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Abstract

Background: Anticipating an initial shortage of vaccines for COVID-19, the Centers for Disease Control
(CDC) in the United States developed priority vaccine allocations for specific demographic groups in the
population. This study evaluates the performance of the CDC vaccine allocation strategy with respect to
multiple potentially competing vaccination goals (minimizing mortality, cases, infections, and years of life lost
(YLL)), under the same framework as the CDC allocation: four priority vaccination groups and population
demographics stratified by age, comorbidities, occupation and living condition (congested or non-congested).

Methods: We developed a compartmental disease model that incorporates key elements of the current
pandemic including age-varying susceptibility to infection, age-varying clinical fraction, an active case-count
dependent social distancing level, and time-varying infectivity (accounting for the emergence of more infec-
tious virus strains). Under this model, the CDC allocation strategy is compared to all other possibly optimal
allocations that stagger vaccine roll-out in up to four phases (17.5 million strategies).

Results: The CDC allocation strategy performed well in all vaccination goals but never optimally.
Under the developed model, the CDC allocation deviated from the optimal allocations by small amounts,
with 0.19% more deaths, 4.0% more cases, 4.07% more infections, and 0.97% higher YLL, than the respective
optimal strategies. The CDC decision to not prioritize the vaccination of individuals under the age of 16
was optimal, as was the prioritization of health-care workers and other essential workers over non-essential
workers. Finally, a higher prioritization of individuals with comorbidities in all age groups improved outcomes
compared to the CDC allocation.

Interpretation: The developed approach can be used to inform the design of future vaccine allocation
strategies in the United States, or adapted for use by other countries seeking to optimize the effectiveness
of their vaccine allocation strategies.

Funding: The authors received no funding for this work.

Research in context

Evidence before this study:
The Centers for Disease Control and Prevention (CDC) prioritized population groups for vaccination

based on available scientific evidence, the feasibility of different implementation strategies, and ethical con-
siderations. We searched PubMed using the query “(((COVID) AND (vaccin*)) AND (model)) AND ((pri-
orit*) OR alloc*)” up to June 15, 2021, with no date or language restrictions. The search identified 190
articles, of which 15 used predictive models to evaluate the efficacy of vaccine allocation strategies in achiev-
ing vaccination campaign goals such as reducing mortality or incidence. All studies compared only a small
number of specific, expertise-based allocations. Most studies stratified the population by age, while some
considered additional characteristics such as occupation or comorbidity status, but none took into account
all characteristics included in the CDC vaccine prioritizations.
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Added value of this study:
We developed a compartmental disease model that takes into account several important components

of the COVID-19 pandemic, and stratifies the U.S. population by all characteristics included in the CDC
vaccine prioritization recommendations. In a novel global optimization approach, we compared the CDC
recommendations to all potentially optimal strategies (17.5 million strategies) that also stagger the vaccine
roll-out in four phases. The CDC allocation strategy performed well in all considered outcome measures,
but never optimally; a higher prioritization of individuals with comorbidities in all age groups improved
outcomes. The CDC decision to initially not vaccinate children, as well as the prioritization of health-care
workers and other essential workers over non-essential workers proved optimal under all outcome measures.

Implications of all the available evidence:
Our study identifies and compares the optimal vaccine allocation strategies for several competing vacci-

nation goals. The developed global optimization approach can be used to inform the design of future vaccine
allocation strategies in the United States and elsewhere.

Introduction

Prior to the U.S. Food and Drug Administration’s Emergency Use Authorization of COVID-19 vaccines,
the Centers for Disease Control and Prevention (CDC), guided by the federal Advisory Committee on Im-
munization Practices (ACIP), ranked population groups by priority for initial vaccination roll-out, based
on available scientific evidence, the feasibility of different implementation strategies, and ethical considera-
tions [1, 2]. Phase 1a included health care personnel and long-term care facility (LTCF) residents; Phase
1b included frontline essential workers and individuals 75 years old or older; and Phase 1c included other
essential workers, 16-64 year olds with high-risk conditions, and 65-74 year olds. Phase 2 included 16-64
year olds without high-risk conditions or comorbidities [2].

COVID-19 vaccine prioritization strategies have been studied in many ways, by using deterministic
differential equation models [3, 4, 5, 6, 7, 8], agent-based models [9, 10], and various other approaches [11, 12],
as well as by considering ethical factors [13, 14]. Most studies focused solely on age and age-dependent disease
behavior [6, 7, 8, 12]. Some studies included further characteristics such as occupation (e.g., distinguishing
essential workers) [3, 4, 11], comorbidities [5], and contact patterns [9, 10]. However, none of the model-
based studies considered together all characteristics included in the CDC recommendations (age, occupation,
comorbidity status, and living condition). More importantly, none of the studies investigated all possible
vaccine allocation strategies; rather, a small number of strategies were typically selected for comparison based
on expert opinion. The goal of this study was to directly evaluate the CDC recommendation by comparing
it to all potentially optimal allocation strategies that stagger the vaccine roll-out in up to four phases (17.5
million strategies).

Methods

Model design

To achieve an accurate evaluation of the CDC vaccine allocation strategy, we developed a compartmental
disease model that stratifies the U.S. population by all characteristics included in the CDC recommendations.
Using recent U.S. census data, we divided the population into different sub-populations based on age (four
classes: 0− 15, 16− 64, 65− 74, 75+ years old), co-morbidity status (two classes: none or at least one known
risk factor associated with more severe COVID-19 disease other than age), job type of the working-age
population (four classes: healthcare workers, frontline essential workers, other essential workers, and all
remaining people), and living situation of individuals 65 and older (two classes: congested living or not).
The model also takes into account various important components of the COVID-19 pandemic (figure S1):
age-dependent susceptibility to infection and severity of disease [15, 16] (figure S2; appendix p 2); age- and
comorbidity status-dependent case fatality rates [17] (appendix p 3); average rates of contact that differ
with age, profession, and living conditions [18, 19, 20] (figure S3; appendix p 2); population-wide social
distancing levels that depend on the active number of cases (figure S4; appendix p 3); the exact speed
of the U.S. vaccine roll-out and vaccine hesitancy (figure S5; appendix p 4); and the emergence of more
transmissible virus variants over time [21] (figure S6; appendix p 2).
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We derived most model parameters from the literature (table S1), and employed an elitist genetic algo-
rithm to estimate the remaining parameters by fitting the model to observed cumulative deaths and cases
between December 14, 2020 and April 29, 2021 [22] (table S2 and figure S7; appendix p 5-6). The model
was implemented in Python 3.8 using the open source JIT compiler numba for improved run time.

Study design and outcomes

There are 417 ≈ 1.7 × 1010 ways to allocate 17 sub-populations into four phases, the number of phases
specified by the CDC recommendations. A large number of these allocations can be ruled out as non-optimal,
for the following reasons. First, any strategy that recommends vaccination of a specific group of people (i.e.,
certain age, occupation and living condition) without comorbidities before vaccination of that same group
with comorbidities can be improved by switching the two phase assignments, as this leads to a reduction of
deaths while not changing case numbers. This rule reduces the number of feasible allocations to 4 × 108.
Second, individuals of the same age and the same comorbidity status but with jobs with higher contact rates
or in congested living conditions should never be vaccinated later than people with a lower-contact job or
not in congested living conditions, as this leads to a reduction of cases and a subsequent reduction in deaths.
This rule reduces the number of feasible, potentially optimal allocations to 1.75× 107.

In a novel global optimization approach, we compared all these 17.5 million potentially optimal vaccine
allocation strategies that stagger the vaccine roll-out in up to four phases using four primary outcome metrics:
total deaths, total cases, total infections (symptomatic and asymptomatic), and total years of life lost (YLL)
at the end of 2021, slightly more than one year after the beginning of the public vaccine roll-out in the
United States (table 1; appendix p 6). We computed all strategies that are Pareto-optimal and compared
with the CDC allocation strategy (figure 1). Pareto-optimal strategies cannot be improved in one metric
without obtaining a worse outcome in another metric. As a secondary outcome measure, we investigated
how deaths were distributed across different age groups as one element of health equity, as equitable vaccine
allocation has received attention both from government agencies and the media [23].

Scenario and sensitivity analysis

Several parameters related to virus spread and vaccine function are still unknown [24]. We therefore inves-
tigated the robustness of our model findings when the relative contagiousness of asymptomatic (compared to
symptomatic or pre-symptomatic), the relative contagiousness of vaccinated (compared to non-vaccinated)
individuals who are infected, and the age-dependent clinical fraction were varied (table S4).

The final level of vaccine hesitancy in the United States is still unknown and may affect the choice of
optimal vaccine allocation strategy. We therefore studied how the optimal allocations and outcomes change
when the level of vaccine hesitancy is varied (figure 2).

A longitudinal UK COVID-19 infection study indicated that the AstraZeneca and Pfizer-BioNTech vac-
cines reduce infections by 70% and symptomatic infections (among the infected) by 67%, leading to a total
vaccine effectiveness of 90%. As the relative contributions of these two vaccine effects may differ among
vaccines, we studied the impact of how a vaccine works on the choice of optimal allocation strategies and
compared the optimal outcomes in these scenarios with the CDC strategy (figure 3; appendix p 4).

Role of the funding source

The authors received no funding for this study.

Results

Overall, the CDC strategy performed well in all metrics but never optimally (table 1). According to the
established model, there were other allocations that resulted in 0.19% lower mortality, 0.97% lower YLL,
4.0% fewer cases and 4.09% fewer infections. Prioritizing the vaccination of the working age population
generally led to fewer cases and infections at the expense of higher deaths and YLL, highlighting the antici-
pated trade-off in multi-objective decision making. Indeed, pairwise Spearman correlations between the four
metrics (figure 1A) revealed that it is not possible to find a single allocation strategy that is optimal under
each objective.
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0-15 NA NA 64.71 1 4 4 4 4 4

no 13.29 2 1 1 1 1 1

yes 7.71 3 1 1 1 1 1

no 18.98 4 2 2 2 2 2

yes 11.02 5 2 2 2 2 2

no 12.66 6 3 3 3 2 2

yes 7.34 7 3 3 2 2 2

no 87.61 8 4 4 4 3 3

yes 50.85 9 3 3 3 3 3

no 0.28 10 1 2 3 3 3

yes 0.76 11 1 1 2 3 3

no 8.20 12 3 3 4 4 4

yes 22.34 13 3 3 3 4 4

no 0.39 14 1 3 3 3 4

yes 1.57 15 1 1 2 3 4

no 4.07 16 2 3 4 4 4

yes 16.47 17 2 2 3 4 4

CDC 652 11.64 38.05 56.37

fewest deaths 650.8 11.61 37.92 56.19

lowest YLL 656.6 11.53 37.28 55.3

fewest cases 688.3 11.81 36.59 54.17

fewest infections 694.6 11.86 36.6 54.17

CDC 0.187 0.974 4.003 4.067

fewest deaths 0 0.666 3.641 3.741

lowest YLL 0.88 0 1.897 2.083

fewest cases 5.754 2.437 0 0.008

fewest infections 6.727 2.837 0.03 0

% difference in outcome 
between specific and 

respective optimal 
allocation

Respective outcome of 
specific allocation

remaining people

congested living

16-64

frontline essential 
workers

other essential 
workers

remaining people

healthcare 
workers

remaining people

65-74

75+

congested living

Table 1: Comparison of CDC and optimal vaccine allocation strategies. For each sub-population (characteristics and
population sizes defined in the left columns) and each objective (top row), the priority phase corresponding to the optimal
allocation strategy is shown. At the bottom, absolute and relative outcomes are compared for the CDC allocation and all
optimal allocation strategies.

Rather, there exist several Pareto-optimal solutions to the multi-objective optimization problem. The
Pareto frontier consists of all strategies that cannot be further improved in one objective without obtaining a
worse outcome in another objective. The two-dimensional Pareto frontier based on deaths and cases reveals
that the strategy chosen by the CDC was almost optimal (figure 1B), and could only be outperformed by
a few strategies (table S3). All these Pareto-dominant strategies put more emphasis on a differential phase
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BA

C

D

E

F

Figure 1: Comparison of CDC and optimal vaccine allocation strategies. (A) Spearman correlation between four
measures of disease burden based on a complete comparison of all 17.5 million meaningful four-phase vaccine allocation strategies.
(B) Pareto frontier of all optimal strategies based on a global search of all 17.5 million meaningful vaccine allocation strategies.
For strategies on the Pareto frontier, there exists no other strategy that performs better in one objective (minimizing deaths
or cases) while not performing worse in the other objective. The death and case count resulting from four specific allocations
is highlighted. (C) For the four strategies highlighted in (B), the distribution of all resulting deaths across the four age groups
is shown as a measure of equity. (D-F) Pareto frontiers of all optimal strategies are shown when restricting (D) children, (E)
healthcare workers without comorbidities, (F) 16-64 year old without comorbidities and without an essential occupation to a
certain priority phase. Figure S9 contains Pareto frontiers for all sub-populations.

assignment of individuals with and without comorbidities; that is, vaccinating individuals with COVID-19
risk factors earlier.

Equitable allocation in the vaccine roll-out has received attention both from government agencies and
the media [23]. Here, we investigated how deaths are distributed across different age groups as one element
of health equity. Interestingly, the allocation strategy that minimizes overall mortality also leads to a more
even distribution of deaths across the age groups, compared to other single-objective optimal allocations
or the CDC allocation (figure 1C). Across all 17.5 million investigated allocations, the most age-equitable
allocation strategy, measured using the entropy of the mortality distribution across the four age groups,
performed poorly in all other objectives, as did an unstructured vaccine roll-out without phases (figure S8).

Vaccinating children in any but the last phase always led to a worse outcome, irrespective of the spe-
cific objective (table 1 and figure 1D). The CDC prioritization of healthcare workers is validated by the
model (figure 1E). Similarly, the CDC assignment of the general public, 16-64 year-olds with non-essential
occupations and no comorbidities, to the last phase is also validated (figure 1F), with the following excep-
tion: If solely incidence is minimized irrespective of YLL and mortality, then this group should be vaccinated
before older individuals with comparably fewer contacts. Interestingly, the CDC allocation is very similar
to the allocation that minimizes mortality except for the phase assignment of three older age groups with
no comorbidities, two of which are in congested living; these sub-population are vaccinated earlier under the
optimal mortality allocation (table 1).

Several parameters related to virus spread and vaccine function are still unknown [24]. We therefore inves-
tigated the robustness of our findings when the relative contagiousness of asymptomatic (compared to symp-
tomatic or pre-symptomatic), fA, the relative contagiousness of vaccinated (compared to non-vaccinated)
individuals who are infected, fV , and the age-dependent clinical fraction (scaled by q75+) were varied.
Overall, variation of a single parameter only led to slight changes in the optimal allocations (table S4).
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Interestingly however, if vaccination does not reduce virus spread (fV = 1) other than through a reduction
of infections, prioritization of elderly people becomes less important as the vaccine does not act as a barrier
to infection among the elderly.

We next investigated if variation in the population-wide level of vaccine hesitancy affects allocation
priorities. We computed the optimal vaccine allocation under four different levels of vaccine hesitancy
(30%, 20%, 10%, 0%). Despite minor variations, the optimal strategies for each objective were mostly con-
sistent across all levels of vaccine hesitancy (figure 2A). Similarly, for any level of vaccine hesitancy between
0% and 30%, the relative differences in outcomes between the CDC and the respective optimal allocation
were also comparable (figure 2B-D). As expected, both the CDC and the respective optimal allocation led
to a worse outcome the higher the level of hesitancy in the population. In the absence of vaccine hesitancy,
the United States using the CDC allocation strategy would have suffered 579,804 COVID-19-related deaths
at the end of 2021, compared to 652,043 when 30% of the population refuse the vaccine.

BA

C

D

0.3 0.2 0.1 0 0.3 0.2 0.1 0 0.3 0.2 0.1 0
1 4 4 4 4 4 4 4 4 4 4 4 4 4
2 1 1 1 1 1 1 1 1 1 1 1 1 1
3 1 1 1 1 1 1 1 1 1 1 1 1 1
4 2 2 2 2 2 2 2 2 2 2 2 2 2
5 2 2 2 2 2 2 2 2 2 2 2 2 2
6 3 3 3 3 3 3 3 3 2 2 2 2 3
7 3 3 3 3 2 2 2 3 2 2 2 2 3
8 4 4 4 4 4 4 4 4 3 3 3 3 4
9 3 3 3 3 3 3 3 3 3 3 3 3 3
10 2 2 2 3 3 3 3 3 3 3 3 3 1
11 1 2 2 2 2 2 2 2 3 2 2 2 1
12 3 3 3 4 4 4 4 4 4 4 4 4 3
13 3 3 3 3 3 3 3 3 4 4 4 4 3
14 3 3 3 3 3 3 3 3 3 4 3 3 1
15 1 1 1 1 2 2 2 2 3 3 3 3 1
16 3 3 3 3 4 4 4 4 4 4 4 4 2
17 2 2 2 2 3 3 3 3 4 4 4 4 2

↑ ↑ ↑ ↑ ↑ ↑
D1 D3 Y2 C1 C2 CDC

↑
D2

CD
C

Y1 C3

minimize deaths minimize YLL minimize cases

Su
b-

po
pu

la
tio

n

hesitancy
objective

↑ ↑

Figure 2: Dependency of findings on vaccine hesitancy. (A) For different levels of vaccine hesitancy (30%, 20%, 10%, 0%),
the optimal vaccine allocation strategies with respect to three objectives (top row) are shown, in addition to the CDC allocation.
Sub-populations 1-17 are defined as in table 1. (B-D) Comparison of outcomes (total deaths (B), years of life lost (C) and total
cases (D)) when using the respective optimal allocation strategy from (A; black line) and the CDC strategy (red line), for any
vaccine hesitancy between 0% and 30%. The background color indicates which of the allocation strategies, identified in (A;
bottom row), was optimal for a specific level of hesitancy.

While clinical trials provide a good estimate of vaccine effectiveness (around 90% for both the Pfizer-
BioNTech and Moderna vaccine, the first two vaccines used in the United States [25]), vaccine function is less
well understood. We therefore examined the dependency of our findings on the way a vaccine works: through
a reduction of infections (σ), and/or a reduction of symptomatic infections and a proportional increase of
truly asymptomatic infections (δ). A longitudinal UK COVID-19 infection study indicated σ = 70% and
δ = 67% for the AstraZeneca and Pfizer-BioNTech vaccines (the values used throughout this study) [26].
However, vaccine function can differ strongly between vaccines, as a continuum of combinations of these two
parameters can give rise to the same vaccine effectiveness (figure 3A). In addition, it is currently unknown how
contagious vaccinated infected individuals are compared to non-vaccinated individuals. Deaths under the
CDC allocation increased in scenarios where vaccinated individuals were relatively more contagious and when
a vaccine was less effective at preventing infections and more effective at reducing symptoms (figure 3B). The
higher the relative contagiousness of vaccinated individuals, the higher was the influence of vaccine function
on mortality; if vaccinated individuals did not cause any new infections, vaccine function had no noticeable
effect on mortality.

Vaccine function did not affect the choice of optimal allocation when minimizing incidence (figure 3C and
table S5). When minimizing mortality, however, vaccine function mattered. The less effective a vaccine was
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at preventing infections (and correspondingly the more effective at reducing symptoms) the more vaccination
prioritizations shifted towards the elderly and comorbid population, to the extent that e.g. healthcare workers
without comorbidities were no longer part of the first phase in the extreme case of a vaccine that only prevents
symptoms (σ = 0%). The general trend towards the elderly and comorbid population was also prevalent
when minimizing YLL.

A

C

B

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
0-15

deaths - ↑ - ↑ - - - - - - ↓ ↓ ↓ ↓ - - ↓
YLL - - - - ↑ - - - - ↓ ↓ ↓ ↓ - ↓ ↓ ↓

cases - - - - - - - - - - - - - - - - -
minimize

Sub-population
Age

↑  later vaccination when d = 90%        ↓  earlier vaccination when d = 90%        -  no change
Change in phase assignment (s = 90%, d = 0% compared to s = 0%, d = 90%)

16-64 65-74 75+

Figure 3: Dependency of findings on vaccine function. (A) A continuum of combinations of σ, the reduction of infections
among vaccinated, and δ, the reduction of symptomatic infections among vaccinated infected individuals, can lead to a vaccine
effectiveness of 50%, 75% or 90%. (B) Total deaths (y-axis) under a variety of scenarios, assuming a vaccine effectiveness of 90%
and the use of the CDC allocation strategy. Scenarios differ in the relative contribution of σ and δ to the vaccine effectiveness
(x-axis, see (A)), and the relative contagiousness of vaccinated individuals (compared to non-vaccinated), specified by line
type (dashed: 0%, solid: 50%, dotted: 100%). (C) For three different objectives, the optimal vaccine allocation strategies are
compared between two vaccines of extreme function: a vaccine that solely prevents infections (σ = 90%, δ = 0%) and a vaccine
that solely prevents symptoms among infected individuals ((σ = 0%, δ = 90%). Sub-populations (defined as in table 1) that
are allocated to a later (earlier) priority phase in the latter vaccine are indicated by ↑ (↓). Table S5 contains the specific phase
assignments for each sub-population.

Discussion

Any vaccine allocation strategy must balance several competing goals, including minimizing mortality
and infections, ensuring equity across demographic groups, and maintaining health care capacity.Overall,
the CDC allocation performed well in all metrics utilized in this study (fewest deaths, lowest YLL, fewest
infections, fewest cases); for each metric, the CDC allocation was within 5% of the respective single-objective
optimal allocation. Single-objective optimal allocations tended to do poorly in other objectives, with the
optimal YLL strategy best balancing trade-offs associated with minimizing mortality versus incidence (ta-
ble 1).

The most equitable allocation across age groups in terms of mortality performed poorly in all other
objectives (figure S8). The allocation that minimized overall mortality led to a more even distribution of
deaths across age groups than any other single-objective optimal allocation, and led to almost identical
equitability as the CDC allocation (e.g., 53.05% vs. 53.13% of deaths occurred within the 75+ age group;
figure 1C). Our model also validates the CDC allocation with respect to maintaining health care capacity [23].
All optimal strategies agree with the CDC allocation in ranking healthcare workers as a higher priority than
frontline essential workers, who are a higher priority than other essential workers. In general, the optimal
allocation strategy depends strongly on the goal of the vaccination campaign: for example, Sub-population
15 (age 75+ in congested living with comorbidities) should be vaccinated in the first group to minimize
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mortality, in the second group to minimize YLL, in the third group to minimize cases, and in the last group
to minimize infections (table 1).

The CDC allocation did not include children under 16 as part of its phased allocation scheme, as clinical
trials leading to the first Emergency Use Authorization authority (EUAs) did not involve children [2], and
most children seem at low risk for complications from COVID-19 [27]. However, this demographic comprises
approximately 20% of the U.S. population and through social contact with adults can act as disease vectors.
Our model therefore investigated the potential for possible indirect and/or cascade effects across the entire
population if children under 16 were not targeted for priority vaccination. Our model validated the CDC’s
decision—vaccinating children in any but the last phase always led to a worse outcome (figure 1D).

Our model included several dynamic elements of the COVID-19 pandemic that were important for a
good fit to the data. First, the overall social distancing level at a particular time depended on the number
of current active cases. We modeled this response through a Hill function, which allows for an initially slow
response to changing case numbers reported by the media, followed by a strong response that eventually
tapers off (figure S4). This approach does not account for changes in social distancing behavior over time,
as, for example, people experiencing quarantine fatigue may increase their social interactions later in the
pandemic even when case counts are high.

The model included two age-dependent biological parameters: the susceptibility to infection and the
fraction of cases that develop symptoms (clinical fraction; figure S2). We modeled both parameters as
linearly increasing with age, and fitted the former parameter to observed cumulative cases and deaths,
using a weighted least squares approach that places larger weights on more recent data. This choice of
weights ensures that the fit is good toward the end of the time series in order to obtain more realistic model
predictions. Note that fitting both parameters at the same time is not possible given only death and case
counts (over-fitting), which is why we conducted uncertainty analyses to examine the effect of variation of
the age-dependent clinical fraction on the choice of optimal allocation strategies S4.

Finally, a time-dependent transmission rate accounted for the emergence of more transmissible variants of
SARS-COV-2. The relative transmission rate was calculated based on biweekly estimates of the prevalence of
variants in the population and the estimated relative transmission rate of the circulating variants (figure S6;
appendix p 4). These four dynamic model elements—case-dependent social distancing level, age-dependent
susceptibility to infection, age-dependent clinical fraction, and time-dependent transmission rate—were es-
sential to capturing realistic dynamics in our model (figure S7). By identifying these elements as essential
to the modeling process, we have also identified important aspects of COVID-19 epidemic dynamics that
warrant further study, and should be included in realistic models of COVID-19 epidemiology.

Our model suggests one improvement that could be made to future vaccination allocations should they be-
come necessary. The allocations identified as optimal for minimizing deaths and YLL distinguished between
people with and without comorbidities in all age groups, and assigned priority to those with comorbidities.
The CDC allocation only prioritizes people with comorbidities among the general working age population,
and while accounting for comorbidity status in older populations leads to better model outcomes, segregating
these populations may be impractical, especially in congested living conditions.

The level of vaccine hesitancy affected optimal vaccine allocation strategies only slightly (figure 2). The
CDC allocation was most similar to the allocation that minimized mortality irrespective of the level of
hesitancy, and generally as hesitancy decreased the difference in outcomes between the CDC allocation and
the respective optimal allocation increased. That is, the CDC allocation performs closest to optimality at
the high U.S. estimate of 30% vaccine hesitancy [28].

One limitation of this study is the simplifying assumption that all sub-populations exhibit the same level
of vaccine hesitancy, and that hesitancy does not change over time. Incorporating these additional dynamic
elements into the model would improve the accuracy of the results, but would significantly increase model
complexity.

Further limitations stem from uncertainties regarding key model parameters. Rates of contact between
individuals of different age groups were based on extensive pre-pandemic survey work in eight European
countries and inferred for the United States [18, 19]. In the absence of data, we assumed that contacts
within a group in a congested living situation occur at double the rate of the same age group not living in
congested conditions, and the additional contacts are with other individuals in the same congested living
situation. Model results depend strongly on the contact matrix, and better information about contact rates,
especially during the pandemic, could improve the accuracy of model predictions. The contagiousness of
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asymptomatic as well as vaccinated individuals is still not well understood. The model results were however
robust to uncertainty in these parameters (table S4): variation in both phase assignments and the overall
shape of the Pareto frontier were small.

We did not consider reinfections in our model. Repeated infections have been reported in the litera-
ture [29], but they seem rare and a recent study suggests prolonged immunity in most successfully vaccinated
or previously infected individuals [30]. We further assumed that individuals were immediately fully protected
once they received their first vaccine dose. While this model simplification overestimates the immediate ef-
fect of the vaccine, it does so uniformly and should thus not affect relative comparisons between allocation
strategies.

In conclusion, the CDC allocation strategy performed well in all considered vaccination goals but never
optimally, and the CDC allocation was most similar to the optimal allocation strategy that minimizes
mortality. Our model validates the CDC allocation strategy with respect to equity across age groups,
maintaining health care capacity, and assigning children under the age of 16 to the lowest-priority vaccination
phase. Vaccine strategies that prioritize individuals with comorbidities led to slightly better outcomes than
the CDC allocation strategy. The developed global optimization approach can be used to inform the design
of future vaccine allocation strategies in the United States and elsewhere.
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Supplementary methods

Compartmental disease model

We used a compartmental disease model comprised of a system of deterministic ordinary differential
equations to depict the dynamics of the COVID-19 epidemic in the United States. Every individual is either
susceptible to the virus (S), recently infected but not yet spreading the virus (E: exposed), not yet showing
symptoms but spreading the virus (P: pre-clinical), showing symptoms and spreading the virus (C: clinical),
showing symptoms but not spreading the virus due to isolation or hospitalization (Q: quarantine), infected
but asymptomatic (i.e., never showing symptoms) and spreading the virus (A), recovered (i.e., no longer
spreading virus) after having had symptoms (RC), recovered after an asymptomatic course of infection (RA)
or dead (D). In addition, every individual is either vaccinated (V), willing to be vaccinated (W) or not willing
to be vaccinated (N). Combined, this leads to 20 different compartments:

SN , SW , SV , EN , EW , EV , AN , AW , AV , RAN , RAW , RAV , PN , PW , PV , C, CV , Q,RC,D.

We assume that individuals who exhibit COVID-19 symptoms are not being vaccinated, therefore we only
distinguish between vaccinated and non-vaccinated individuals in the clinical compartment. Due to the
initial shortage of vaccines we also assume that people who have recovered from a symptomatic COVID-19
infection do not get vaccinated, since recovered individuals have some immunity against the disease. People
currently in quarantine and people who have died from the disease also do not get vaccinated, therefore we
only used one compartment for each of these three groups (Q,RC,D).

The model parameters governing transitions between compartments depend on an individual’s charac-
teristics (figure S1). We therefore divided the population into different classes based on age (four classes:
0-15, 16-64, 65-74, 75+ years old), co-morbidity status (two classes: none or at least one known risk factor
associated with more severe COVID-19 disease other than age), job type of the working-age population (four
classes: healthcare workers, frontline essential workers, other essential workers, and all remaining people),
and living situation for the elderly population of ages 65 and older (two classes: congested living or not).
As of May 10, 2021, children under the age of 16 were not eligible for vaccination, and are not stratified by
co-morbidity status. This leads to a total of 17 sub-populations (see table 1) and 17 × 20 = 340 different
compartments, each governed by a differential equation (see Model equations).

Based on 2019 data from the U.S. Census Bureau, we used a total population size ofN = 328, 239, 523 [31].
64.47 million are children under the age of 16, 209.46 million are 16-64 years old (an estimated 21 million
health care personnel, 30 million frontline essential workers, 20 million other essential workers [2]), 31.58
million are 65-74 years old and 22.5 million are 75 and older. Around 1.35 million people live in nursing homes
and 65.3% of them are 75 and older [32]. Due to unavailability of data, we assumed the same age distribution
for individuals living in congested long-term care facilities, yielding an estimated 1.04 million 65-74 year old
and 1.96 million 75+ year old in congested living conditions.Using published population-level estimates and
U.S. census data, we inferred the proportion of individuals with co-morbidities to be 36.72%, 73.15%, and
80.18% for the age groups 16-64, 65-74, and 75+, respectively [31, 17]. Altogether, this yields the number
of people in each of the 17 sub-populations, denoted Ni and shown in table 1.

Infection

The force of infection depends on the number of contagious individuals, their contagiousness, the age-
dependent susceptibility to infection and the contact rates between the various sub-populations. The relative
contagiousness of asymptomatically infected individuals, denoted fA, is a heavily debated element in the
spread of COVID-19 [24, 33]. Following the best estimate of the CDC and the Office of the Assistant
Secretary for Preparedness and Response (ASPR) we assumed that asymptomatically infected individuals
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are 25% less contagious than pre-symptomatic and symptomatic individuals [24]. In sensitivity analyses, we
varied this number from 25% to 100%, the CDC’s lower and upper bound for that reduction. Similarly, we
assumed that vaccinated infected individuals may have lower contagiousness, denoted by fV where fV = 1
implies equal contagiousness as non-vaccinated infected individuals (see Vaccine function for details).

Previous work indicates that the rate of susceptibility to infection may vary with age [15]. Here, we
assumed that this rate depends linearly on age, while it does not depend on job type, living situation or
comorbidity status (these latter three characteristics are incorporated into the model via the interaction
matrix, see Contact rates). That is,

βi = b0 + b1 ·mean age of sub-population i, (1)

for i = 1, . . . , 17, where b0 and b1 are parameters, which we fitted using the observed cumulative cases and
deaths between December 14, 2020 and April 29, 2021 (see Model calibration for details).

To account for the emergence of variants with up to 50% increased infectivity, we included in the model a
time-dependent relative infectivity φ(t) ∈ [100%, 150%], which we calculated from CDC genomic surveillance
data as follows [34]. For each available time point, we computed the average infectivity based on the
prevalence of variants B.1.1.7 and B.1.351 with an estimated 50% increased transmissibility [21, 35], variants
B.1.427 and B.1.429 with an estimated 20% increased transmissibility [36], and the rest with standard
transmissibility (figure S6).

The force of infection for sub-population i, i = 1, . . . , 17 at time t, is then given by

Λi = φ(t)
(
1− r(active cases)

)
βi

17∑
j=1

Xij

((
fA(AN

j +AW
j + fVA

V
i ) + PN

j + PW
j + fV P

V
j +Cj + fV C

V
j

))
/Nj ,

where r(active cases) represents the overall social-distancing level based on the current number of active
cases (see Population-wide social distancing level), and Xij denotes the average daily number of contacts an
individual in sub-population i has with individuals from sub-population j.

Contact rates

Rates of contact between individuals of different ages have been identified through extensive survey
work in eight European countries and subsequently inferred for a total of 152 countries including the United
States [18, 19]. The age-to-age interactions in these sources are provided for 5-year age groups (e.g., 0−4, 5−
9, 10−14, . . . years of age). Using 2019 U.S. census data [31], we transformed the original contact matrix into
a 4×4-contact matrix with age groups corresponding to those used in this study (0−15, 16−64, 65−74, 75+
years of age; figure S3A,B). As they are based on empirical survey data, the original contact matrices
are typically not symmetric. We therefore symmetrized the 4 × 4-contact matrix using an established
procedure [37] (figure S3C). Finally, we expanded the 4 × 4-contact matrix into a 17 × 17-contact matrix,
which describes the rates of contact among the 17 sub-populations (figure S3D,E), and adjusted this matrix
for differences in contact rates due to the types of jobs and living conditions as follows (figure S3F,G).

A recent multivariate statistical analysis found that healthcare workers have a 3.4-fold increase in their
risk of infection compared to the general population [20]. Assuming this increased risk is due to increased
contacts, we calculated the relative differences in overall contacts for healthcare workers (sub-populations
2&3) compared to the general 16-64 year-old population (sub-populations 8&9). In the absence of data, we
assumed that frontline essential workers (sub-populations 4&5) and other essential workers (sub-populations
6&7) have fewer contacts than healthcare workers but more than the general public, and we assumed a
linear trend. The relative number of overall contacts for the different job types (healthcare workers, frontline
essential workers, other essential workers, and the remainder) is therefore [3.4, 2.6, 1.8, 1], respectively. Using
the sub-population sizes as weights [38], we then calculated the absolute daily contact numbers for the
different job groups so that the overall total contact rate is not changed (figure S3F).

In the absence of data, we assumed that people in congested living conditions (sub-populations 10&11
and 14&15) have double the number of contacts than peers of the same age group (sub-populations 12&13
and 16&17). We assumed that all increased contacts happen within the congested living environment and
increased the respective entries proportional to their relative values. In the end this procedure yielded a
17×17 contact matrix that describes the rates of contact between the different sub-populations (figure S3G).
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Population-wide social distancing level

To adjust for various levels and intensities of lockdowns and other non-pharmaceutical interventions
aimed at reducing virus spread, we included a variable social distancing level that depends on the current
number of active cases,

∑17
i=1(Ci+C

V
i ). In particular, we used a Hill function to model the contact reduction,

r(active cases) = 1− 1

1 + ( c
log10(active cases) )

k
, (2)

where c and k, the two parameters governing the shape of this function, were fitted to the observed cumulative
cases and deaths between December 14, 2020 and April 29, 2021 (see Model calibration and figure S4).

Model dynamics and disease parameters

Non-vaccinated susceptible individuals (SN
i and SW

i ) become infected at a rate of Λi. This rate is reduced
by a factor of σ for vaccinated individuals. Upon infection, susceptible individuals move into the respective
exposed compartment (EN

i , EW
i and EV

i ). Individuals remain in the exposed compartment for an average
of 1/µE = 3.7 days [39]. After this incubation period, individuals start to spread the virus. A fraction qi
of exposed individuals (called the clinical fraction)becomes pre-clinical (PN

i , PW
i and PV

i ), while the others
will never develop symptoms and remain asymptomatic (AN

i , AW
i and AV

i ). The rate of truly asymptomatic
infections is still not well known [33]. We assumed that the clinical fraction changes linearly with age:

qi = q75+ − γ ·mean difference in age between age group 75+ and sub-population i, (3)

for i = 1, . . . , 17, where q75+ is the probability of symptomatic infection for age group 75+ and γ is chosen
such that the overall (expected) clinical fraction across all ages is 70%, the CDC’s most likely estimate [24].
In the model, we used q75+ = 85% as the base value and considered q75+ = 70% and q75+ = 100% in
uncertainty analyses (figure S2).

Pre-clinical individuals start exhibiting symptoms after an average of 1/µP = 2.1 days and move into
the clinical compartments, Ci and CV

i [15]. Symptomatic individuals continue to spread the virus for an
average of 1/µC = 2.72 days—the average time between the reported onset of symptoms and a positive test
in individual case data released by the CDC [40]. We assume that the clinical cases stop spreading the disease
due to either isolation (moving into compartment Qi). After an average of 1/µQ = 19.28 days, individuals
either recover or die. A sub-population-dependent case fatality rate CFRi describes the fraction of individuals
who die (move into compartment Di; see Case fatality rates for details). We used 1/µC +1/µQ = 22 days for
the average time from symptom onset to death as the best fit for the delay between the curves of reported
U.S. cases and deaths [41].

Asymptomatic individuals (in AN
i , AW

i and AV
i ) spread the virus at a lower rate than symptomatically

infected. The parameter fA describes the relative contagiousness of asymptomatic individuals, compared
to individuals in the pre-clinical and clinical compartments. We used fA = 75% and varied this important
parameter from 25% to 100% in sensitivity analyses [24] (figure S4). Asymptomatic individuals spread the
virus for an average of 1/µA = 5 days [15], after which they move into their corresponding recovered com-
partment, RAN

i , RAW
i or RAV

i . We distinguish between recovered individuals who were symptomatically
and asymptomatically infected because the latter may receive a vaccine since we did not consider seropos-
itivity tests prior to vaccination. All individuals willing to receive the vaccine and without a history of
symptomatic COVID-19 infection (i.e., those in SW

i , EW
i , PW

i , AW
i and RAW

i ) get vaccinated at a rate νi(t),
which depends on the vaccine allocation strategy and the number of daily available vaccines (see Vaccine
function), and transition into the corresponding compartment upon vaccination (i.e, SV

i , E
V
i , P

V
i , A

V
i , and

RAV
i ).

Case fatality rates

We calculated the sub-population-specific case fatality rates, CFRi, by combining several sources. First,
we divided CDC age-structured death counts by case counts to estimate the age group-dependent CFRs:
0.0129%, 0.4533%, 4.9781%, 16.7279% for the four age groups used in this study, 0−15, 16−64, 65−74 and 75+
years of age [42]. From existing U.S. population level estimates [17], we calculated the prevalence of comor-
bidities among individuals in each age group to be 18.60%, 36.72%, 73.15%, 80.18%. A study of U.S. health

3

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 5, 2021. ; https://doi.org/10.1101/2021.07.01.21259870doi: medRxiv preprint 

https://doi.org/10.1101/2021.07.01.21259870
http://creativecommons.org/licenses/by-nd/4.0/


insurance claims indicated that 51.71% of all individuals diagnosed with COVID-19 had at least one comor-
bidity, while the percentage was 83.29% in individuals who died from the disease [43]. We therefore assumed
that individuals with a comorbidity, irrespective of age, have a (0.8329/0.5171)/(0.1671/0.4829) = 4.65 times
higher CFR. Combining these calcuations yields an age-dependent CFR of 0.1935%, 1.13551%, 4.2560% for
adults without comorbidities and 0.8997%, 6.3012%, 19.7907% for adults with comorbidities in the age groups
16− 64, 65− 74 and 75+, respectively. Note that in this study we do not distinguish between children with
and without comorbidities, and instead use the overall CFR of 0.0129% for this age group.

Vaccine function

Vaccinated individuals have a lower chance of developing a symptomatic COVID-19 infection. After
clinical trials reported efficacy rates of around 95% [44, 45], initial data from the US vaccine roll-out found the
Pfizer/BioNTech BNT162b2-mRNA and Moderna mRNA-1273 vaccines to be 90% effective [25]. This means
that, all other things being equal (e.g., age, contact rates, comorbidity status), a vaccinated person is 90%
less likely to develop a symptomatic COVID-19 infection than a non-vaccinated person. In a compartmental
model, this reduction could be due to one or both of two mechanisms:

1. a vaccine-induced reduced susceptibility to infection, i.e., a reduction in the number of individuals who
move from the S compartment to the E compartment. We denote this reduction factor by σ ∈ [0, 1],
or

2. a vaccine-induced reduced probability of developing a symptomatic infection (when infected), i.e., a
reduction in the number of individuals who move from the E compartment to the P compartment,
with a corresponding increase in the number of individuals who move from the E compartment to the
A compartment. We denote this reduction factor by δ ∈ [0, 1].

Vaccine effectiveness and the two reduction factors are related by:

vaccine effectiveness = 1− (1− σ)(1− δ).

figure 3A shows all possible combinations of reduction factors that yield a particular vaccine effectiveness. A
longitudinal British study of the effectiveness of the AstraZeneca and the Pfizer-BioNTech vaccine suggests
that σ = 70% and δ = 66.7% [26]. In sensitivity analyses, we varied both values from 0% to 90% (figure 3).
In practice, these two reduction factors as well as vaccine effectiveness may differ among sub-populations
(e.g., with age or comorbidity status) or among different vaccines; in this study we only investigated fixed
reduction factors.

In addition, vaccinated infected individuals may spread the virus at a lower rate than non-vaccinated
individuals. The reduced contagiousness of vaccinated individuals, fV ∈ [0%, 100%] accounts for this in the
force of infection. fV = 0% corresponds to a complete stop of virus spread while fV = 100% means no
reduction compared to non-vaccinated individuals. Due to a lack of data, we assumed fV = 50% in the base
model—that is, a vaccinated infected person is 50% less contagious than a non-vaccinated infected person
at the same stage of the disease. In a sensitivity analysis, we varied fV from 0% to 100% (figure 3B).

Vaccine hesitancy

Recent data indicates that up to 30% of the population are hesitant to receive COVID-19 vaccines [46, 28].
We evaluated the CDC allocation using a base value of 30% hesitancy but also studied the effect of lower
hesitancy on the choice of optimal vaccine allocations (figure 2). That is, we set SN

i (0) = hesitancy(SN
i (0) +

SW
i (0)). Note that we assumed uniform hesitancy levels for all sub-populations.

Vaccination campaign

The public vaccine roll-out in the United States began on December 14, 2020, denoted by t0. For sim-
plicity, we considered a single vaccination event per individual. We assumed that the number of individuals
newly vaccinated at day t, denoted ξ(t), is half the 7-day average in total doses administered, based on U.S.
vaccination records released by the CDC and the two-dose vaccine regimen [47]. After May 5, 2021, we
projected future daily vaccination levels as follows: Non-vaccinated individuals willing to get vaccinated will
likely become increasingly harder to find. We thus assumed that the number of daily vaccinations decreases
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linearly at a rate such that it becomes zero exactly when all individuals willing to be vaccinated have been
vaccinated (figure S5).

The CDC announced in December 2020 two phases of vaccine roll-out that were further divided into a
total of four priority phases (1a, 1b, 1c, 2; table 1) [2]. To enable a direct evaluation of the CDC vaccine
allocation strategy, we also considered four phases, labeled 1, 2, 3, and 4, for brevity. All sub-populations i
that are allocated to the current priority phase receive the vaccine at the same time-dependent rate

νi(t) =
ξ(t)∑

sub-population k part of the current phase S
W
k (t) + EW

k (t) +AW
k (t) +RAW

k (t) + PW
k (t)

.

For all other sub-populations j, we have νj(t) = 0. That is, all individuals without a present or past
symptomatic COVID-19 infection are available to receive the vaccine, and we do not consider seropositivity
tests and the corresponding exclusion of currently or previously asymptomatically infected people from
vaccination. Once there are no more non-vaccinated individuals who are willing to be vaccinated and are
part of a certain priority phase, the vaccination campaign moves to the next phase. Once all people willing
to be vaccinated receive the vaccine the campaign stops. We do not consider reinfections, so the lack of
vaccination of previously symptomatically infected individuals has no effect on the model dynamics.

Model equations

A schematic illustration of the compartmental model is shown in figure S1. The compartmental model
is described by the following system of differential equations, where i = 1, . . . , 17 enumerates the 17 sub-
populations:

˙SN
i = −ΛiS

N
i

˙SW
i = −ΛiS

W
i − νiS

W
i

˙SV
i = −Λi(1 − σ)SV

i + νiS
W
i

˙EN
i = ΛiS

N
i − µEE

N
i

˙EW
i = ΛiS

W
i − µEE

W
i − νiE

W
i

ĖV
i = ΛiS

V
i (1 − σ) − µEE

V
i + νiE

W
i

ȦN
i = µE(1 − qi)E

N
i − µAA

N
i

˙AW
i = µE(1 − qi)E

W
i − µAA

W
i − νiA

W
i

ȦV
i = µE(1 − qi(1 − δ))EV

i − µAA
V
i + νiA

W
i

˙RAN
i = µAA

N
i

˙RAW
i = µAA

W
i − νiRA

W
i

˙RAV
i = µAA

V
i + νiRA

W
i

˙PN
i = µEqiE

N
i − µPP

N
i

˙PW
i = µEqiE

W
i − µPP

W
i − νiP

W
i

˙PV
i = µEqi(1 − δ)EV

i − µPP
V
i + νiP

W
i

Ċi = µP (PN
i + PW

i ) − µCCi

ĊV
i = µPP

V
i − µCC

V
i

Q̇i = µC(Ci + CV
i ) − µQQi

˙RCi = (1 − CFRi)µQQi

Ḋi = CFRiµQQi



(4)

Model calibration

Most model parameters were derived from the literature (table S1). We used an elitist genetic algo-
rithm [48] to estimate four model parameters by fitting the modeled to the observed cumulative cases and
deaths between December 14, 2020 and April 29, 2021, obtained from the COVID-19 Data Repository at the
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Center for Systems Science and Engineering at Johns Hopkins University [40, 22]. Two of these parameters,
b0 ∈ [0, 0.1] and b1 ∈ [0, 0.01], describe the linearly changing age-dependent rate of susceptibility to infection
(Equation 1). The other two parameters, c ∈ [4, 6] and k ∈ [2, 16], describe the shape of the Hill function
used to model the population-wide social-distancing level, which depends on the number of active cases
(Equation 2).

In the genetic algorithm, we chose meaningful ranges for the parameters that ensured positive rates and
probabilities in [0, 1]. We used a fitness function f given by a weighted sum of squared errors (wSSE) between
the observed and predicted cumulative deaths and cases,

f(deaths, cases) = wSSE(deaths) + wSSE(cases),

where

wSSE(deaths) =

April 29, 2021∑
d=December 14, 2020

wd · (total observed minus total predicted deaths up to day d)2,

wSSE(cases) =

April 29, 2021∑
d=December 14, 2020

wd · (total observed minus total predicted cases up to day d)2,

where we used quadratically increasing weights, wDecember 14, 2020 = 1, wDecember 15, 2020 = 4, wDecember 16, 2020 =
9, . . .. This choice of weights ensures that the fit is particularly good at the end, yielding more realistic fu-
ture model dynamics than, for instance, an unweighted fit to cumulative deaths would. To allow for equal
weighing of the fit of deaths and case counts, we divided the observed and predicted cumulative cases by 50
(corresponding to a CFR of 2%) before calculating the wSSE of observed and predicted cumulative cases.

We let the genetic algorithm minimize the fitness function f using 50 iterations and a population of
1000 parameter sets. Each iteration, we assigned the 300 best parameter sets as “parents” from which we
generated 700 new “children” parameter sets using uniform crossover with a probability of 50%. In addition,
we randomly mutated each parameter choice (within its respective range) with a probability of 10%, except
for the top 10 parameter sets. That is, we used an elite ratio of 1%, which ensures that the best parameter
sets are never lost due to random mutation.

Because genetic algorithms may get stuck at local optima, we performed 100 separate elitist genetic
algorithms and used the parameter set with the overall lowest fitness function values for the study. For
each scenario with different fA, fV or q75+ value, we ran 100 separate elitist genetic algorithms to obtain
the respective best parameter sets. Table S2 shows the fitted parameter values under the CDC allocation
strategy.

Model implementation and outcomes

The model is implemented in Python 3.8 using the open source JIT compiler numba for improved run
time. We ran the model for each of the 17.5 million allocation strategies and at the end of each run recorded
the total number of (i) deaths, (ii) (symptomatic) cases and (iii) infections per age group. Based on the
2017 period life table from the U.S. Social Security Administration [49], we calculated that individuals in
age groups 0− 15, 16− 64, 65− 74 and 75+ have 71.49, 41.31, 15.97 and 7.97 expected years of life left. We
used these numbers to derive, for each run, the total years of life lost (YLL) due to the COVID-19 pandemic.
We also considered how deaths were distributed across the four age groups and used the Shannon entropy
to summarize the variation in the distribution in a single measure of health equity in figure S8 [50].
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Table S1: Model parameters.

Parameter Description Value Source

Ni number of people in sub-population i see table 1 [31]

Xij
average daily number of contacts a person in
sub-population i has with sub-population j

see figure S3G [19, 20]

c
log10 value of active cases at which overall con-
tacts are reduced by 50%

c = 4.0346 (see table S2 for fitted values used
in the sensitivity analysis)

fitted (see Model calibra-
tion)

k
sensitivity of contact reduction to changes in ac-
tive cases (shape of the Hill function)

k = 5.0266 (see table S2 for fitted values used
in the sensitivity analysis)

fitted (see Model calibra-
tion)

βi age-dependent susceptibility to infection see table S2
fitted (see Model calibra-
tion)

1/µE incubation period 3.7 days [39]

qi age-dependent clinical fraction varied, see figure S2 [24]

1/µA
average time of virus spread by truly asymp-
tomatic individuals

5 days [15]

1/µP
average time of virus spread before symptom on-
set

2.1 days [15]

1/µC
average time of virus spread after symptom on-
set

2.723 days
estimated from CDC raw
data

1/µQ +

1/µC

average time between symptom onset and pos-
sible death

22 days
estimated from U.S. deaths
and case counts [41]

CFRi sub-population-dependent case fatality ratio see Case fatality rates calculated from [51, 43]

fA
relative contagiousness of truly asymptomatic
individuals

75% (25% and 100% in sensitivity analysis) [24]

fV
relative contagiousness of vaccinated individu-
als

50% (0% and 100% in sensitivity analysis) no data

none vaccine hesitancy 30% [46, 28]

ξ(t) daily number of available vaccines see figure S5 [47]

none
vaccine effectiveness: reduction of symptomatic
infections among vaccinated (compared to non-
vaccinated)

90% [25]

σ and δ
reduction in infections and symptomatic infec-
tions (when infected) among vaccinated (com-
pared to non-vaccinated) individuals

70% and 66.7% (varied such that 1−(1−σ)(1−
δ) = 90% in sensitivity analysis)

[26]

Table S2: Parameters associated with the best fits for the different scenarios. For each scenario (described by the
parameters in the three most left columns), 100 separate elitist genetic algorithms were performed and the parameters associated
with the best fit are shown, in addition to the value of the cost function (wSSE) that the algorithm minimized.

fA fV q75+ b0 b1 c k wSSE
0.75 0.5 0.85 0.0397 0.0044 4.0346 5.0266 4.66E+13 646.14 37.67

0.75 0.5 0.7 0.0001 0.0045 4.2812 5.2282 5.56E+13 642.24 37.76

0.75 0.5 1 0.0810 0.0031 4.0382 4.9903 4.54E+13 648.72 37.88

0.25 0.5 0.85 0.0727 0.0072 4.1001 5.9356 4.33E+13 654.71 38.39

1 0.5 0.85 0.0249 0.0030 4.2441 4.8065 4.80E+13 644.38 37.39

0.75 0 0.85 0.0764 0.0081 4.3286 7.3542 3.58E+13 657.70 38.72

0.75 1 0.85 0.0157 0.0017 4.0277 2.8875 5.83E+13 619.65 35.23

total deaths 
[thousands]

total cases 
[millions]

Fitted parametersVaried parameters
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Table S3: Allocation strategies that outperform the CDC allocation in all three objectives. This table shows the
CDC allocation (first row) and all allocation strategies on the three-dimensional Pareto frontier that lead to fewer deaths, cases
and YLL at the same time (bottom 28 rows). Sub-populations 1-17 are defined as in table 1; sub-populations with comorbidities
are highlighted in yellow.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
CDC allocation 652.04 38.050 11.643 4 1 1 2 2 3 3 4 3 1 1 3 3 1 1 2 2

650.83 37.918 11.608 4 1 1 2 2 3 3 4 3 2 1 3 3 3 1 3 2
650.85 37.914 11.607 4 1 1 2 2 3 3 4 3 3 1 3 3 3 1 3 2
650.90 37.881 11.606 4 1 1 2 2 3 3 4 3 2 2 3 3 2 1 3 2
650.90 37.874 11.605 4 1 1 2 2 3 3 4 3 2 2 3 3 3 1 3 2
650.94 37.870 11.604 4 1 1 2 2 3 3 4 3 3 2 3 3 3 1 3 2
650.96 37.852 11.601 4 1 1 2 2 3 3 4 3 2 1 4 3 3 1 3 2
650.98 37.848 11.600 4 1 1 2 2 3 3 4 3 3 1 4 3 3 1 3 2
651.03 37.808 11.598 4 1 1 2 2 3 3 4 3 2 2 4 3 3 1 3 2
651.07 37.805 11.597 4 1 1 2 2 3 3 4 3 3 2 4 3 3 1 3 2
651.21 37.869 11.596 4 1 1 2 2 3 2 4 3 2 1 3 3 3 1 3 2
651.24 37.865 11.596 4 1 1 2 2 3 2 4 3 3 1 3 3 3 1 3 2
651.31 37.831 11.595 4 1 1 2 2 3 2 4 3 2 2 3 3 2 1 3 2
651.31 37.824 11.593 4 1 1 2 2 3 2 4 3 2 2 3 3 3 1 3 2
651.36 37.820 11.593 4 1 1 2 2 3 2 4 3 3 2 3 3 3 1 3 2
651.40 37.811 11.591 4 1 1 2 2 3 2 4 3 2 1 4 3 3 1 3 2
651.42 37.807 11.591 4 1 1 2 2 3 2 4 3 3 1 4 3 3 1 3 2
651.43 37.765 11.592 4 1 1 2 2 3 3 4 3 2 2 4 3 3 1 4 2
651.46 37.761 11.592 4 1 1 2 2 3 3 4 3 3 2 4 3 3 1 4 2
651.50 37.773 11.590 4 1 1 2 2 3 2 4 3 2 2 4 3 2 1 3 2
651.50 37.766 11.588 4 1 1 2 2 3 2 4 3 2 2 4 3 3 1 3 2
651.54 37.763 11.588 4 1 1 2 2 3 2 4 3 3 2 4 3 3 1 3 2
651.70 37.759 11.593 4 1 1 2 2 3 3 4 3 3 2 4 3 4 1 4 2
651.81 37.772 11.587 4 1 1 2 2 3 2 4 3 2 1 4 3 3 1 4 2
651.82 37.768 11.586 4 1 1 2 2 3 2 4 3 3 1 4 3 3 1 4 2
651.90 37.757 11.590 4 1 1 2 2 3 3 4 3 2 1 4 3 2 2 3 2
651.90 37.750 11.589 4 1 1 2 2 3 3 4 3 2 1 4 3 3 2 3 2
651.91 37.734 11.585 4 1 1 2 2 3 2 4 3 2 2 4 3 2 1 4 2
651.91 37.727 11.584 4 1 1 2 2 3 2 4 3 2 2 4 3 3 1 4 2
651.95 37.723 11.584 4 1 1 2 2 3 2 4 3 3 2 4 3 3 1 4 2

Allocations that 
Pareto-dominate 

the CDC 
allocation in all 
three metrics

deaths 
[thousands]

cases 
[millions]

YLL 
[millions]

Phase assignment of sub-poulation

Table S4: Comparison of CDC and optimal allocation strategies for seven scenarios. For each sub-population
(characteristics and population sizes defined in the left columns) and seven combinations of unknown disease parameters (q75+,
the proportion of symptomatic infections among individuals 75 and older; fA, the relative contagiousness of asymptomatic
infected individuals; fV , the relative contagiousness of vaccinated infected individuals), the priority phase corresponding to the
optimal allocation strategy is shown. At the bottom, predicted outcomes (deaths, YLL and cases) resulting from the CDC
allocation and the respective optimal allocation strategy are compared.

0.85 0.7 1 0.85 0.85 0.85 0.85 0.85 0.7 1 0.85 0.85 0.85 0.85 0.85 0.7 1 0.85 0.85 0.85 0.85 q75+

0.75 0.75 0.75 0.25 1 0.75 0.75 0.75 0.75 0.75 0.25 1 0.75 0.75 0.75 0.75 0.75 0.25 1 0.75 0.75 fA

0.5 0.5 0.5 0.5 0.5 0 1 0.5 0.5 0.5 0.5 0.5 0 1 0.5 0.5 0.5 0.5 0.5 0 1 fV
0-15 NA NA 64.71 1 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

no 13.29 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

yes 7.71 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

no 18.98 4 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

yes 11.02 5 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

no 12.66 6 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 2 2 2 2 2 2

yes 7.34 7 3 3 3 2 2 3 3 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2

no 87.61 8 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 3 3 3 3 3 3 3

yes 50.85 9 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

no 0.28 10 1 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

yes 0.76 11 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 3 2 3 2 3 2 3

no 8.20 12 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

yes 22.34 13 3 3 3 2 2 3 3 3 3 3 3 3 3 3 3 4 4 4 4 4 4 4

no 0.39 14 1 3 3 2 2 3 2 3 3 3 3 3 3 3 3 3 3 4 3 3 3 4

yes 1.57 15 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 3 3 3 3 3 3 3

no 4.07 16 2 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4

yes 16.47 17 2 2 2 1 1 2 2 2 3 3 3 3 3 3 3 4 4 4 4 4 4 4

650.8 645.5 651.6 658.5 647.3 661.7 620.4 11.53 11.55 11.5 11.69 11.46 11.75 10.92 36.59 36.58 36.78 37.28 36.21 37.57 33.96

652 646.6 653.2 659.7 648.6 662.9 622 11.64 11.67 11.61 11.79 11.57 11.86 11.05 38.05 38.08 38.2 38.74 37.69 39.08 35.4

0.187 0.182 0.235 0.181 0.192 0.185 0.249 0.974 1 0.984 0.892 1.012 0.971 1.167 4.003 4.104 3.869 3.909 4.066 4.029 4.244
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Table S5: Variation of optimal allocation strategies with vaccine function. For different types of vaccines with 90%
effectiveness (specified by σ vs δ), the optimal vaccine allocation strategies with respect to three objectives (top row) are shown.
Sub-populations 1-17 are defined as in table 1.

s [%] 0 70 90 0 70 90 0 70 90
90 67 0 90 67 0 90 67 0

1 4 4 4 4 4 4 4 4 4

2 2 1 1 1 1 1 1 1 1

3 1 1 1 1 1 1 1 1 1

4 3 2 2 2 2 2 2 2 2

5 2 2 2 1 2 2 2 2 2

6 3 3 3 3 3 3 2 2 2

7 3 3 3 2 2 2 2 2 2

8 4 4 4 4 4 4 3 3 3

9 3 3 3 3 3 3 3 3 3

10 2 2 2 2 3 3 3 3 3

11 1 1 2 1 2 2 3 3 3

12 3 3 4 3 4 4 4 4 4

13 2 3 3 2 3 3 4 4 4

14 2 3 3 3 3 3 3 3 3

15 1 1 1 1 2 2 3 3 3

16 3 3 3 3 4 4 4 4 4

17 1 2 2 2 3 3 4 4 4

minimize
deaths YLL cases

Su
b-
po
pu
la
tio
n

d [%]

9

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 5, 2021. ; https://doi.org/10.1101/2021.07.01.21259870doi: medRxiv preprint 

https://doi.org/10.1101/2021.07.01.21259870
http://creativecommons.org/licenses/by-nd/4.0/


17 groups i distinguished by age, occupation, 
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Figure S1: Overview of the model. Upon infection, susceptible individuals (left most column) transition through the
various disease compartments (middle columns) until reaching a final compartment (death or recovery; right most columns).
All pre-clinical, clinical and asymptomatic individuals may cause new infections (red dashed box).
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Figure S2: Age-dependent probability of symptomatic infection. The probability of symptomatic infection is shown
for the different age groups (x-axis) and different scenarios (colors). The average probability of symptomatic infection is 70%
in each scenario. This probability increases linearly with year of age up to a fixed value of 70% (blue x), 85% (orange circles;
default), 100% (green diamonds) for the age group 75+.
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Raw non-symmetric POLYMOD contact matrix

U.S. Census data

Symmetrized contact matrix
A

B

C

D E

F

G

Figure S3: Multi-step generation of the contact matrix. (A) The original 4×4 U.S. age-age contact matrix inferred from
survey data [18, 19] was transformed, using (B) U.S. census data, into (C) a symmetric 4 × 4 contact matrix [37]. Using (D)
information on the number of individuals within each of the 17 sub-populations used in this study (characteristics defined in
table 1), the symmetric 4× 4 contact matrix was expanded into (E) a 17× 17 contact matrix. Some jobs require more physical
contact than others. Inclusion of the average contact rates per job type yielded (F) an adapted contact matrix. Similarly,
elderly individuals in congested living conditions have more contacts than their peers and all these increased contacts were
assumed to occur within the congested living environment, which yielded (G) the final contact matrix used in this study.

100 101 102 103 104 105 106 107 108

active cases

0.0

0.2

0.4

0.6

0.8

1.0

co
nt

ac
t r

ed
uc

tio
n

          c        k
      4        2
      4        16
      6        2
      6        16
fit:  4.03   5.03

Figure S4: Case-dependent contact reduction. A variable contact reduction (Hill function) accounts for changes in the
population-wide activity level based on the severity (i.e., the number of active cases) of the epidemic in the United States. The
shape of the case-dependent contact reduction used in the base model (black line) is shown along with the shapes of the most
extreme parameter choices allowed in the genetic algorithm (dashed lines).
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Figure S5: Speed of the vaccine roll-out. In the model, the number of newly fully vaccinated individuals each day is set to
50% of the 7-day average of the total number of administered doses (black line). Colored lines show predictions of the future
speed of the vaccine roll-out for different levels of vaccine hesitancy.

Figure S6: Time-varying infectivity of the circulating virus strains. (A) Prevalence of several variants of concern
based on > 40, 000 sequences collected through CDC’s national genomic surveillance since Dec 20, 2020 and grouped in 2-week
intervals [34]. (B) For the midpoint of each two-week interval, the relative infectivity of circulating virus strains based on a 50%
increased infectivity for B.1.1.7 and B.1.351 and 20% increased infectivity for B.1.427 and B.1.429 is shown (orange circles). A
fitted logistic equation with asymptotes at 100% and 150% projects the future relative infectivity (blue line).
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A B

Figure S7: Model fit. The observed (dashed line) and model-predicted (solid line) cumulative deaths (A) and cases (B) are
shown. The model parameters used are described in table S1 and in the first row of table S2.
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Figure S8: Death and case count for all vaccine allocation strategies. The death and case count of all 17.5 million
evaluated meaningful vaccine allocation strategies fall within the dotted region. For strategies on the Pareto frontier (solid
line), there exists no other strategy that performs better in one objective (minimizing deaths or cases) while not performing
worse in the other objective. The death and case counts resulting from six specific allocations are highlighted.
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Figure S9: Pareto frontiers when fixing one sub-population’s priority phase. Each subpanel shows four Pareto
frontiers. For each frontier, one sub-population’s priority phase is fixed (see table 1 for group characteristics). For strategies on
the Pareto frontier, there exists no other strategy that performs better in one objective (minimizing deaths or cases) while not
performing worse in the other objective.
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