two schools and included a relatively small number of cases (< 300). Therefore, robust findings 59 

across schools with different structures that capture the full range of heterogeneity in within-school 60 

transmission dynamics have remained a crucial knowledge gap.  61 

Understanding how school population structures (e.g. class and school sizes) shape 62 

transmission dynamics is key to making predictions about outbreak dynamics and interventions in 63 

these settings. Modelling studies of school outbreaks often require a choice between the ‘density-64 

dependent mixing’ and ‘frequency-dependent mixing’ assumptions (17). The density-dependent 65 

mixing assumes that the transmission rate between a pair of students is constant regardless of the 66 

class/school sizes, while the frequency-dependent mixing assumes an inverse proportionality between 67 

them. As a result, the reproduction number is expected to increase with class/school size with the 68 

density-dependent mixing assumption and remain stable with the frequency-dependent mixing 69 

assumption. Whether the transmission is best characterised by the density-dependent mixing, 70 

frequency-dependent mixing or any other alternative assumption may vary between different modes 71 

of transmission and exposure settings (18–22). However, choices between the assumptions made by 72 

existing studies of school outbreaks vary widely and are not based on a clear empirical concensus (9, 73 
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23–26). These makes it challenging to interpret simulation studies evaluating school-based 74 

interventions (e.g. reduced class sizes) because the estimated effect sizes can heavily rely on the 75 

assumed mixing patterns (27–31). 76 

To fill this knowledge gap in heterogeneous transmission dynamics at school, we applied a 77 

mathematical model of influenza virus transmission to a large-scale dataset from the 2014-15 season 78 

in Matsumoto city, Japan, which included diagnosed influenza reports among 10,923 primary school 79 

students and their household members. The model accounted for within-school transmissions as well 80 

as introductions to and from households and risk from the general community, which constitute key 81 

social layers of transmission (32–34). Using this model, we estimated fine-scale heterogeneous 82 

transmission patterns among students within and between classes and grades, as well as determinants 83 

of transmission rates including school structures and precautionary measures. 84 

Results 85 

We analysed citywide survey data of 10,923 primary school students (5–12 years old) in 86 

Matsumoto city, Japan in 2014/15, which included 2,548 diagnosed influenza episodes among 87 

students (Figure 1A). The dataset was obtained from 29 schools with a range of class structures (sizes 88 

and the number of classes per grade), allowing for detailed analysis of within and between class 89 

transmission patterns (Figure 1B). The attack ratio (i.e. the cumulative proportion diseased) in each 90 

school (excluding three distinctively small schools with fewer than 15 students per class) showed 91 

weak to null negative correlations with the mean class size and the mean number of classes per grade 92 

(Figure 1C). The onset dates of students showed a temporal clustering pattern associated with school 93 

structure (Figure 1D). When the students were partitioned into different levels of groupings (i.e. by 94 

class, grade, school and overall), the deviation of onset dates from the within-group mean tended to be 95 

smaller with finer groupings.  96 
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 97 

Figure 1. Transmission dynamics of seasonal influenza in primary schools in Matsumoto city, Japan and estimated effects of 98 

interventions for SARS-CoV-2. (A) Epidemic curve of seasonal influenza by illness onset in primary schools in Matsumoto 99 

city, 2014/15. Colours represent different schools. Month names denote the 1st day of the month. (B) Scatterplot of the class 100 

sizes and the number of classes per grade in the dataset. Each dot represents a class in the dataset. Dots are jittered along the 101 

x-axis. Three schools had classes of fewer than 15 students (denoted by dotted horizontal line) and were excluded from the 102 

model fitting. (C) The scatterplots of the school attack ratio (%) against the mean class size and the mean number of classes 103 

per grade. The correlation indices (r) and the 95% confidence intervals are also shown. (D) Temporal clustering patterns of 104 

students’ onset dates with different levels of groupings reproduced from the school transmission model. The distributions of 105 

the deviance of each student’s onset from the group mean are displayed at overall, school, grade and class levels. The 106 

standard deviation (SD) of each distribution is also shown.  107 

 108 
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The temporal clustering shown in Figure 1D supports the hypothesis that the transmission is 109 

more likely within-class, followed by within-grade and within-school. We explored this further by 110 

estimating reproduction numbers within school. Using a mathematical model that accounts for 111 

different levels of interaction within and between classrooms and grades as well as introductions from 112 

households and community, we estimated the within-school effective reproduction number RS of 113 

seasonal influenza in primary schools along with the breakdown of transmission risks associated with 114 

class/grade relationships (Figure 2). The relationship between any pair of students in the same school 115 

was classified as either “classmates”, “grademates” (in the same grade but not classmates) or 116 

“schoolmates” (not in the same grade). The estimated RS was broken down as a sum of the 117 

contributions from these students, where the class size (n) and the number of classes per grade (m) 118 

were assumed to affect the risk of transmission. The reconstructed overall RS in a 6-year primary 119 

school was estimated to be around 0.7–0.9 and was not significantly associated with n or m (Figure 120 

2A). Namely, an infected student was suggested to generate a similar number of secondary cases 121 

irrespective of the class structure; although our estimates of RS were about 15% smaller for the class 122 

size of 40 than 201, the posterior p-value did not suggest a statistical significance (p ~ 0.15 or above). 123 

As RS was likely below 1 across class structures, school outbreaks may not have been sustained 124 

without continuous introductions from households and community. Transmission to classmates 125 

accounted for about two-thirds of RS when each grade has only one class and was partially replaced 126 

by transmission to grademates as the number of classes per grade increases, while the sum of within-127 

grade transmission (i.e. transmission to either classmates or grademates) remained stable (Figures 2B 128 

and 2C). Around 20–30% of overall RS was explained by transmission to schoolmates throughout. We 129 

also obtained qualitatively similar results throughout our sensitivity analysis (Figure S3). In a 6-year 130 

school with 3 classes of 30 students, the risk of transmission was estimated to be 1.8% (95% credible 131 

interval (CrI): 1.4–2.5) from a given infected classmate of the same sex, 1.6% (1.2–2.1) the opposite 132 

sex, 0.13% (0.08–0.19) from a given infected grademate and 0.040% (0.029–0.055) from a given 133 

 
1 For example, the estimated relative reduction was 17% (95% credible interval: -16%–40%) for m = 3. 
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infected schoolmate (Table S2). The cumulative risk of infection from the community was estimated 134 

to be 2.2% (1.7–2.7) over the season. 135 

 136 

Figure 2. The estimated within-school transmission patterns of seasonal influenza among primary school students in 137 

Matsumoto city, Japan. (A) The overall school reproduction number (RS) under different class structures. Whiskers represent 138 

the 95% credible intervals (B) The breakdown of RS corresponding to each type of within-school relationships. Whiskers 139 

represent the 95% credible intervals. Bottom panels: stacked graph of RS based on the median estimates.  140 

 141 

We incorporated a log-linear regression (35) into the above estimation of RS to account for 142 

covariates that may affect the susceptibility or infectiousness of students. The results suggested that 143 

vaccines were associated with reduced susceptibility while mask wearing was associated with both 144 

reduced susceptibility and infectiousness (Table 1). Conversely, hand washing was associated with 145 

increased susceptibility. Reduced chance of transmission during the winter break (27 December 146 

2014–7 January 2015) was captured as a 75% estimated decline in the infectiousness of cases whose 147 
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onset dates were during the break. School grade, which serves as a proxy of students’ age, did not 148 

show a significant association with either susceptibility (relative value 1.10; CrI: 0.88–1.38) or 149 

infectiousness (relative value 0.78; CrI: 0.59–1.04). 150 

Table 1. Covariates and effects estimated in the log-linear regression 151 

Covariate Frequency in data Relative susceptibility Relative infectiousness 

School grade (1 year 

increase) 

— 1.10 (0.88–1.38) 0.78 (0.59–1.04) 

Vaccine 47.7% 0.88* (0.81–0.96) 0.97 (0.82–1.18) 

Mask wearing 51.4% 0.77* (0.71–0.85) 0.65* (0.55–0.78) 

Hand washing 80.1% 1.54* (1.36–1.76) 1.25 (0.96–1.65) 

Onset in winter break 5.9% (of cases) — 0.25* (0.15–0.39) 

Values are median estimates and 95% credible intervals. 152 

* Estimates with 95% credible intervals not crossing 1. 153 

 154 

We estimated the breakdown of the source of infection for student cases based on the 155 

conditional probability predicted by the model and parameter estimates. The epidemic curve stratified 156 

by the estimated source of infection suggested that within-school transmission accounted for the 157 

majority of student cases while schools were open and that the within-household transmission was 158 

responsible for most of the cases reported during the winter break and shortly after (Figure 3A). The 159 

aggregated relative contribution suggested that 54.6% (CrI: 53.5–55.7), 38.7% (CrI: 37.9–39.5) and 160 

6.7% (CrI: 5.9–7.5) of the student cases were acquired from school, household and community, 161 

respectively (Figure 3B).We estimated the possible relative effects of interventions altering the school 162 

population structure on the school reproduction number RS. We assumed that the estimated relative 163 

contributions of class/grade relationship to the transmission risk reflect the contact patterns between 164 

students which may also be relevant to  the dynamics of another influenza outbreak at school (and 165 

potentially those of directly-transmitted disease outbreaks in general) and that the responses to 166 
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interventions can be captured by the estimated relationship between RS and the changes in the 167 

variables n and m according to each intervention (Table 2). Specifically, in the ‘split class’ scenario, 168 

each class was assumed to be split in half and taught simultaneously in separate classrooms, while in 169 

the ‘staggered attendance’ scenarios only half of the students attend school at the same time by 170 

introducing two different time schedules, e.g. morning and evening classes. The estimated relative 171 

effects of school-based interventions on RS in a hypothetical setting of 6-year school with 2 classes 172 

per grade (40 students each) showed that splitting classes or staggered attendance alone was unlikely 173 

to reduce RS (or may even be counteractive) (Figure 1D), which is consistent with the aforementioned 174 

estimates of RS minimally associated with class sizes and the number of classes. By reducing 175 

interactions between students from different classes (so-called ‘bubbling’ or ‘cohorting’) by 90%, RS 176 

could be reduced by up to around 20%. Combining split classes/staggered attendance with reduced 177 

interactions outside classes did not suggest incremental benefit in reducing RS. Given that these 178 

interventions typically require additional resources including staff and classrooms, the overall benefit 179 

to changing class structures for influenza control may be limited. 180 

Table 2. Summary of interventions that changes the size/number of classes 181 

Interventions Class size 
(n) 

# classes per 
grade (m) 

Assumption 

Baseline (‘no change’) 40 2 Students contact within and between 
classes and grades proportionally to the 
estimated transmission patterns in 
Figure 2. 

Split class 20 4 Each class is split into two and taught 
simultaneously in separate classrooms. 
Students may contact each other 
between classes. 

Staggered attendance 
(within class) 

20 2 Each class is split into two and taught 
separately in two different time slots 
(e.g. morning and evening). Students in 
different time slots do not contact each 
other and thus RS is calculated for 
students in one slot. 

Staggered attendance 
(between class) 

40 1 Each class is allocated (as a whole) to 
either of the two different time slots and 
taught separately. Students in different 
time slots do not contact each other and 
thus RS is calculated for students in one 
slot. 

 182 
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 183 

Figure 3. Reconstruction of students’ source of infection. (A) Epidemic curve stratified by the reconstructed source of 184 

infection. The conditional probability of infection from different sources was computed for each student and aggregated by 185 

date of illness onset. (B) Breakdown of the reconstructed source of infection. For each student, the source of infection was 186 

sampled based on the conditional probability to provide the proportion of students infected from each source. Bars denote 187 

posterior median and whiskers 95% credible intervals. (C) Expected relative changes in the school reproduction number 188 

under school-based interventions changing the structure of classes. Dots represent medians and whiskers 95% credible 189 
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intervals. Reduced outside-class transmissions (i.e. from grademates or schoolmates) were also considered (50% reduction: 190 

blue; 90% reduction: green). 191 

 192 

Discussion 193 

 We used a mathematical model that stratified transmission within and between classes/grades 194 

to understand the dynamics of influenza transmission among primary school students. The inferred 195 

transmission dynamics of seasonal influenza in Matsumoto city, Japan, 2014-15 season suggested that 196 

the within-school reproduction number RS stayed relatively constant regardless of the size or the 197 

number of classes (suggesting ‘frequency-dependent mixing’ (36)), in contrast to common modelling 198 

assumptions. The estimated RS of 0.8–0.9, more than half of which was attributable to within-class 199 

transmissions, is consistent with a previous study in the United States (15). This value is also in line 200 

with the reported R0 of 1.2–1.3 for seasonal influenza (37)  because our previous study estimated that 201 

the students in this dataset had infected 0.3–0.4 household members on average during this 2014-15 202 

season (note that R0 corresponds to the overall number of secondary transmissions per student, 203 

including at school and household) (18). The value of RS below 1 suggests that an outbreak cannot 204 

sustain itself within a school alone and that interactions through importing and exporting infections 205 

between households and the general community is likely to play a crucial role in the overall 206 

transmission dynamics. We estimated that school, household and community accounted for 55%, 39% 207 

and 7% of the source of infection for student cases, respectively. The attributable proportion was 208 

lower for schools and higher for households than the previous study (15), which may be explained by 209 

different scales of outbreaks in schools and households. In the Matsumoto city dataset, the overall 210 

attack ratio at school was lower (19%), students had larger households (average size 5.5) and there 211 

were more household cases than student cases (3996 vs 2548), as opposed to 35%, size of 3.4 and 141 212 

vs 129 cases in (15). 213 

The estimated breakdown of RS revealed a number of notable patterns. As the number of 214 

classes per grade increased, the contribution of within-class transmission risk declined and was 215 
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replaced by within-grade transmission. Combined with the almost constant overall RS, this might 216 

indicate that contact behaviour between students that contributed to transmission was only minimally 217 

affected by the student population density. That is, students may have had a certain number of ‘close 218 

friends’ with whom they had more intimate interactions that could facilitate transmission. In a school 219 

with more classes per grade, some of such friendship may have come from grademates instead of 220 

classmates, but the total number of close friends may have remained similar. This interpretation is in 221 

line with published evidence of influenza spreading predominantly in close proximity (38) and is 222 

likely to influence the expected effect of interventions not only for influenza but also other respiratory 223 

infectious diseases including COVID-19, which share similar routes and range of transmission (39, 224 

40). Further disease-specific studies could elucidate the generalisability of these associations in more 225 

detail. 226 

Our results suggested that interventions such as reducing class sizes or the number of students 227 

present (staggered attendance) may not be effective in constrast to what would be expected under the 228 

density-dependent mixing assumption (27–31). If interventions altering class structures are not 229 

accompanied by additional precaution measures and students try to resume their ‘natural’ behaviours 230 

(i.e. the same contact patterns as those in school with the resulting class structures) through so-called 231 

social contact ‘rewiring’ (41), the effect of such interventions can diminish or even reverse. For 232 

example, if other classes are absent due to staggered attendance, students may increase their 233 

interactions with classmates instead of their previous close friends in other classes. Our results are 234 

also consistent with a recent study of interventions against COVID-19 in US schools that did not find 235 

a significant risk reduction associated with reducing class sizes (42). Given the additional logistical 236 

resources required to implement these interventions, we propose that reducing the class sizes or the 237 

number of attending students should be considered only if they enable effective implementation of 238 

precaution measures such as physical distancing, environmental cleaning or forming social bubbles. 239 

Using a log-linear regression analysis combined with a transmission model, we identified 240 

several precautionary measures associated with the susceptibility or infectiousness of students. 241 

Vaccines were associated with reduced susceptibility and masks with a reduction in both 242 
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susceptibility and infectiousness. Influenza vaccine effectiveness in the 2014-15 season was suggested 243 

to be particularly low in Japan due to vaccine mismatch and estimated to be 26% (95% CrI: 7–41%) 244 

for primary-school-age children (6–12 years old) (43). Our estimate of a relative susceptibility of 0.88 245 

(CrI: 0.81–0.96) in vaccinated students, which translates into a vaccine effectiveness of 12% (CrI: 9–246 

19%), is broadly consistent with this prior estimate. While existing evidence for the effectiveness of 247 

mask policies for the control of respiratory infections is still limited (44, 45), our estimates of small 248 

protective effects acting on the relative susceptibility (0.77; CrI: 0.71–0.85) and infectiousness (0.65; 249 

CrI: 0.55–0.78) lie within a plausible range based on evidence available to date (44, 46–48). Increased 250 

susceptibility associated with hand washing in our analysis, however, does not align with existing 251 

findings (49, 50). Although the underlying cause for this is unclear, the original report on the 252 

Matsumoto city dataset also reported a higher odds ratio (1.4; CrI: 1.27–1.64; unadjusted for 253 

differential exposure) and attributed it to the possible congregation of students washing hands in 254 

communal settings at school (51). 255 

Several limitations of this study should be noted. First, the transmission patterns within 256 

schools were estimated from a single dataset of seasonal influenza in primary schools (aged 5-12 257 

years) in Matsumoto city, Japan, and it is unclear to what extent the results can be extrapolated to 258 

other settings, e.g. secondary schools or schools in other countries. Some features of our results may 259 

still be relevant to transmission dynamics in different types of schools if they reflect general social 260 

contact behaviours of schoolchildren; however, the relative contribution of within-class/within-grade 261 

interactions may become smaller for older students (52). The data points used in the inference mostly 262 

consisted of classes of size 20-40 (those with a size smaller than 10 were excluded as they might be 263 

operated differently) and most schools had no more than 5 classes per grade. The scope of the 264 

estimated effect of the school-based interventions was also limited to within this range for internal 265 

consistency and thus may not necessarily be applicable to class structures outside this range (e.g. 266 

splitting a class of 20 students into two). Extrapolating the estimated transmission patterns to other 267 

respiratory infectious diseases also warrants caution because their epidemiological characteristics may 268 

not be identical, although we believe that such an approach may still be useful for diseases sharing 269 
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similar modes of transmission. Modelling studies using social contact data often assume 270 

proportionality between contacts and the transmission of directly-transmitted diseases (e.g. measles, 271 

influenza and COVID-19) and have many successful applications (7, 33, 53–57). Using the estimated 272 

transmission patterns of influenza as a proxy for other diseases essentially rests on the same 273 

assumption, which nonetheless has limitations and should eventually be validated by disease-specific 274 

studies. Second, some aspect of the outbreaks may have been missing from the dataset. Since the 275 

illness data of teachers were not available, they were not considered throughout the analysis. 276 

However, their role in seasonal influenza transmission may have been minor given a large number of 277 

student cases and the smaller risk in adults (58, 59). Although our student incidence data likely had 278 

good case ascertainment given encouraged medical attendance and confirmation by rapid diagnostic 279 

kits (18), a certain proportion of infections (e.g. asymptomatic or very mild) may have been missing. 280 

We believe that students feeling unwell due to influenza mostly attended medical institutions and 281 

received a test as it was encouraged by schools. Nonetheless, it should be noted that this could have 282 

been a source of bias in the estimated transmission patterns. Students with very mild symptoms (e.g. 283 

only slight sore throat) may visit a medical institution only if they know of other classmates also 284 

diagnosed with influenza. If such cases were common, the contribution of within-class transmissions 285 

in our results might have been an overestimate. Third, since the dataset was obtained from an 286 

observational study, the identified determinants of transmission may not be causal and should not be 287 

viewed as conclusive evidence. The results of our log-linear regression were mostly in line with 288 

existing findings, however, our dataset may still be biased due to unmeasured confounders such as 289 

health awareness. Our estimates of the relative effect of school-based interventions were based on the 290 

assumption that students’ behaviours follow the fixed patterns according to the school structure even 291 

under interventions. That is, when the class size or the number of classes were changed by an 292 

intervention, students were assumed to change their behaviour according to the new school structure 293 

(as if it were the original structure) by e.g. rewiring close contacts in a timely manner. This is a 294 

hypothetical expectation that may not exactly be observed in actual interventional settings; for 295 

example, it may take time for students to resume close contacts after the class is split, which can bring 296 

RS lower than our prediction at least temporarily. We have also neglected the possible effect of the 297 
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interventions on the transmission outside the school. The actual effects of these interventions should 298 

ideally be validated by empirical data, as in (42). 299 

Our analysis disentangled the transmission dynamics of seasonal influenza among primary 300 

school students and highlighted the relative importance of within-class and within-grade transmission. 301 

Since class and school sizes were minimally associated with the within-school reproduction number, 302 

school-based interventions that change classroom structures, e.g. reduced class sizes and staggered 303 

attendance, may have limited effectiveness. Empirical evidence on fine-grained heterogeneous 304 

transmission patterns at school as was obtained from this study would inform public health planning 305 

for future outbreaks of influenza and, potentially, other directly transmitted infectious diseases that 306 

thrive in schools. 307 

Materials and methods 308 

Data 309 

We analysed a citywide school-based influenza survey data from the 2014/15 season. The 310 

survey was conducted in Matsumoto city (population size: 242,000 (60)), Japan, enrolling 13,217 311 

students from all 29 public primary schools in the city. During the survey period (from October 2014 312 

to February 2015), the participants were asked to fill out a questionnaire when they were back from 313 

the suspension of attendance due to diagnosed influenza (prospective survey). In March, the 314 

participants were asked to respond to another survey on their experience during the study period, 315 

regardless of whether they had contracted influenza (retrospective survey). A total of 2,548 diagnosed 316 

influenza episodes were reported in the prospective survey, which accounted for 96% of the cases 317 

officially recognised by the schools during the study period. Primary schools in Japan often requested 318 

students suspected of influenza to seek diagnosis at a medical institution. All students reporting an 319 

influenza episode in the prospective survey answered that they had received a diagnosis and at least 320 

95% of them were noticed of type A influenza (indicating that they were lab-confirmed). In the 321 

retrospective survey, 11,390 (86%) participants responded, among which 8,375 reported that they did 322 

not have influenza during the study period. 323 
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We combined those who responded to the prospective survey (“case group”) and those who 324 

reported no influenza experience in the retrospective survey (“control group”) and obtained a dataset 325 

of 10,923 students. Of those, 71 students from 3 schools with less than 15 students per grade were 326 

excluded because they may have different schooling patterns from other schools (e.g. some students 327 

in different grades shared classrooms). We used individual profiles (sex, school, grade, class, 328 

household composition), onset dates, influenza episodes of household members and precaution 329 

measures students engaged in (vaccine, mask, hand washing) in the subsequent analysis. Further 330 

details of the dataset can be found in the original studies (51, 61). 331 

The secondary data analysis conducted in the present study was approved by the ethics 332 

committee at the London School of Hygiene & Tropical Medicine (reference number: 14599). 333 

Inference model 334 

We modelled within-school transmission considering class structures as follows. We defined 335 

the “school proximity” d between a pair of students i and j attending the same school as 336 

𝑑 = #

1 (different	grades, same	school)
2 (different	classes, same	grade)
3 (different	sex, same	class)
4 (same	sex, same	class)

 (1) 

To investigate the potential effect of reduced class sizes and the number of attending students, we 337 

modelled the transmission between students as a function of two variables: the class size n and the 338 

number of classes per grade m (i.e. the number of students per grade is nm). Namely, we assumed that 339 

in the absence of any individual covariate effects, the cumulative transmission rate between student i 340 

and j in proximity d over the infectious period is represented as 341 

𝛽!" = 𝛽#=𝑛!,#?
%&!=𝑚!,#?

%'! , (2) 

where 𝛽#, 𝛾#, 𝛿# are parameters to be estimated. When i and j are in the same grade (i.e. d = 2, 3, 4), 342 

the average class size and the number of classes in that grade were used as 𝑛!,# and 𝑚!,#. When d = 1, 343 

the school average was used as 𝑛!,# and 𝑚!,#. The exponent parameters within the same class were 344 

assumed to be equal: 𝛾( = 𝛾) and 𝛿( = 𝛿). 345 
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We modelled the daily hazard of incidence for student i as a renewal process. Let ℎ* be the 346 

onset-based transmission hazard as a function of serial interval s (normalised such that ∑ ℎ+,
+-. = 1; 347 

ℎ+ = 0 for s ≤ 0). We used a gamma distribution of a mean of 1.7 and a standard deviation of 1.0 for 348 

influenza, which resulted in a mean serial interval of 2.2 days (62). The daily hazard of disease onset 349 

attributed to school transmission is given as  350 

𝜆!/(𝑇) = 𝑣!I𝑤"𝛽!"ℎ0%0"
"

, (3) 

where vi and wi represent the relative susceptibility and infectiousness, respectively, which are 351 

specified for each individual by a log-linear regression model to account for covariates (see 352 

Supplementary materials for detailed methods).  353 

In addition to the above within-school transmission, we also considered within-household 354 

transmission and general community transmission. Within-household transmission was incorporated 355 

as the Longini-Koopman model (63) with parameters from a previous study on the same cohort of 356 

students (18). General community transmission was modelled as a logistic curve fitted to the total 357 

incidence in the dataset to reflect the overall trend of the epidemic. See Supplementary materials for 358 

further details of the model. 359 

We constructed the likelihood function and estimated the parameters by the Markov-chain 360 

Monte Carlo (adaptive mixture Metropolis) method. We obtained 1,000 thinned samples from 361 

100,000 iterations after 100,000 iterations of burn-in, which yielded the effective sample size of at 362 

least 300 for each parameter. Using the posterior samples, we computed the proximity-specific 363 

reproduction number Rd in a hypothetical 6-year school with given n and m (assumed to be constant 364 

schoolwide) as 365 

𝑅# =

⎩
⎨

⎧5𝑛𝑚 ⋅ 𝛽.𝑛%&#𝑚%'# 													(𝑑 = 1)
𝑛(𝑚 − 1) ⋅ 𝛽1𝑛%&$𝑚%'$ 					(𝑑 = 2)

𝑛 ⋅
𝛽( + 𝛽)
2

𝑛%&%𝑚%'% 					(𝑑 = 3, 4)
 (4) 

and defined the within-school reproduction number RS as a sum of them. 366 
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 We predicted the relative reduction in RS under intervention measures changing the number of 367 

attending students and class structures by using posterior samples. Interventions were assumed to 368 

change n and m as shown in Table 1, and the predictive distribution of the relative change in RS was 369 

computed for each intervention. The estimated RS represents the value in a hypothetical condition 370 

where an infectious student spends the whole infectious period at school; the effect of absence due to 371 

symptoms or the staggered attendance was not included in this reduction. 372 

All analysis was performed in Julia 1.5.2 and R 4.1.0. Replication code is available on 373 

GitHub (https://github.com/akira-endo/schooldynamics_FluMatsumoto14-15). 374 
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