Modelling upper respiratory viral load dynamics of SARS-CoV-2

Joseph D. Challenger^{1*}, Cher Y. Foo², Yue Wu³, Ada W. C. Yan⁴, Mahdi Moradi Marjaneh⁵, Felicity Liew⁶, Ryan S. Thwaites⁶, Lucy C. Okell¹, Aubrey J. Cunnington^{5,7}

1. Medical Research Council Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, Imperial College London, London, United Kingdom

2. Faculty of Medicine, Imperial College London, London, United Kingdom

3. School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom

4. Department of Infectious Disease, Imperial College London, London, United Kingdom

5. Section of Paediatric Infectious Disease, Department of Infectious Disease, Imperial College London, London, United Kingdom

6. National Heart and Lung Institute, Imperial College London, United Kingdom

7. Centre for Paediatrics and Child Health, Imperial College London, United Kingdom

*Corresponding author

SUPPLEMENTARY MATERIALS

This document contains:

- 1. Supplementary Tables 1-4
- 2. Supplementary Figures 1-7

All references numbered as per the main text

Title	Journal	D.O.I.	Date of request
Temporal dynamics in viral shedding and transmissibility			
of COVID-19	Nature Medicine https://doi.org/10.1038/s41591-020-0869-5		May 26th 2020
Temporal profiles of viral load in posterior			
oropharyngeal saliva samples and serum antibody			
responses during infection by SARS-CoV-2: an			
observational cohort study	Lancet ID	https://doi.org/10.1016/S1473-3099(20)30196-1	Oct 22nd 2020
Prolonged presence of SARS-CoV-2 viral RNA in faecal			
samples	Lancet G Hep	https://doi.org/10.1016/S2468-1253(20)30083-2	June 1st 2020
Clinical Course and Outcomes of Patients with Severe			
Acute Respiratory Syndrome Coronavirus 2 Infection: a			
Preliminary Report of the First 28 Patients from the			
Korean Cohort Study on COVID-19	J Korean Med Sci	https://doi.org/10.3346/jkms.2020.35.e142	June 1st 2020
Viral Kinetics and Antibody Responses in Patients with			
COVID-19	medRxiv	https://doi.org/10.1101/2020.03.24.20042382	May 26th 2020
Different longitudinal patterns of nucleic acid and			
serology testing results based on disease severity of	Emerging Microbes &		
COVID-19 patients	Infections	https://doi.org/10.1080/22221751.2020.1756699	June 1st 2020
The presence of SARS-CoV-2 RNA in the feces of COVID-	Journal of Medical		
19 patients	Virology	https://doi.org/10.1002/jmv.25825	Oct 21st 2020
Chronological Changes of Viral Shedding in Adult	Clinical Infectious		
Inpatients with COVID- 19 in Wuhan, China Diseases		https://doi.org/10.1093/cid/ciaa631	June 1st 2020
Correlation between viral RNA shedding and serum	Clinical Microbiology and		
antibodies in COVID-19 patients	Infection	https://doi.org/10.1016/j.cmi.2020.05.022	June 1st 2020
Viral load dynamics and disease severity in patients			
infected with SARS-CoV-2 in Zhejiang province, China,			
January-March 2020: retrospective cohort study	BMJ	https://doi.org/10.1136/bmj.m1443	June 1st 2020
Clinical features and dynamics of viral load in imported	International Journal of		
and non-imported patients with COVID-19	Infectious Diseases	https://doi.org/10.1016/j.ijid.2020.03.022	June 1st 2020
Antibody responses to SARS-CoV-2 in patients of novel	Clinical Infectious		
coronavirus disease 2019	Diseases	https://doi.org/10.1093/cid/ciaa344	August 20th 2020
Phenotype of SARS-CoV-2-specific T-cells in COVID-19			
patients with acute respiratory distress syndrome	medRxiv	https://doi.org/10.1101/2020.04.11.20062349	June 16th 2020
Shedding of infectious virus in hospitalized patients with			
coronavirus disease-2019 (COVID-19): duration and key			
determinants	medRxiv	https://doi.org/10.1101/2020.06.08.20125310	June 16th 2020

SARS-CoV-2 viral load predicts COVID-19 mortality	Lancet Resp Med	https://doi.org/10.1016/S2213-2600(20)30354-4	August 14th 2020
Duration of viral shedding in asymptomatic or mild			
cases of novel coronavirus disease 2019 (COVID-19)			
from a cruise ship: A single-hospital experience in	International Journal of		
Tokyo, Japan	Infectious Diseases	https://doi.org/10.1016/j.ijid.2020.06.020	August 20th 2020
Relative COVID-19 viral persistence and antibody			
kinetics	MedRxiv	https://doi.org/10.1101/2020.07.01.20143917	August 19th 2020
Kinetics of viral load and antibody response in relation	The Journal of Clinical		
to COVID-19 severity	Investigation	https://doi.org/10.1172/JCI138759	August 20th
SARS-CoV-2 RT-PCR profile in 298 Indian COVID-19			
patients: a retrospective observational study	MedRxiv	https://doi.org/10.1101/2020.06.19.20135905	August 19th 2020
Viral load dynamics in transmissible symptomatic			
patients with COVID-19	MedRxiv	https://doi.org/10.1101/2020.06.02.20120014	August 19th 2020
Clinical Course and Molecular Viral Shedding Among			
Asymptomatic and Symptomatic Patients With SARS-			
CoV-2 Infection in a Community Treatment Center in the			
Republic of Korea	JAMA	https://doi.org/10.1001/jamainternmed.2020.3862	August 19th 2020
Duration of infectiousness and correlation with RT-PCR			
cycle threshold values in cases of COVID-19, England,		https://doi.org/10.2807/1560-	
January to May 2020	Eurosurvellance	7917.ES.2020.25.32.2001483	August 19th 2020
Clinical Characteristics and Viral RNA Detection in			
Children With Coronavirus Disease 2019 in the Republic			
of Korea	JAMA Pediatr	https://doi.org/10.1001/jamapediatrics.2020.3988	Sept 4th 2020
Temporal profile and determinants of viral shedding and			
of viral clearance confirmation on nasopharyngeal			
swabs from SARS-CoV-2-positive subjects: a population-			
based prospective cohort study in Reggio Emilia, Italy	BMJ Open	http://dx.doi.org/10.1136/bmjopen-2020-040380	Sept 9th 2020
Viral Dynamics and Immune Correlates of Coronavirus	Clinical Infectious		
Disease 2019 (COVID-19) Severity	Diseases	https://doi.org/10.1093/cid/ciaa1280	Oct 16th 2020
Clinical Performance of SARS-CoV-2 Molecular Tests	J Clin Microbiology	https://doi.org/10.1128/JCM.00995-20	Oct 21st 2020
Viral dynamics in mild and severe cases of COVID-19	Lancet ID	https://doi.org/10.1016/S1473-3099(20)30232-2	Oct 22nd 2020
Clinical and epidemiological features of COVID-19 family			
clusters in Beijing, China	Journal of Infection	https://doi.org/10.1016/j.jinf.2020.04.018	Oct 22nd 2020
Clinical and epidemiological features of 36 children with			
coronavirus disease 2019 (COVID-19) in Zhejiang, China:			
an observational cohort study	Lancet ID	https://doi.org/10.1016/S1473-3099(20)30198-5	Oct 22nd 2020

Viral loads in throat and anal swabs in children infected	Emerging Microbes &		
with SARS-CoV-2	Infections	https://doi.org/10.1080/22221751.2020.1771219	Oct 22nd 2020
Factors of Severity in Patients with COVID-19:			
Cytokine/Chemokine Concentrations, Viral Load, and			
Antibody Responses	АЈТМН	https://doi.org/10.4269/ajtmh.20-1110	Nov 26th 2020
	Clinical Microbiology and		
The kinetics of viral load and antibodies to SARS-CoV-2	Infection	https://doi.org/10.1016/j.cmi.2020.08.043	Nov 26th 2020
The Correlation Between Clinical Features and Viral RNA	Open Forum Infectious		
Shedding in Outpatients With COVID-19	Diseases	https://doi.org/10.1093/ofid/ofaa331	Nov 26th 2020
Molecular and serological characterization of SARS-CoV-			
2 infection among COVID-19 patients	Virology	https://doi.org/10.1016/j.virol.2020.09.008	Nov 26th 2020

Supplementary Table 1: Summary of studies which were identified during the literature search but did not provide data when the corresponding authors were contacted.

Study	Reference	No. of Patients	Country	Healthcare setting	Recruitment period	Antiviral treatment, n (%)		Immunomodulatory trea	tment, n(%)	
1	Kim JY <i>et al.</i> , J Korean Med Sci, 2020 [42]	2	Korea	Hospital	January 2020	Lopinavir/Ritonavir	2 (100)	0	0	
2	Lui G <i>et al</i> ., J Infect, 2020 [53]	11	Hong Kong	Multicentre, Hospital	February 2020	Lopinavir/Ritonavir Ribavirin Beta-interferon	11 (100) 8 (73) 5 (56)	Hydrocortisone	1 (9)	
3	Scott S <i>et al.</i> , Clin Infect Dis, 2020 [54]	1	USA	Community	January 2020	None used	None used		None used	
4	Kim SE, Int J Infect Dis, 2020 [55]	3	Korea	Tertiary Hospital	February – April 2020	Lopinavir/Ritonavir 1 (33)		None used		
5	Gautret P <i>et al.</i> , Int J Antimicrob Agents, 2020 [56]	19	France	Tertiary Hospital	March 2020	None used		Hydroxychloroquine	18 (95)	
6	Young B <i>et al.</i> , JAMA, 2020 [57]	18	Singapore	Multicentre, Tertiary Hospital	January – February 2020	Lopinavir/Ritonavir 5 (28)		None used		
7	The COVID–19 Investigation team, Nat Med, 2020 [58]	12	USA	Multicentre, Community and Hospital	January 2020	Remdesivir	3 (25)	Corticosteroids	2 (17)	
8	Wölfel R <i>et al.</i> , Nature, 2020 [59]	9	Germany	Hospital	January 2020	Not reported		Not reported		
9	Vetter P <i>et al.</i> , mSphere, 2020 [60]	5	Switzerland	Hospital	February 2020	Lopinavir/Ritonavir	1 (20)	None used		
10	Lavezzo E <i>et al.</i> , Nature, 2020 [43]	37	Italy	Community and Hospital	February – March 2020	Not reported		Not reported	·	
11	Xu Y <i>et al.,</i> Nat Med, 2020 [61]	6	China	Paediatric cohort, Tertiary Hospital	January – February 2020	Alpha-interferon	6 (100)	IVIG	1 (17)	
12	Shrestha N <i>et al.</i> , Clin Infect Dis, 2020 [62]	230	USA	Healthcare worker cohort, non– hospitalized	March – April 2020	None used		None used		
13	Fajnzylber J <i>et al.</i> , Nat Commun, 2020 [63]	64	USA	Multicentre, Tertiary Hospital	NK	Remdesivir	16 (25)	None used		
14	Yilmaz A e <i>t al</i> ., J Infec Dis, 2020 [64]	54	Sweden	Tertiary Hospital	February – April 2020	Not reported		Not reported		
15	Alsharrah <i>et al.</i> , J Med Virol, 2020 [65]	29	Kuwait	Paediatric cohort, Tertiary Hospital	February – April 2020	None used		None used		
16	Tan A <i>et al.</i> , Cell Reports, 2020 [7]	12	Singapore	Tertiary Hospital	NK	Not reported		Not reported		
17	Salvatore PP <i>et al.</i> , Clin Infec Dis, 2020 [66]	93	USA	Community	March – May 2020	None used		None used		

Supplementary Table 2. Summary of antiviral and immunomodulatory treatment in the studies included in analysis.

Parameter	Interpretation	Posterior	95% CrI
		Mean	
a ₀	Average value of the peak log ₁₀ (VL)	6.74	(6.17,7.30)
b ₀	Average value of the rate of decline (per day) of	-0.22	(-0.26,-0.17)
	the log ₁₀ (VL)		
$\sigma_{patient}[1]$	Standard deviation of the between-patient	1.54	(1.26,1.85)
	variation in the peak log ₁₀ (VL)		
$\sigma_{patient}[2]$	Standard deviation of the between-patient	0.15	(0.12,0.19)
	variation rate of decline (per day) of the log ₁₀ (VL)		
ρ_{patient}	Correlation between σ_{patient} [1] and σ_{patient} [2]	-0.86	(-0.92,-0.76)
$\sigma_{study}[1]$	Standard deviation of the between-study	0.81	(0.42,1.35)
	variation in the peak log ₁₀ (VL)		
$\sigma_{study}[2]$	Standard deviation of the between-study	0.04	(0.01,0.09)
	variation rate of decline (per day) of the $log_{10}(VL)$		
$ ho_{study}$	Correlation between σ_{study} [1] and σ_{study} [2]	-0.18	(-0.80,0.45)
σ	Standard deviation of the observed variation in	1.08	(1.01,1.16)
	log ₁₀ (VL) around the linear model		

Supplementary Table 3: Summary of the population-level (i.e. not study- or patient-specific) parameter values (and 95% credible intervals) obtained for the multi-level regression modelling (as displayed in Figure 2). Patient- and study-specific random effects were used for both the peak (log-transformed) viral load, and its rate of decline per day.

Parameter	Interpretation	Posterior	95% Crl
		Mean	
k_a^0	Population-level late immune response	6.32	(5.84-6.74)
σ_{kp}	Standard deviation of patient-level offset in the	13.62	(12.40-15.02)
	late immune response		
σ_{ks}	Standard deviation of study-level offset in the	0.74	(0.49-1.04)
	late immune response		
I _{max}	Population-level late immune response	0.66	(0.31-1.12)
σ_{Ip}	Standard deviation of patient-level offset in the	2.81	(2.37-3.26)
-	early immune response		
σ_{Is}	Standard deviation of study-level offset in the	2.85	(1.92-4.10)
	early immune response		
σ	Standard deviation of variation of viral load	3.21	(3.00-3.43)
	around modelled trajectory		

Supplementary Table 4: Summary of the population-level (i.e. not study- or patient-specific) parameter values (and 95% credible intervals) obtained for the mechanistic viral load model (Equations 6-8). Samples from k_a^0 and I_{max}^0 were used to generate the black line and dark grey shaded area in Figure 4.

Supplementary Figure 1: Standard curves relating cycle-threshold (Ct) values to viral load. Seven standard curves, identified from published studies (see Methods) are plotted. We used these standard curves to produce a model of an averaged standard curve (thicker orange line), and capture the variation observed across different studies. We only used standard curves which quantified viral load in units of viral copies per ml. Standard curves generated by drawing random samples from this model are shown by opaque, grey lines, indicating the potential variation in the standard curve.

Supplementary Figure 2: Summary of all the data collected (see Table 1 in the main text). For the studies shown in blue, viral loads have been estimated using an averaged standard curve (see Methods for details). For illustrative purposes, samples that were negative for virus are set to 1 viral copy per ml. In each panel, the lines connect samples collected from the same patient.

Supplementary Figure 3: Comparison of timing of first sample and viral load by severity. a) Timing of first viral load measurement for each patient, relative to symptom onset. Here severity indicates the maximum severity recorded for each patient, rather than the severity recorded at admission. We find that, on average, the first viral load measurement for patients with mild disease was recorded earlier than those for either patients with moderate disease, or severe disease (p-values from a two-sided Wilcoxon test). b) Quantification of the first viral load measurement for each patient, stratified by severity classification. c) Quantification of the maximum viral load. As shown in the left-hand panel, we have many more data points for mild patients early after the onset of symptoms, which is why both the first and maximum recorded viral loads are higher on average for this group. Across these studies, 421 patients had more than one sample recorded: for 60.1% of these patients, the first sample had the highest recorded viral load.

Supplementary Figure 4: Estimations of the statistical power in the regression analyses. We used simulation-based methods to estimate our power to measure an effect on the peak viral load due to severity of disease, age, or sex. We simulated datasets of the same size as the one used here for the regression analysis, containing the same level of variation between subjects and studies (Supplementary Table 3). In each set of simulations, the peak viral load was influenced by one of these 3 variables (panel (a): severity of disease; panel (b): age; panel (c): sex). In each case 1000 simulations were generated and the statistical power (black dots) calculated as the proportion of cases for which a significant effect (a fixed effect with a p value < 0.05 was deemed to show significance). The error bars show the 95% confidence intervals for each proportion calculated. In each panel, the purple, dashed line indicates 80% power. These plots suggest that we were underpowered to detect relatively small differences in viral load due to age, sex, or disease severity.

Supplementary Figure 5: Relationship between patient-specific parameters governing the immune response in the mechanistic model and disease severity. After adjusting for study (through the study-specific random effect) no significant differences were found between either the patient-specific early (panel a) or late (panel b) immune response parameters in the severity groups. This is consistent with the findings from the regression modelling. In this plot we show the posterior mean value of the subject-specific parameters.

Supplementary Figure 6: Posterior means and 95% credible intervals for the study-specific offsets in the mechanistic model. Panel (a): the parameter values for the early immune response, which influences the peak viral load. Panel (b): the parameter values for the late immune response, which governs the rate at which the viral load is cleared.

Supplementary Figure 7 (shown over the following 7 pages): Output from the mechanistic model alongside the data, for all 155 patients considered. In the heading of each panel, the first number indicates the study (studies numbered as in Table 1). The second number identifies the patient. The coloured points indicate the data: for illustrative purposes, samples that were negative for virus are set to 1 viral copy per ml. The black lines indicate the model fit for each patient (calculated from the posterior mean). The shaded area shows the 95% credible intervals for the model fit.

page 1 of 7

page 2 of 7

Days after symptom onset

page 3 of 7

page 4 of 7

page 5 of 7

page 6 of 7

Days after symptom onset

page 7 of 7

