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ABSTRACT (199 of 200 words) 
 

Biological aging is a proposed mechanism through which social determinants drive health 

disparities. We conducted proof-of-concept testing of eight DNA-methylation and blood-

chemistry quantifications of biological aging as mediators of disparities in healthspan between 

Black and White participants in the United States Health and Retirement Study (HRS; n=9005). 

We quantified biological aging from four DNA-methylation “clocks” (Horvath, Hannum, 

PhenoAge, and GrimAge), a DNA-methylation Pace of Aging (DunedinPoAm), and three blood-

chemistry measures (PhenoAge, Klemera-Doubal method Biological Age, and homeostatic 

dysregulation). We quantified Black-White disparities in healthspan from cross-sectional and 

longitudinal data on physical-performance tests, self-reported activities of daily living (ADL) 

limitations and physician-diagnosed chronic diseases, self-rated health, and survival. DNA-

methylation and blood-chemistry quantifications of biological aging were moderately 

correlated (Pearson-r range 0.1-0.4). GrimAge, DunedinPoAm and all three blood-chemistry 

measures were associated with healthspan characteristics (e.g. mortality effect-size range 1.71-

2.32) and showed evidence of more advanced/faster biological aging in Black compared with 

White participants (Cohen’s d=.4-.5). These measures accounted for 13-95% of Black-White 

differences in healthspan-related characteristics. Findings that Black Americans are biologically 

older and aging more rapidly than White Americans of the same chronological age suggest that 

eliminating disparities in the pace of aging can contribute building to aging health equity. 
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INTRODUCTION 
Black Americans experience excess morbidity and premature mortality relative to White 

Americans (1). This health disparity is mediated by multiple chronic diseases affecting different 

organ systems throughout the body and reflects an etiology extending from the earliest stages 

of life across adulthood, encompassing social, economic, and environmental factors (2-4). 

Differences in health between Black and White Americans vary between geographic locations 

and have changed over time, indicating that these disparities are socially determined and that 

they are modifiable (5-7). A range of policies and programs are proposed to mitigate health 

disparities (8-11). However, rigorous evaluation of impact is challenging (12). Interventions to 

address health disparities delivered to older adults may come too late to prevent chronic 

disease (4, 13), while interventions delivered to younger people require long follow-up intervals 

to establish impact (14). Methods are needed to monitor effectiveness of interventions over 

timescales of years rather than decades. 

Measurements that quantify processes of biological aging may provide near-term 

measurements of long-term impacts. Biological aging is the gradual and progressive decline in 

system integrity with advancing chronological age (15). This process is now being studied as a 

modifiable root cause of many different chronic diseases (16-18). One hypothesis advanced to 

explain Black-White health disparities across a range of diseases is that social and material 

stresses experienced by Black Americans act to accelerate biological aging, referred to as 

“weathering” (19, 20). In epidemiologic studies, Black Americans show more advanced 

biological aging as compared to White Americans of the same chronological age (21-23). If 

advanced biological aging is a mediator of health disparities, then quantifications of biological 

aging could be used to monitor intervention impacts. 

Many methods are proposed to quantify biological aging from several biological levels of 

analysis (24, 25). Agreement between measures is often poor; there is no gold standard (26-28). 

Measures based on analysis of blood-chemistry and DNA-methylation data have received the 

most attention to date. We conducted proof-of-concept testing of eight blood-chemistry and 

DNA-methylation methods to quantify biological aging as mediators of Black-White disparities 

in healthy aging. We analyzed deficits in physical functioning, limitations to activities of daily 

living, chronic disease morbidity, and mortality in a national sample of older adults in the US 

Health and Retirement Study (HRS). Previous studies have documented Black-White differences 

in several of the measures of aging we analyzed (21, 22, 29-31). However, few studies have 

tested if these differences could account for Black-White health disparities (21, 23) and none 

have specifically considered disparities in healthspan characteristics. Our analysis builds on an 

initial report of differences in DNA-methylation measures of biological aging between Black and 

White adults in the HRS (30) in three ways. First, we analyze measures of biological aging 

derived from DNA-methylation data together with measures derived from blood-chemistry 

data. Second, we compare the different measures of biological aging by testing associations 

with healthspan-related characteristics and mortality. Third, we quantify the fraction of Black-

White differences in healthspan-related characteristics and mortality that are accounted for by 

biological aging measures.  
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METHODS 
Sample 

The Health and Retirement Study (HRS) is a nationally representative longitudinal survey of US 

residents ≥50 years of age and their spouses fielded every two years since 1992. A new cohort 

of 51-56 year-olds and their spouses is enrolled every six years to maintain representativeness 

of the U.S. population over 50 years of age. Response rates over all waves of the HRS range 

from 81-91%. As of the most recent data release, HRS included data collected from 42,515 

individuals in 26,600 households. We linked HRS data curated by RAND Corporation with new 

data collected as part of HRS’s 2016 Venous Blood Study. Analysis included participants aged 

50-90 years at the time of the blood draw for whom data were also collected on prevalent 

chronic disease, limitations to activities of daily living, and/or testing to assess physical 

functioning (n=9005). Comparison of our analysis sample to the full HRS is reported in 

Supplemental Table S1. 

Measures 

Biological Aging. There is no gold standard measure of biological aging (24). Many methods 

have been proposed based on different biological levels of analysis. Current state-of-the-art 

methods use machine learning to sift large numbers of candidate markers and parameterize 

algorithms that predict aging-related parameters, including chronological age, mortality risk, 

and rate of decline in system integrity. Algorithms are developed in reference datasets and 

applied in new datasets to test hypotheses. We analyzed several different methods because 

each method uses different assumptions to develop a measure of the latent construct of 

biological aging. As we and others have shown, the different methods do not all measure the 

same aspects of the aging process (26, 28). Comparative analysis is therefore essential to 

interpretation. We focused on algorithms developed for blood-chemistry analytes routinely 

measured in clinical settings and DNA-methylation marks included on commercial arrays, and 

which have received substantial attention in the research literature. Measures are summarized 

and their source publications are cited in Table 1. Detailed descriptions of the measures are 

reported in the Supplemental Methods Section 1.  

We computed blood-chemistry measures using the R package BioAge 

(https://github.com/dayoonkwon/BioAge). We obtained data on DNA-methylation measures of 

biological age from the HRS (30). Clock measures can also be computed using the software 

hosted by the Horvath Lab (http://dnamage.genetics.ucla.edu/). DunedinPoAm pace of aging 

can be computed using the GitHub code https://github.com/danbelsky/DunedinPoAm38.  

For analysis, we converted measures of biological age (blood-chemistry PhenoAge, 

Klemera-Doubal Biological Age, Homeostatic Dysregulation, PhenoAge Clock, Horvath Clock, 

Hannum Clock, GrimAge, DunedinPoAm Pace of Aging) to measures of biological-age 

advancement by fitting regressions of biological age measures on chronological age and 

computing residual values. The literature commonly refers to these residuals as ‘age 

acceleration’. We instead use ‘age advancement’ to distinguish measurements like the clocks- 

which compute a difference between biological age and chronological age at a single point in 

time- from pace of aging measurements that quantify how fast a person is aging. No 
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residualization was applied to homeostatic dysregulation and DunedinPoAm, as these measures 

already quantify deviation from the expected sample norm.  

Healthspan-related characteristics. Healthspan is the portion of life lived free of disease and 

disability. We measured healthspan-related characteristics from performance-test 

measurement of functional impairment administered by trained interviewers, participant 

reports about activities of daily living (ADL) limitations, self-rated health, and physician-

diagnosed chronic conditions, and HRS follow-up for mortality status through 2019. Measures 

are described in detail in Table 2 and Supplemental Methods Table 1. 

Analysis 

Our primary analysis tested associations of biological aging measures with healthspan-

related characteristics. We conducted analysis of prevalent functional impairments, ADLs, 

chronic conditions, and current self-rated health based on data collected in HRS’s 2016 wave. 

We conducted longitudinal analysis of incident ADLs, incident chronic conditions, and changes 

in self-rated health using data from the 2016 and 2018 waves. (We did not conduct longitudinal 

analysis of performance-test measures because these are collected from participants at every-

other wave, so no follow-up was available).  Analysis of mortality was based on the most-recent 

mortality status ascertainment by HRS.  

We used Poisson regression to estimate Incident Rate Ratios (IRRs) for associations of 

biological aging with counts of functional impairments, ADLs, and chronic conditions. We used 

linear regression to estimate standardized effect-sizes (Pearson’s r) for continuous measures of 

self-rated health. We used Cox proportional hazards regression to estimate mortality hazard 

ratios (HR). Effect-sizes for biological aging measures were denominated in standard-deviation 

units (SDs).  

For analysis of the full HRS VBS and VBS-DNAm samples, which were designed to 

represent the US population aged 50 and older, we applied probability sampling weights to 

generate estimates for this population. For analyses of subsamples of Black and White older 

adults, we included covariate adjustment for chronological age, sex, and region of residence.  

We tested mediation of Black-White disparities in biological aging using a regression-

based approach as described by Valeri and VanderWeele (32). We used the R package 

CMAverse (33) to estimate direct and indirect effects and proportions mediated. We calculated 

confidence intervals using bootstrapping to obtain standard error estimates. We tested 

robustness of mediation results to potential exposure-mediator interactions following the 

approaches outlined by Valeri and VanderWeele (32, 34). Details of this analysis are in 

Supplemental Methods Sections 2 and 3. 

 

 

RESULTS 
 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 8, 2021. ; https://doi.org/10.1101/2021.03.02.21252685doi: medRxiv preprint 

https://doi.org/10.1101/2021.03.02.21252685
http://creativecommons.org/licenses/by/4.0/


6 

 

We conducted two sets of analyses. First, we analyzed blood-chemistry measures of biological 

aging. Next, we analyzed DNA-methylation measures of biological aging, including comparison 

to blood-chemistry measures. Within each analysis set, we first tested associations of 

biological-aging measures with healthspan-related characteristics. Next, we tested Black-White 

disparities in biological aging. Finally, we conducted mediation analysis for those measures 

demonstrating associations of more-advanced/faster biological aging with healthspan-related 

characteristics and more-advanced/faster biological aging in Black as compared to White 

participants (35).  

I. Blood Chemistry Analysis. We analyzed DNA-methylation measures of aging in n=9005 HRS 

participants included in the Venous Blood Study (VBS; 41% male, 74% White, 18% Black, aged 

50-90 years, mean age=69, SD=9). Participants’ Phenotypic Ages were highly correlated with 

their chronological ages (r=0.76). Results were similar for the Klemera-Doubal method (KDM) 

Biological Age and homeostatic dysregulation measures (Supplemental Table S1).   

Older adults with more advanced biological aging in blood-chemistry analysis showed 

deficits in healthspan-related characteristics and were at increased risk of mortality. 

Participants with more advanced biological aging measured from blood chemistries had poorer 

outcomes for all healthspan-related characteristics and increased risk for mortality. For 

Phenotypic Age advancement, increased risk for prevalent functional impairments, prevalent 

and incident ADLs, and prevalent and incident chronic conditions ranged from 19-54% per SD; 

effect-sizes were r=0.34 for current self-rated health and 0.09 for change in self-rated health; 

the increase in the hazard of mortality was 85% per SD. Results were similar in analysis of KDM 

Biological Age and homeostatic dysregulation measures (Figure 1, Supplemental Table S2). 

Black HRS VBS participants showed deficits in healthspan-related characteristics and 

increased risk for mortality as compared with White participants. Black participants more 

often demonstrated functional impairments (IRR=1.25 [1.15-1.35]), and reported more ADLs 

(IRR=1.91 [1.75-2.10]) and diagnosed chronic conditions (IRR=1.26 [1.20-1.32]) and poorer self-

rated health (d=0.33 [0.28-0.39]) as compared with White participants. Over follow-up, Black 

participants were more likely to report incident ADLs (IRR=1.49 [1.31-1.69]) and declines in self-

rated health (d=0.11 [0.06-0.15]). Black-White differences in mortality risk were in the expected 

direction but not statistically different from zero at the alpha=0.05 threshold (HR=1.36 [0.97-

1.91]). Black-White differences were in the opposite direction for incident chronic conditions 

(IRR=0.84 [0.64-1.10]), possibly reflecting differences in access to care resulting in under-

diagnosis among Black participants and/or the overall higher burden of chronic disease 

prevalent at baseline in the Black as compared to White participants. Effect-sizes are reported 

in Supplemental Table S3. 

Black HRS VBS participants showed more advanced biological aging in blood-chemistry 

analysis as compared with White participants. Black participants experienced an additional 

2.93 years of biological aging (95% CI [2.47-3.40]) as compared to White participants of the 

same chronological age, according to the blood-chemistry PhenoAge measure. Results were 

similar for analysis of KDM Biological Age and homeostatic dysregulation (Figure 2, 

Supplemental Table S1).  
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Blood-chemistry quantifications of biological aging accounted for significant 

proportions of Black-White differences in healthspan-related characteristics and mortality 

risk. More advanced blood-chemistry PhenoAge accounted for 20-30% of Black-White 

differences in healthspan-related characteristics and more than half of the Black-White 

difference in mortality risk (proportion mediated=0.19 for functional impairments, 0.18 for 

prevalent ADLs, 0.17 for incident ADLs, 0.29 for chronic conditions, 0.29 for self-rated health; 

0.18 for changes in self-rated health, and 0.60 for mortality; we did not compute a mediation 

proportion for incident chronic conditions because incidence was higher in White as compared 

with Black participants). Results were similar for analysis of KDM Biological Age and 

homeostatic dysregulation, although the proportions mediated were somewhat larger for the 

homeostatic dysregulation measure (range=0.27-0.93). Effect-size estimates for Black-White 

differences in healthspan-related characteristics before and after adjustment for biological 

aging measures are reported in Supplemental Table S3. Mediation analysis results are reported 

in Table 3 and Supplemental Table 4.  

II. DNA-methylation analysis. We analyzed DNA-methylation measures of aging in n=3928 

Venous Blood Study participants who were included in the DNA-methylation subsample (VBS-

DNAm; 42% male, 75% White, 17% Black, aged 50-90 years, mean age=70, SD=9). Participants’ 

DNA-methylation clock ages were highly correlated with their chronological ages (r>0.72). 

Participants’ DunedinPoAm values indicated they were aging 7% faster than the rate expected 

for young-midlife adults (i.e. 1 year of biological change per chronological year; M=1.07, 

SD=0.09).  

Comparison of DNA-methylation and blood-chemistry measures of aging. We 

compared DNA-methylation and blood-chemistry measures of aging. DNA-methylation 

measures of aging (clock age residuals and DunedinPoAm) were weakly to moderately 

correlated with one another (r<=0.64). Correlations of DNA-methylation measures of aging with 

blood-chemistry measures were varied. Horvath-clock age-residuals were not correlated with 

blood-chemistry measures of aging (r<0.1); Hannum-clock age-residuals were weakly correlated 

with blood chemistry measures (r=0.1-0.2); correlations were somewhat stronger for 

PhenoAge-clock residuals (r=0.2-0.3), GrimAge-clock residuals (r=0.3-0.4), and DunedinPoAm 

(r=0.2-0.3). Correlations and scatterplots are shown in Supplemental Figure S1.  

Older adults with more advanced/faster biological aging in DNA-methylation analysis 

showed deficits in healthspan-related characteristics and were at increased risk of mortality.  

Participants with more advanced/faster biological aging measured from DNA-methylation had 

poorer outcomes for all healthspan-related characteristics and increased risk for mortality. Of 

the clocks, which measure how much a person has aged up to the time of measurement, effect-

sizes were largest for GrimAge (IRR=1.20-1.39 per SD for functional impairments and prevalent 

and incident ADLs and chronic conditions; r=0.32 for self-rated health and r=0.08 for change in 

self-rated health; HR=2.32 for mortality per SD). Effect-sizes were somewhat smaller for the 

PhenoAge and Hannum clocks. For the Horvath clock, effect-sizes were smaller and often not 

statistically different from zero at the alpha=0.05 level. For DunedinPoAm pace of aging, which 

measures how rapidly a person is aging at the time of measurement, effect-sizes were smaller 

than for GrimAge and somewhat larger than for the other clocks (IRR=1.14-1.27 per SD for 
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functional impairments and prevalent and incident ADLs and chronic conditions, r=0.22 for self-

rated health and r=0.06 for change in self-rated health, and HR=1.71 for mortality per SD). 

Effect-sizes are reported in Figure 1 and Supplemental Table S2. 

Black HRS VBS-DNAm participants showed deficits in healthspan-related 

characteristics and increased risk for mortality as compared with White participants. Black 

participants more often demonstrated functional impairments (IRR=1.19 [1.05-1.35]) and 

reported more ADLs (IRR=1.81 [1.57-2.07]) and diagnosed chronic conditions (IRR=1.24 [1.16-

1.33]) and poorer self-rated health (d=0.28 [0.19-0.37]) as compared with White participants. 

Over follow-up from 2016 baseline, Black participants had higher mortality (HR=1.34 [0.82-

2.17]) and were more likely to report incident ADLs (IRR=1.11 [0.90-1.37]) and declines in self-

rated health (d=0.10 [0.03-0.17]), although, with the exception of changes in self-rated health, 

associations were not statistically different from zero at the alpha=0.05 level. As in the full VBS 

sample and Black-White differences were in the opposite direction for incident chronic 

conditions (IRR=0.84 [0.64-1.10]). Effect-sizes are reported in Supplemental Table S3. 

Black HRS VBS-DNAm participants showed more advanced biological aging according 

to the GrimAge clock and faster biological aging according to DunedinPoAm pace of aging as 

compared with White participants. In analysis of Black-White disparities, the GrimAge clock 

and the DunedinPoAm pace of aging indicated more advanced/faster biological aging in Black 

as compared with White participants (GrimAge d=0.36, 95% CI=[0.25,0.48]; DunedinPoAm 

d=0.38, 95% CI=[0.24,0.51]). In contrast, the 1
st

 generation Horvath and Hannum clocks and the 

PhenoAge Clock did not (Horvath-clock d=-0.02, 95% CI=[-0.10,0.07]; Hannum-clock d=-0.37, 

95% CI=[-0.49,-0.26]; PhenoAge clock d=0.08, 95% CI=[-0.04,0.20]). Effect-sizes are reported in 

(Supplemental Table S1, Figure 2). 

The GrimAge clock and DunedinPoAm pace of aging DNA-methylation quantifications 

of biological aging accounted for significant proportions of Black-White differences in 

healthspan-related characteristics and mortality risk. The Horvath, Hannum, and PhenoAge 

clocks did not indicate more advanced aging in Black as compared to White participants and 

were not included in mediation analysis. More advanced GrimAge and faster DunedinPoAm 

pace of aging in Black as compared with White participants mediated 13-43% of Black-White 

differences in functional impairment, ADLs, chronic conditions, and self-rated health in cross-

sectional analysis and 22-92% of Black-White differences in ADL incidence, change in self-rated 

health, and mortality risk in longitudinal analysis. Effect-size estimates for Black-White 

differences in healthspan-related characteristics before and after adjustment for GrimAge clock 

and DunedinPoAm pace of aging measures are reported in Supplemental Table S3. Mediation 

analysis results are reported in Table 3 and Supplemental Table S4.  

III. Sensitivity Analysis  

Standard mediation analysis assumes that the association of the mediator with the 

outcome is consistent across levels of exposure. We conducted sensitivity analysis to evaluate 

this assumption and to test the robustness of mediation results when this assumption was 

relaxed. Overall, association magnitudes tended to be smaller for analysis of Black as compared 

to White participants (Supplemental Tables S2 and S5). When we relaxed the mediation-
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analysis assumption that association magnitudes were the same for Black and White 

subsamples, mediation proportions were reduced. The magnitude of this reduction varied from 

near zero to as much as 50% (“E-M interaction” columns of Table 3 and Supplemental Table 

S4). The sensitivity analysis is described in detail in Supplemental Methods Section 3. 

 

DISCUSSION 
We investigated biological aging as a mediator of Black-White disparities in healthspan-

related characteristics in the US Health and Retirement Study. In the HRS VBS and VBS-DNAm 

samples, Black participants experienced more functional impairments, more difficulties with 

activities of daily living (ADLs) and higher incidence of ADLs over follow-up, more chronic-

disease diagnoses, poorer self-rated health and greater declines in self-rated health over 

follow-up, and increased risk for mortality as compared to White participants. Black 

participants also showed more advanced/faster biological aging based on the three blood-

chemistry measures we analyzed, the DNA-methylation GrimAge clock, and the DunedinPoAm 

pace of aging measure. In mediation analysis, these measures of more advanced/faster 

biological aging accounted for up to 95% of Black-White differences in healthspan-related 

characteristics and mortality. These findings are consistent with the weathering hypothesis that 

racially patterned determinants of health accelerate biological aging, contributing to Black-

White disparities in healthspan (19, 20), and provide limited proof-of-concept for use of 

quantifications of biological aging in health disparities research.   

Measures of biological aging have been suggested as surrogate endpoints for trials 

testing therapies to prolong healthy lifespan based on evidence that they predict aging-related 

changes in health, functioning, and mortality risk (36-38). No measures of biological aging have 

yet been tested in randomized clinical trials that include measurements of primary endpoints 

related to healthy lifespan. As a result, all fall short of the US Food and Drug Administration’s 

criterion that validated surrogate endpoints be reliable predictors of clinical benefit (39).  

Our findings offer mixed support for the measures we studied as candidate surrogate 

endpoints (i.e. proposed surrogates for which prediction of clinical benefit is not yet 

established) (39). Specifically, a criterion for a candidate surrogate endpoint is the robustness of 

associations between the candidate surrogate and primary outcomes across population 

subgroups.  This robustness is not yet established for measures of biological aging, especially in 

the case of DNA-methylation-based measures, for which algorithms were developed using data 

from mostly White-European samples, e.g. (40). Our analysis found mixed support for a 

hypothesis of consistent associations across Black and White older adults. Effect-sizes tended to 

be smaller for analyses of Black as compared with White participants. However, the same Black-

White differences in effect-sizes were also observed for analysis of chronological age, indicating 

that differential precision of aging measures between Black and White participants was likely 

not the cause. Instead, our data may reflect that Black Americans are disproportionately subject 

to non-aging causes of disease and disability such as injury or accidents, which would not be 

captured in measures of biological aging. Therefore, while our findings do not yet establish 

validity of biological aging measures as candidate surrogate endpoints, they do support 
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cautious interpretation of group differences in these measures of biological aging as evidence 

of disparities in healthy aging. 

Our findings suggest guidance to future studies. The conceptual model guiding our study 

proposes that Black-White disparities in healthspan arise from faster/more-advanced biological 

aging in Black as compared to White Americans. In our analysis, biological aging measurements 

from the Horvath, Hannum, and PhenoAge clocks did not fit this model; they showed no Black-

White differences or differences in the opposite direction. These clocks may not be well-suited 

to characterizing Black-White disparities in healthy aging. The HRS result that PhenoAge clock 

values did not differ between Black and White participants contrasts with a report from the 

Women’s Health Initiative showing more advanced biological aging in Black as compared with 

White women using this measure (23). Follow-up in additional cohorts is needed. Results also 

contribute evidence that first-generation DNA-methylation clocks—developed to predict 

chronological age—are both less predictive of healthspan-related characteristics and less 

sensitive to exposures that shorten healthy lifespan, as compared to blood-chemistry-derived 

measures, newer DNA-methylation clocks developed to predict mortality, and the 

DunedinPoAm DNA-methylation pace of aging (26, 28, 41-43). Future studies using DNA-

methylation to investigate biological aging as a mediator between risk exposures and healthy-

aging phenotypes, especially in the context of health disparities, may be best served by focus 

on 2
nd

-generation DNA methylation clocks, especially the GrimAge clock, and DunedinPoAm 

pace of aging measures.  

We acknowledge limitations. There is no gold standard measure of the construct of 

biological aging (44). Our conclusions regarding biological aging as a candidate mediator of 

health disparities could be specific to the measures we analyzed. However, consistent evidence 

across different biological substrates and measurement methods builds confidence that results 

do reflect aging processes. DNA-methylation measures of aging may reflect variation in the 

white blood cell composition of samples from which DNA is extracted (45). Sensitivity of our 

results to this variation could not be tested because the HRS has not yet released whole-

genome DNA-methylation data or estimates of white blood cell proportions. Mortality selection 

may bias results toward the null. Many individuals born in the same years as the HRS 

participants whose data we analyzed will not have survived to the time of HRS data collection, 

especially Black Americans, who face shorter life expectancies as compare to White Americans 

(46). If survivors aged more slowly than those who died at younger ages, our analysis could 

underestimate Black-White differences in biological aging and healthspan. Our estimates of 

disparities are therefore likely to be conservative. Indirect-effect estimates in our mediation 

models are conditional on the assumption that there are no common causes of biological aging 

and healthspan-related characteristics omitted from the model. To the extent that these causes 

exist, our estimates of the proportion mediated may be biased upwards.  Finally, there is the 

possibility of detection and reporting bias. For example, racial disparities in chronic disease 

might be underestimated if White participants were more likely to be diagnosed due to greater 

access to health care (47, 48).  

Within the bounds of these limitations, our findings have implications for future 

research and public health surveillance. More advanced/faster biological aging in Black as 
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compared to White HRS participants and the potential role of these differences in mediating 

Black-White health disparities highlight the need for studies of when and how Black-White 

differences in biological aging arise. Life-course longitudinal studies are needed to establish 

when aging trajectories begin to diverge for Black and White Americans. Studies are also 

needed to identify life-course phenomena through which racism and socioeconomic resource 

differentials drive faster aging in Black as compared to White Americans; maternal and 

perinatal health, social exclusion and victimization of young adults, occupational exposures to 

young and midlife adults, and access to healthcare later in life all represent potential drivers of 

Black-White disparities in aging. 

Our results suggest promise for the application of biological-aging measures for 

evaluating and monitoring Black-White disparities in healthy aging, in particular the GrimAge 

clock and DunedinPoAm pace of aging, with the caveat that these measures do not provide a 

complete summary of processes driving Black-White health disparities. These same measures 

can, in parallel, provide new outcome measures for evaluations of social policy experiments. A 

primary application of biological aging measures within the emerging field of geroscience is to 

provide surrogate endpoints for extension of healthy lifespan (36, 49). Results from this study 

suggest they may also have utility in trials of interventions that aim to eliminate health 

disparities by repairing inequalities in social determinants of health.  
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TABLES AND FIGURES 
Table 1. Measures of Biological Aging Included in Analysis. The table reports the eight 

measures of biological aging included in analysis. For each measure, the table reports the 

criterion used to develop the measure and the interpretation of the measure’s values. 

 Criterion Interpretation 

Blood Chemistry Measures. All algorithms were parameterized using data from NHANES III and included the following blood 

chemistries: albumin, alkaline phosphatase, creatinine, C-reactive protein (log), glucose, white blood cell count, lymphocyte 

%, mean cell volume, and red cell distribution width. PhenoAge and KDM Biological Age algorithms additionally included 

chronological age. The NHANES III training sample is majority White, but includes an oversample of Black Americans. Blood 

chemistry measures were calculated using code available on GitHub (https://rdrr.io/github/dayoonkwon/BioAge/) according 

to published methods. For analysis, PhenoAge and KDM Biological Age were differenced from chronological age to calculate 

biological-age advancement values.  

 PhenoAge (50) Mortality Age at which average mortality risk in NHANES III matches the mortality risk 

predicted by the blood-chemistry + chronological age algorithm.  

KDM Biological 

Age (51) 

Chronological 

Age 

Age at which average physiology in NHANES III matches the physiology of the 

participant.  

Homeostatic 

Dysregulation 

(52) 

Deviation from 

healthy youth 

Log biomarker-Mahalanobis distance of participant from young, healthy NHANES 

III participants 

 

DNA-Methylation Measures. DNA-methylation measures were developed from analysis of genome-wide DNA-methylation 

measured on Illumina 27k and 450k arrays in a range of different datasets. The Horvath Clock was developed from analysis of 

82 different datasets. The Hannum Clock was developed from analysis of research volunteers at UC San Diego, University of 

Southern California, and West China Hospital. The PhenoAge Clock was developed from analysis of NHANES III and the 

InCHIANTI Study. The GrimAge clock was developed from analysis of the Framingham Heart Study Offspring Cohort. The 

DunedinPoAm Pace of Aging was developed from analysis of the Dunedin Study. The InCHIANTI, Framingham, and Dunedin 

cohorts are mostly or entirely White-European. DNA-methylation measures were calculated by the HRS investigators. For 

analysis, DNA-methylation clocks were residualized on chronological age to calculate biological-age advancement values. 

First Generation DNA-methylation Clocks 

 Horvath Clock 

(53) 

Chronological 

Age 

Age predicted by DNA methylation.  

Hannum Clock 

(54) 

Chronological 

Age 

Age predicted by DNA methylation.  

Second Generation DNA-Methylation Clocks 

 PhenoAge Clock 

(50) 

Blood-chemistry 

PhenoAge 

Age at which average mortality risk in NHANES III matches the mortality risk 

predicted by the PhenoAge algorithm.  

GrimAge Clock 

(41) 

Mortality  Age at which average mortality risk in the Framingham Heart Study Offspring 

cohort matches predicted mortality risk.  

Pace of Aging 

 DunedinPoAm 

Pace of Aging 

(43) 

Change over 12-

years of follow-

up in 18 system-

integrity 

biomarkers  

Years of physiological decline experienced per 1 year of calendar time over the 

recent past. The expected value of DunedinPoAm in midlife adults is 1. Values>1 

indicate accelerated aging. Values<1 indicate slowed aging.  
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Table 2. Measurement of healthspan-related characteristics and mortality.  

Functional Impairment (VBS n=3621, VBS-DNAm n=1596). Functional impairments were measured 

from tests of lung function (Peak Flow), grip strength, gait speed, and balance. The tests are described 

in detail in Supplemental Methods Table 1. We classified test scores at the 30th percentile of the HRS 

distribution or lower as indicating functional impairment. Percentiles for grip strength were calculated 

separately for men and women. We calculated counts of functional impairments for participants 

providing data on at least 3 of the 4 tests. Counts were winsorized at a value of 3 (VBS M=1.13, 

SD=1.08; VBS-DNAm M=1.17, SD=1.09).   

Number of ADLs (VBS n=8198, VBS-DNAm n=3598). Participants were asked if they had difficulty 

performing 6 activities of daily living: dressing, eating (such as cutting up your food), bathing and 

showering, getting in and out of bed, toileting, and walking across a room. We summed the number 

of activities for which participants reported difficulty and coded the resulting ADL score as 0, 1, 2, or 

3+ ADLs (VBS M=0.30, SD=0.75; VBS-DNAm saple M=0.31, SD=0.78). For longitudinal analysis, we 

counted any new ADL difficulties reported at the 2018 assessment (VBS M=0.19, SD=0.65; VBS-DNAm 

M=0.20, SD=0.67).   

Chronic Conditions (VBS n=8196, VBS-DNAm n=3597). Chronic disease diagnoses were ascertained 

from participant reports about whether a physician had ever diagnosed them with hypertension, type 

II diabetes, cancer (excluding minor skin cancer), chronic lung disease, heart problems (heart attack, 

coronary heart disease, angina, congestive heart failure), and/or stroke. Counts of chronic disease 

diagnoses were winsorized at a value of 3 (VBS sample M=1.45, SD=1.04; VBS-DNAm sample M=1.48, 

SD=1.04). For longitudinal analysis, we counted any new diagnoses reported at the 2018 assessment 

(VBS M=0.14, SD=0.39; VBS-DNAm M=0.15, SD=0.39).   

Self-Rated Health (VBS n=8191, VBS-DNAm n=3595). Participants were asked to rate their own health 

on a scale of one to five (1=excellent, 5=poor; VBS sample M=2.88, SD=1.03; DNAm sample M=2.89, 

SD=1.03). For longitudinal analysis, we computed the difference between the 2016-wave rating and 

the 2018-wave rating (VBS M=0.04, SD=0.82; VBS-DNAm M=0.04, SD=0.81). 

Mortality (VBS n=8198, VBS-DNAm n=3598). Mortality follow-up was conducted through 2019. 

During follow-up, 237 deaths were recorded in the full VBS sample, of which 123 were recorded for 

participants in the VBS-DNAm sample. 
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Table 3. Mediation analysis of Black-White disparities in healthspan-related characteristics. 

The table shows parameter estimates and proportion-mediation calculations from mediation 

analysis. Results are presented for analysis of different healthspan-related characteristics and 

mortality in the table rows. For each outcome, there are three columns of results 

corresponding to the PhenoAge blood chemistry measure (left), the GrimAge DNA methylation 

clock (center), and the DunedinPoAm pace of aging (right). For each outcome-aging measure 

pair, there are two mediation analyses. The first analysis (“Without E-M” interaction”) 

estimates the mediation model under the assumption that associations between biological 

aging measures and healthspan-related characteristics/mortality are the same in the Black and 

White subsamples (i.e. no exposure-mediator interaction). The second analysis (“With E-M 

Interaction” estimates the mediation model allowing for different associations between 

biological aging measures and healthspan-related characteristics in the Black and White 

subsamples (i.e. with explicit modeling of exposure-mediator interaction). Indirect effects 

estimates represent the portion of the Black-White disparity mediated through the biological 

aging measure. Total effect estimates represent the Black-White healthspan disparity. The 

proportion mediated is computed as a ratio of the indirect to the total effect. Panel A shows 

results for mediation analysis of cross-sectional data collected in the 2016 wave of the HRS. 

Samples sizes for VBS/VBS-DNAm samples are n=3621/1596 for functional impairment; 

n=8197/3598 for ADLs; n=8195/3597 for chronic conditions; n=8190/3595 for self-rated health. 

Panel B shows results for mediation analysis of longitudinal data in which measures of 

biological aging were collected in the 2016 wave and mortality, incident ADLs and chronic 

conditions, and changes in self-rated health were measured from 2016 baseline through follow-

up in the 2018 data collection wave. Sample sizes for VBS/VBS-DNAm samples are n=8197/3598 

for mortality; n=8197/3598 for ADLs; n=7229/3164 for chronic conditions; n=7228/3163 for 

self-rated health.    
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Est 95%CI Est 95%CI Est 95%CI Est 95%CI Est 95%CI Est 95%CI

Functional Impairment

Indirect effect 0.04 ( 0.03, 0.05) 0.04 ( 0.02, 0.06) 0.08 ( 0.06, 0.10) 0.08 ( 0.04, 0.12) 0.06 ( 0.04, 0.08) 0.04 ( 0.00, 0.07)

Total effect 0.22 ( 0.15, 0.29) 0.22 ( 0.15, 0.28) 0.18 ( 0.09, 0.31) 0.18 ( 0.08, 0.31) 0.17 ( 0.06, 0.29) 0.17 ( 0.08, 0.28)

Prop. Mediated 0.19 0.17 0.43 0.42 0.34 0.23

ADLs

Indirect effect 0.12 ( 0.09, 0.14) 0.07 ( 0.05, 0.10) 0.10 ( 0.07, 0.14) 0.05 ( 0.01, 0.11) 0.08 ( 0.05, 0.11) 0.04 ( -0.01, 0.08)

Total effect 0.63 ( 0.52, 0.74) 0.66 ( 0.55, 0.79) 0.59 ( 0.37, 0.80) 0.58 ( 0.40, 0.75) 0.59 ( 0.41, 0.75) 0.59 ( 0.42, 0.77)

Prop. Mediated 0.18 0.11 0.16 0.09 0.13 0.06

Chronic Conditions

Indirect effect 0.07 ( 0.05, 0.08) 0.05 ( 0.04, 0.07) 0.06 ( 0.04, 0.07) 0.03 ( 0.02, 0.05) 0.04 ( 0.03, 0.06) 0.02 ( 0.01, 0.04)

Total effect 0.23 ( 0.19, 0.25) 0.23 ( 0.20, 0.27) 0.22 ( 0.16, 0.27) 0.22 ( 0.16, 0.28) 0.22 ( 0.16, 0.28) 0.22 ( 0.16, 0.28)

Prop. Mediated 0.29 0.23 0.26 0.14 0.19 0.09

Self-Rated Health

Indirect effect 0.10 ( 0.08, 0.12) 0.07 ( 0.06, 0.10) 0.10 ( 0.08, 0.13) 0.10 ( 0.07, 0.13) 0.07 ( 0.05, 0.09) 0.08 ( 0.06, 0.12)

Total effect 0.33 ( 0.27, 0.40) 0.34 ( 0.28, 0.39) 0.28 ( 0.20, 0.37) 0.28 ( 0.20, 0.35) 0.28 ( 0.20, 0.37) 0.28 ( 0.20, 0.36)

Prop. Mediated 0.29 0.22 0.37 0.35 0.24 0.29

Est 95%CI Est 95%CI Est 95%CI Est 95%CI Est 95%CI Est 95%CI

Mortality

Indirect effect 0.16 ( 0.12, 0.21) 0.16 ( 0.09, 0.21) 0.26 ( 0.18, 0.35) 0.19 ( 0.04, 0.34) 0.16 ( 0.09, 0.25) 0.10 ( -0.01, 0.22)

Total effect 0.27 ( -0.22, 0.57) 0.28 ( -0.05, 0.60) 0.32 ( -0.25, 0.81) 0.31 ( -0.13, 0.67) 0.31 ( -0.27, 0.85) 0.31 ( -0.19, 0.72)

Prop. Mediated 0.60 0.57 0.80 0.61 0.52 0.33

Change in ADLs

Indirect effect 0.07 ( 0.04, 0.09) 0.03 ( 0.00, 0.06) 0.10 ( 0.05, 0.15) 0.09 ( 0.01, 0.20) 0.08 ( 0.04, 0.14) 0.08 ( -0.01, 0.19)

Total effect 0.39 ( 0.18, 0.56) 0.41 ( 0.19, 0.62) 0.10 ( -0.23, 0.45) 0.10 ( -0.23, 0.39) 0.11 ( -0.25, 0.35) 0.11 ( -0.26, 0.40)

Prop. Mediated 0.17 0.07 0.92 0.86 0.75 0.73

Change in Chronic Conditions

Total Effect -0.07 ( -0.27, 0.07) -0.07 ( -0.23, 0.10) -0.19 ( -0.44, 0.12) -0.19 ( -0.51, 0.09) -0.18 ( -0.46, 0.11) -0.19 ( -0.46, 0.10)

Change in Self-Rated Health

Indirect effect 0.02 ( 0.01, 0.03) 0.01 ( 0.00, 0.02) 0.02 ( 0.01, 0.03) 0.01 ( -0.01, 0.03) 0.02 ( 0.01, 0.03) 0.02 ( 0.00, 0.03)

Total effect 0.10 ( 0.06, 0.15) 0.11 ( 0.06, 0.15) 0.10 ( 0.03, 0.16) 0.09 ( 0.03, 0.16) 0.10 ( 0.03, 0.17) 0.10 ( 0.03, 0.16)

Prop. Mediated 0.18 0.08 0.22 0.08 0.22 0.17

With E-M interaction

PhenoAge GrimAge

PhenoAge GrimAge

Without E-M interaction With E-M interaction Without E-M interaction With E-M interaction Without E-M interaction

With E-M interaction

DunedinPoAm

Panel A. Cross-sectional Measures

DunedinPoAm

Panel B. Longitudinal Measures

Without E-M interaction With E-M interaction Without E-M interaction With E-M interaction Without E-M interaction
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Figure 1. Effect-sizes for associations of biological aging measures with healthspan-related 

characteristics. The figure graphs effect-sizes for associations of biological aging measures with 

healthspan characteristics measured cross-sectionally at the 2016 wave (Functional 

Impairments, Limitations to Activities of Daily Living (ADLs), Chronic Disease Diagnoses, and 

Self-rated Health) and with healthspan-related characteristics and mortality measured 

longitudinally through the end of the 2018 wave (mortality, incident ADLs, incident chronic 

disease diagnoses, change in self-rated health). For functional impairment, prevalent and 

incident chronic conditions, and prevalent and incident ADLs, effect-sizes are incidence rate 

ratios (IRRs) for 1-SD increases in biological aging measures estimated from Poisson regression. 

For cross-sectional self-rated health and change in self-rated health, effect-sizes are Pearson r’s 

for 1-SD increases in biological aging measures estimated from linear regression. For mortality, 

effect-sizes are hazard ratios (HRs) for 1-SD increases in biological aging measures estimated 

from Poisson regression. Blood-chemistry measures are shown in red; 1st generation DNA-

methylation clocks are shown in dark blue; 2nd generation DNA-methylation clocks are shown 

in light blue; DunedinPoAm pace of aging is shown in turquoise. Error bars show 95% 

confidence intervals. For cross-sectional measures, sample sizes for VBS/VBS-DNAm samples 

are n=3721/1676 for functional impairment; n=8484/3785 for ADLs; n=8482/3784 for chronic 

disease diagnoses; n=8476/3782 for self-rated health. For longitudinal measures, sample sizes 

for VBS/VBS-DNAm samples are n=8484/3785 for mortality; n=7491/3327 for ADLs; 

n=7497/3329 for chronic conditions; n=7488/3326 for self-rated health.    
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Figure 2. Distribution of biological aging measures in Black and White US Health and 

Retirement Study participants. The figure graphs densities of biological aging measures. For 

blood-chemistry PhenoAge, KDM Biological Age, and the DNA-methylation clocks, values are 

biological-age advancements (i.e. the difference between measured biological age and 

chronological age). For homeostatic dysregulation, values capture blood-chemistry deviation 

from the norm in a healthy sample. For DunedinPoAm, values are pace of aging (i.e. years of 

physiological decline experienced per 1 year of calendar time over the recent past). To allow 

comparison across measures, biological aging values are standardized to mean=0, SD=1 in the 

full VBS sample. Densities and Cohen’s D estimates are adjusted for sampling weights. 
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