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Abstract: Anticipating the medium- and long-term trajectory of pathogen emergence has acquired 

new urgency given the ongoing COVID-19 pandemic. For many human pathogens the burden of 

disease depends on age and prior exposure. Understanding the intersection between human 

population demography and transmission dynamics is therefore critical. Here, we develop a 

realistic age-structured (RAS) mathematical model that integrates demography, social mixing and 5 

immunity to establish the suite of possible scenarios of future age-incidence and burden of 

mortality. With respect to COVID-19, we identify a plausible transition in the age-structure of 

risks once the disease reaches seasonal endemism, whether assuming long-lasting or brief 

protective immunity, and across a range of assumptions of relative severity of primary versus 

subsequent reinfections. We train the model using diverse real-world demographies and age-10 

structured social mixing patterns to bound expectations for changing age-incidence and disease 

burden. The mathematical framework is flexible and can help tailoring mitigation strategies 

countries worldwide with varying demographies and social mixing patterns. 

One Sentence Summary: A shift of COVID-19 risks to younger age-classes in future endemic 

circulation. 15 
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Introduction 

The unfolding pandemic caused by SARS-CoV-2 threatens to be one of the biggest challenges of 

our time. Mounting evidence suggests a seemingly inevitable resurgence of disease towards 

endemism in the foreseeable future (1,2). Identifying the age and burden profiles that may define 

the years ahead could help improving response preparedness, both for this pandemic, and for future 5 

emerging pathogens.  

A fundamental signature of COVID-19, the disease associated with SARS-CoV-2, is the 

age manifestation of the burden of infection and morbidity. Following infection by SARS-CoV-2, 

there is a clear signature of increasingly severe outcomes and fatality with age (3-5). Historical 

emergence of acute respiratory infections indicates that age-incidence patterns during virgin 10 

epidemics can be very different from endemic circulation (6,7). This motivates efforts to bound 

the potential future age-circulation and fatality to understand the evolving health burden. 

Predicting age-circulation in the near and mid future (e.g., 1-5 years since emergence) 

requires realistic age-structured (RAS) mathematical models that includes characterization of 

immunity following (re-)infection. Empirical evidence from seasonal coronaviruses indicates that 15 

prior exposure may only confer short-term immunity to reinfection, allowing recurrent outbreaks 

(8,9). Despite this, prior exposure may prime the immune system to provide protection against 

severe disease (8,10,11), and thus possibly reduce the public health burden of future recurrences. 

Here, we propose an age-structured multi-compartmental SIRS model that allows for projections 

for future age-circulation and disease burden of SARS-CoV-2 virus under various plausible 20 

scenarios. We frame our model around a balance between simplicity and flexibility and structure 

our analysis accordingly. First, to develop a base-line for the transition of age-dependent risk over 

long-term dynamics, we explore outcomes for a ‘rectangular demography’ (where survival is 
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complete until a maximum age, resulting in a rectangular age pyramid and constant population 

size) and ‘homogeneous mixing’ (where individuals have equal probability of contact with 

individuals of all other ages). The purpose of this mass-action, homogeneous mixing model is to 

provide a baseline for thinking about transitions in age-incidence over time. As per all mass-action 

models of virgin epidemics, the initial post-epidemic trough is unrealistically deep. Using a power-5 

scaling law to allow for spatial and social clustering as suggested by Liu et al. (12) will obviously 

alleviate this, but add parameters that doesn’t add to the overall take-home message. The 

subsequent step is to incorporate demographic and social complexities, including realistic age 

pyramids and assortative contacts among age groups, both derived from country-specific data.  

Our general model projects age-incidence and thus age-morbidity patterns into the future 10 

according to chains of differential equations: 
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where 𝑆$
,, 𝐼$

, are the number of susceptible individuals and primary infections in age group 𝑖. The 

recovered individuals (𝑅$) may lose immunity and return to susceptibility (𝑆$
=,) after an average 

protected period of 1 𝜔⁄  and subsequently be liable to reinfection; accordingly, 𝐼$
=, is the number 
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of non-primary infections in age group 𝑖. The force-of-infection on susceptibles in age-class which 

is the rate at which any susceptible of age 𝑖  will be infected is 𝜆$ = 𝛽∑ 𝐶$A=
A 5𝐼$

, + 𝐼$
=,6 𝑁$⁄  , 

where 𝛽 is the baseline rate of transmission given by 𝛽 = 𝑅B𝛾 and 𝐶$A is the normalized contact 

rate between age group 𝑖 and 𝑗. In the below illustration we assume an 80-year life expectancy and 

thus a birth rate 𝜇$ =	1 80⁄  year-1 at which people are born to the youngest group in a population 5 

of size 𝑁$ (i.e 𝜇$ is 0 for all 𝑖 > 1). For the baseline model, we assume 𝑎$ to be the age-specific rate 

of aging with a 1-year duration, 𝑣$ 	is a rate of natural mortality (we assume 𝑣$ = 0 for all 𝑖 until 

the rectangular age end-point), and 1 𝛾⁄  to be the average duration of infection (taken to be 7 days 

in this analysis). To map our model to realistic demographies and social mixing patterns, we 

parametrize the model based on a broad range of countries. Details of model parameters are 10 

provided in Table 1. 

 

Results 

We first identify the broad consequences of the intersection of immunity and burden over 

immediate, medium and longer terms (year 1, 10 and 20 years, respectively), explicitly considering 15 

immune scenarios that differ in the degree to which immunity prevents reinfections and/or 

attenuates severe cases, and then consider realistic demographics and social mixing for 11 different 

countries chosen to span diverse demographies. Across a 20-year horizon, we assess age-specific 

risk during a virgin epidemic, medium-term and a scenario of long-term endemic circulation. 

Prevalence is predicted to surge during a virgin epidemic but then recede in a diminishing 20 

wave pattern as the spread of the infection unfolds over time towards the (probably seasonally-

varying) endemic equilibrium (Fig. 1A−B). Depending on immunity and demography, the virgin 

epidemic the RAS model predicts a strikingly different age-structure than the eventual endemic 
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situation (Fig. 1C−D; Fig. S1). When considering overall disease burden in the population during 

a probable transition from emergence to endemicity, our model highlights the importance of three 

main axes of variability/uncertainty: immune duration, demography and social mixing. Over the 

course of emergence, the shift in the age-profile of risk of infection and disease is largely 

dependent on the extent of infection-blocking and disease-reducing immunity. During the 5 

transition to endemism in a scenario of long-lasting immunity (assumed permanent or 10-year), 

the young – who for SARS-CoV-2 suffer a mild burden of disease – is predicted to have the highest 

rates of infection once the disease dynamics moves towards the steady-state (Fig. 1C; Fig. S1A), 

as older individuals are protected from infection by prior infection. If immunity to reinfection is 

brief (assumed short-lived 3-month or 1-year), changes in disease severity due to prior exposure 10 

is the main driver of changes to age-structured risk and long-term burden of mortality. The 

possibility of rapid reinfection, and severe outcomes on reinfection would heighten long-term 

circulation and continued high-risk infection among adults, though could modulate the age profile 

of risk over time (Fig. 1C; Fig. S1A). In contrast, if disease symptoms on reinfection are attenuated, 

the burden of disease may decay over time even if duration of sterilizing immunity is short-lived 15 

and reinfection is frequent. In the latter scenario the age-profile of primary infections will define 

the shifting risk over time, primary infection recedes to younger individuals as an emerging acute 

respiratory infection moves towards endemicity (Fig. 1D; Fig. S1B). 

Our general model framework allows for robust predictions regarding transition in age-

profile of risk in the face of either short/long-term protective immunity, reduction of severity of 20 

disease given previous exposure, and consideration of the range of countries with their different 

demographies and social mixing patterns (Fig. 2, Fig. S2−S6). Broadly speaking we find that 

immune scenarios are the dominant driver of transitions in age-dependence and risk towards 
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endemicity, though our framework to incorporate realistic demographies and social mixing 

patterns to modulate the relative risk is likely to provide a critical infrastructure for policy decision 

making.  

Assuming prior exposure reduces severity of respiratory reinfections, the model’s 

projected transition is broadly consistent with those documented in several historical respiratory 5 

pandemics. In particular, the critical importance of both age and prior exposure on disease burden 

and mortality following the 1918 pandemic has been well-characterized: the elderly were protected 

by immunity from previous exposure to an earlier A/H1N1 related strain but within some years 

the overall burden of mortality receded (6,13,14). Ongoing genomic work following on (15) 

tantalizes that the million-killing1889/90 pandemic could have been caused by the emergence of 10 

HCoV-OC43 which is now an endemic mild repeat-infecting coronavirus.  

For SARS-CoV-2 preparedness our model provides a robust framework for scenario 

analyses for the future. Irrespective of parametric uncertainties, the burden of mortality will peak 

during the virgin epidemic period (Fig. 3−4). The predicted magnitude of this peak is moderately 

affected across a plausible range of immune durations and immunity-modulated severity upon re-15 

exposure (Fig. S7−S8). By contrast, post-pandemic burden during endemicity is shown to be 

strongly dependent on immune-function and prior infection history as it affects infection-

probability and disease severity. Milder disease from reinfections (Fig. 3, Fig. S7) would give rise 

to decreasing mortality due to the reduction of severe cases, while burden of mortality over time 

may remain unchanging if primary infections do not prevent reinfections or mitigate severe disease 20 

among the elderly (Fig. 4, Fig. S8). In this bleakest scenario, excess deaths due to continual severe 

reinfections that results from the continuous replenishment of susceptibles via waning of immunity 

to reinfection will continue until effective pharmaceutical tools are available.  
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A final insight from our detailed RAS model is that regardless of immunity and mixing, 

the population-level burden of mortality may differ among countries because of varying 

demographies. Given the marked increase of infection-fatality ratio (IFR) with age, countries with 

older population structure would be expected to have a typically larger fraction of deaths than 

those with relatively younger population structure (once corrected for differences in public health 5 

infrastructure). Consistent with this, South Africa, partially due to its younger population structure, 

has a lower fraction of deaths as compared with older populations such as Italy. These “deaths 

disparities” among demographies are largely invariant over the unfolding pandemic, though young 

people would be predicted to contribute most to burden in the endemic era. When comparing the 

relative importance on the overall burden of mortality, we show that the varying demographies is 10 

a key determinant of the disparities among countries (see Supplementary Text “Relative effect of 

demographies and social mixing patterns”; Fig. S9−S10). 

 

Discussion 

Our realistic age-structured SIRS model provides a general framework to explore various 15 

scenarios for the possible unfolding of the current and future pandemic crises in the face of 

country-specific demographies, social mixing patterns and the inevitable main unknowns for any 

emergence such as immune duration and immune mitigated reduction in severity of disease. 

Through the integration of age structure, social mixing and immunity, our projections using SARS-

CoV-2 as a focus for considering the broader issue, we highlight how risk will shift over time to 20 

different age-classes that may suffer different burden of disease during an endemic state. Such a 

shift will be very strong if immunity is long-lived but also of great public health significance if 

immunity to reinfection wanes, yet previous exposure attenuates severity of disease.  
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By highlighting a wide range of scenarios, our model framework is a robust scaffolding to 

help improve preparedness and mitigation of the current and future pandemics. Furthermore, our 

realistic age-structured SIRS model makes critical contributions to understanding how the highly 

variable social context, particular demography and age-structured mixing patterns, may modulate 

current and future disease burden. Building upon our framework (including the detailed and 5 

documented code provided in the supplement), health authorities will have a powerful and flexible 

tool to conceptualize future age-circulation, strengthening context-specific preparedness and 

deployment of interventions. The model will handily accommodate additional uncertainties/ 

variabilities as evidence is accumulated in the coming months and years.  

Our RAS model makes several assumptions. First, we focus on the infection-blocking 10 

immunity. Incorporating realistic immunity efficacy with respect to susceptibility, transmission 

and severity is an important direction for expansion. Second, we assume a general formulation for 

the epidemic model. This should be considered as the starting point for the extension to encompass 

disease-specific mechanisms. Furthermore, we assume a homogeneous susceptibility to infection, 

clinical fraction and infection vs case-fatality ratio across age classes. Relaxing our assumptions 15 

by explicitly consider age-specific heterogeneities (8, 16,17) is an important future direction. Last, 

we assume an exponential decay of immunity within each age class which leads to a Gamma 

distributed loss over time. We believe this is a realistic model that still needs to be further refined 

with the mounting clinical and empirical studies. (see Supplementary Text for details of the 

assumptions and directions for further extensions). 20 

 

Materials and Methods 

Model parameterization 
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Transition rates. In the base model, we assume an 80-year life expectancy and thus a birth 

rate 𝜇$ =	1 80⁄  year-1 at which people are born to the youngest group in a population of size 𝑁$ 

(i.e 𝜇$ is 0 for all 𝑖 > 1). We assume 𝑎$ to be the age-specific rate of aging with a 1-year duration 

(i.e. 𝑎$ = 1 for all 𝑖). 𝑣$ 	is a rate of natural mortality which is assumed 0 for all age classes until 

the rectangular age end-point (i.e. 𝑣$ = 0 for all 𝑖). 1 𝛾⁄  is the average duration of infection which 5 

in the analysis taken to be 7 days (18). We further explore its variability on epidemiological 

trajectories (see Sensitivity analysis). In the RAS model with country-specific population pyramid 

and contacts over age, we retain the assumption of zero mortality across ages below the maximum 

age, the same birth rate to the youngest group and the same aging rate across countries, as this will 

result in a broadly consistent age structure (appropriate to human demography where transients 10 

play out extremely slowly). 

Estimating the reproduction number. The reproduction number is a critical parameter 

for our model projections. Social distancing is well documented to impact transmissibility (19) 

and many countries implemented such interventions during the build-up of the virgin epidemic. 

Given this, we assume that the effective reproduction number i.e. the level of transmissibility, on 15 

day t, 𝑅#, is linked to the reduced mobility on that day, 𝑚#, via: 

log(𝑅#) = log(𝑅B) − 𝛽𝑚# 

where 𝑅B is the basic reproductive number in the absence of behavioural changes and 𝛽 is the 

transmission rate. Reduced mobility leads to reductions in the effective reproduction number. 

When the reduction of mobility/mixing is 0%, 𝑅B provides the baseline transmissibility parameter. 20 

We use China as the reference point. 

We used daily confirmed cases in China (20) and extract mobility from the Baidu database 

(21) in the period of January 1st – March 5th, 2020. With the cases we estimate 𝑅# using a 14-day 
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sliding time window using EpiEstim package (22), assuming a mean of 5.1 days and standard 

deviation of 5.3 days of the serial interval (23). We then exclude estimates of 𝑅# prior to January 

15th, 2020 in subsequent analysis, given the limited number of cases and thereby large uncertainty 

of 𝑅#. We also trim the estimates of 𝑅# after February 20th, 2020 (i.e. four weeks after lockdown 

on January 23rd, 2020) when mobility rebounded but was not a strong corelate of reductions in 𝑅# 5 

since then. With estimates of 𝑅# and mobility data from January 15th – February 20th, 2020 (Fig. 

S12), we establish the transmissibility-mobility association and estimate 𝑅B  using generalized 

linear model (GLM) with a negative binomial link function. Note that we do not tend to explicitly 

fit the documented cases nor optimize every transmission parameter; instead, we capture 𝑅B to 

characterize the overall basic transmissibility. The estimated 𝑅B  is subsequently used as the 10 

baseline to simulate dynamics of COVID-19 in the age-structured SIRS model framework (see 

below). Furthermore, we examine how different demographies are predicted to modulate country-

specific 𝑅B ’s away from the early Chinese baseline (see Supplementary Text “Variation of 

transmissibility among countries”).  

Demographics and age-structured social mixing patterns. To fully characterize the 15 

long-term age-circulation across the globe, we select 11 countries across a broad range of 

demographic and social mixing patterns. The countries cover Asia (China, Japan and South 

Korea), Europe (Spain, United Kingdom, France Germany and Italy), North America (United 

States), South America (Brazil) and Africa (South Africa). For these countries, we collected age 

pyramids from the statistics of the United Nations (24) and country/age-specific number of 20 

contacts from Prem et al. (25). We further annualized these data to generate the finer age profile 

into the 1-year age brackets necessary for model predictions (Fig. S13). 
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Age-specific infection-fatality ratio. Pilot studies have shown an increased infection-

fatality ratio with age. We collect the posterior estimates of infection fatality ratio (IFR) from 

Verity et al. (17), and subsequently project them onto the 80 age groups in our study to predict 

burden. 

 5 

Model projections 

Given the realistic age-structured SIRS equations defined by eqs (1)−(5), we numerically integrate 

the model to predict dynamics of COVID-19 for the next 20 years using a variety of scenarios 

spanning a range of current unknowns. For each scenario, simulation was initialized with 1% 

infections and 0.1% recovered individuals, i.e. 𝑆,(0) = 0.989, 𝐼,(0) = 0.01, 𝑅 = 0.001 , and 10 

𝑆=,(0) = 𝐼=,(0) = 0. 

For initial insights we studied the base model using a rectangular demography (i.e. in the 

absence of infection everybody is expected to live to the age of 80, resulting in a rectangular age 

pyramid and constant population size) and homogeneous mixing (i.e. individuals have equal 

probability of contact with individuals of all other ages) under four different durations of 15 

immunity. i.e. the short-lasting immunity assumed as (i) short-lived (3-month) or (ii) 1-year, and 

the long-lasting immunity assumed as (iii) 10-year or (iv) permanent (or life-long). Of note, in the 

scenarios where reinfection is possible, functional immunity to disease may still vary (8,10,11). 

Given this, we explicitly consider two scenarios that differ in the severity of reinfections. We firstly 

assume an independence of disease severity from prior exposure, so the burden of disease depends 20 

on the sum of both primary and non-primary infections. Alternatively, we assume prior immunity 

may mitigate disease severity. In which case, milder reinfections is assumed of no contribution to 
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shaping the epidemiological trajectories, and thus public health burden depends on age-profiles of 

primary infections.  

Next, we contextualize the transition in age-circulation for the 11 selected countries (see 

“Demographics and age-structured social mixing patterns”). We add greater demographic and 

social complexity to the base model, by initiating the population with country-specific age 5 

pyramids and social mixing patterns obtained as described above. We then simulate the models 

with a broadly consistent age structure where where transients play out extremely slowly, by 

retaining the assumption of zero mortality across ages below the maximum age and the same birth 

rate to the youngest group across countries (see “Transition rates”).  This helps titrate how these 

variables may lead to varying patterns among countries. Relative risk among age groups is defined 10 

as the infected fraction in each age group relative to that in a population as a whole. To assess 

plausible transitions towards endemicity, we estimate relative risk in the first, tenth and 20th year 

following emergence (hereafter as the virgin epidemic, medium-term and the probable endemic 

phase, respectively). Finally, we project the trajectories of deaths in the selected countries under a 

variety of immune scenarios. The population-level fraction of deaths, i.e. burden of mortality, is 15 

estimated by multiplying the age-specific infected fraction with IFR. We assumed an invariant IRF 

for primary and non-primary infections. Consistent with above assessment of changing age-

structure, we examine the scenario with different duration of immunity and possible mitigation of 

illness due to prior exposure. To evaluate the relative importance of demography and social mixing 

pattern, we further simulate the model by using the assumed homogeneous mixing patterns (see 20 

Supplementary Text “Relative effect of demographies and social mixing patterns”).  

 

Sensitivity analyses 
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We validate our findings and insights by examining the uncertainty that may arise from the 

assumed duration of infection and model formulation. More specific, we investigate the dynamics 

of disease burden by assuming an array of the average duration of infection, including 5, 9, 11 

days. Additionally, we formulate a SEIRS model by explicitly incorporating the exposure (E) 

component and asymptomatic infections: 5 
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For simplicity, we assume that the average duration of incubation (𝛿 ) is 6.4 days (26), the 15 

infectiousness of asymptomatic (𝜌+) is half (50%) of that of symptomatic infections, and the 

proportion of asymptomatic infections (𝜌D) is 40% (27). The force of infection on susceptibles in 
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age-class i is defined by 𝜆$ = 𝛽∑ 𝐶$A=
A 5𝐼$

,,FGH + 𝐼$
=,,FGH + 𝜌+(𝐼$

,,IFGH + 𝐼$
=,,IFGH)6 𝑁$⁄ , where 

superscript 𝑠𝑦𝑚 and 𝑎𝑠𝑦𝑚 denotes the symptomatic and asymptomatic infections, respectively. 

𝛽 is the baseline rate of transmission given by 𝛽 = 𝑅B𝛾 and 𝐶$A  is the normalized contact rate 

between age group 𝑖  and 𝑗 . We simulate the model and estimate the age-specific risk in the 

scenario of the rectangular demography and homogeneous mixing. 5 
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Fig. 1 Trajectory of infected fraction and transitions in age-structure of the risk from virgin 

epidemic to endemic equilibrium. (A) Infected fraction for an outbreak is simulated with 𝑅B = 

2.3, 1 𝛾⁄  = 7 days, and a short-lived (i.e. 3-month) (grey) and 1-year (orange) immunity duration 

over 20 years. The SIRS model is parameterized with rectangular demographic structure and 

homogeneous social mixing pattern. Dashed lines indicate different stages of disease dynamics. 5 

For visualization, only trajectories in scenarios of short-lasting (i.e. short-lived and 1-year) are 

presented. (B) shows the infected versus susceptible fraction. If primary and non-primary 

infections have similar illness, (C) shows relative risk (i.e. age-specific infected fraction relative 

to the population-wide fraction) among age groups in the virgin epidemic, medium-term and 

endemic stage under scenario of permanent and 1-year immunity duration, respectively. If non-10 

primary infections are less severe, (D) shows relative risk from primary infections. Relative risk 

among age groups under scenario of permanent, 10-year, 1-year and short-lived immunity duration 

are shown in the Supplement Material (see Fig. S1). 
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Fig. 2 Transitions in age-structure of the risk in different countries. With (A) demographic 

structure (greens bars) and social mixing pattern (orange lines) in United Kingdom, Italy and South 

Africa, (B−G) show the relative risk among age groups in the virgin epidemic, medium-term and 

endemic stage in scenario of permanent and 1-year immunity duration. Risk from (B, D, F) all 

infections and (C, E, G) only primary infections are explicitly distinguished. Relative risk among 5 

age groups under scenario of permanent, 10-year, 1-year and short-lived immunity duration are 

shown in the Supplement Material (see Fig. S2). 
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Fig. 3 Fraction of deaths from primary infections. (A−D) Overall fraction of deaths over 20 

years and (E−F) the timing and magnitude of consecutive peaks in scenario of permanent, 10-year, 

1-year and short-lived (i.e. 3-month) immunity duration, respectively. Countries with different 

demographies and social mixing patterns are distinguished by colour: Italy (black), United 

Kingdom (blue) and South Africa (orange). For visualization, insets show trajectories following 5 

the first 2 years. 
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Fig. 4 Fraction of deaths from all infections. Same as Fig 3 but for deaths from both primary 

and non-primary infections. 
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Table 1. SIRS Model parameters. 

Parameter Values Details 
Baseline reproduction number, 𝑅B 2.30 Estimated 
Average duration of infection, 1 𝛾⁄  7 days (18) 

Immune duration, 1 𝜔⁄  Short-lived (3 months), 1year, 
10 years, permanent Assumed 

Natural birth rate, 𝜇 1/80 for the youngest class, 0 
for all the other age classes 80-year life expectancy 

Natural mortality rate, 𝜈 0 for all age classes Assumed 

Average rate of aging, 𝑎 1 for all age classes reverse of the 5-year age 
interval 

Infection-fatality ratio i.e. age-specific IFR Estimated from (16) 

Demography i.e. age-specific proportion of 
population Annualized from (23) 

Social mixing pattern, 𝐶 i.e. age-structured number of 
contacts Annualized from (24) 
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