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2The Czech Academy of Sciences, Biology Centre, Institute of Entomology,
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Following initial optimism regarding the potential for rapid vaccination, de-
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lays and shortages in vaccine supplies have occurred in many countries. Var-

ious strategies to counter this gloomy reality and speed up vaccination have

been set forth, of which the most popular approach has been to delay the

second vaccine dose for a longer period than originally recommended by the

manufacturers. Controversy has surrounded this strategy, and overly sim-

plistic models have been developed to shed light on this issue. Here we use

three different epidemic models, all accounting for the actual COVID-19 epi-

demic in the Czech Republic, including the rise and eventual prevalence of the

B.1.1.7 variant of SARS-CoV-2 virus and real vaccination rollout strategy, to

explore when delaying the second vaccine dose from 21 days to 42 days is ad-

vantageous. Using the numbers of COVID-19-related deaths as a quantity for

comparing various model scenarios, we find that vaccine mode of action at the

beginning of the infection course (preventing contagion and symptom appear-

ance), mild epidemic and sufficient vaccine supply rate call for the original

inter-delay scenario of 21 days regardless of vaccine efficacy. On the contrary,

for vaccine mode of action at the end of infection course (preventing severe

symptoms and death), severe epidemic and low vaccine supply rate, the 42-

day inter-dose period is preferable, at any plausible vaccine efficacy.

Introduction

Although recent modeling studies cast some doubt on earlier optimism that vaccination may

mean an end to the COVID-19 pandemic (1,2), it undoubtedly provides significant leverage that

at least temporarily may bring back a return to close-to-normal life. Even so, while everything

sounded promising during the autumn 2020 months, delays and shortages in vaccine supplies

in spring 2021 led to complications and spurred thinking on strategies that would speed up
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vaccination, despite limited vaccine supplies. Indeed, models have clearly demonstrated that

vaccine deployment delays substantially affected the course of the pandemic (3, 4). Eventually,

the strategy of delaying the second dose, required for all actually available vaccines except the

Janssen one produced by Johnson & Johnson (5), has often been adopted.

This has also been the case in the Czech Republic (also known as Czechia). As of May

8, 2021, over 3.5 million vaccine doses were applied (about 2.5 million first doses and about

1 million second doses), of which nearly 79% were BNT162b2 (Pfizer/BioNTech) and nearly

10% Moderna (6). Until April 1, 2021, the second dose was delayed after the first one as

recommended by the vaccine producers (21 days for BNT162b2 and 28 days for Moderna (7)).

Since then, the government allowed the increasing of the second dose delay for both vaccines

to six weeks, which is now the standard vaccination scheme in Czechia (8).

As with many other issues concerning the COVID-19 pandemic, models have been devel-

oped to guide formulation of vaccination strategies. The first set of models of this kind focused

on how to distribute a limited number of vaccines within the population; that is, which groups of

people to prioritize. With the objective to avert as many deaths as possible, a unanimous answer

to this question has been to start with vaccinating the oldest age cohorts and then continue by

gradually including younger age cohorts, as a consequence of an accelerating age-dependent

infection mortality profile (9, 10). This strategy has been adopted by virtually every country.

An obvious exception to this has been a preferential vaccination of the health workers directly

interacting with COVID-19 patients.

Given the limited supply of vaccines, the strategy of vaccinating more people by delaying

the second dose is at a glance natural. Indeed, the trade-off appears to be between vaccinating

a given number of individuals with just one dose, despite reduced efficacy and in the hope that

more vaccines will arrive shortly, as opposed to vaccinating half that number and holding one

dose back for each administered first dose. Accounting for different protection levels reached
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after the first and second doses, existing modeling studies suggest that such a “dose-sparing”

strategy should indeed be considered, as it would avert more cases of COVID-19 and more

deaths due to COVID-19 compared with when an original scheme is used (11, 12).

However, the existing models are too simple to give us robust direction regarding how to

proceed. They either do not account for epidemic dynamics (12) or choose between a one-dose

scheme and the recommended two-dose scheme administered to half the people, using for many

countries currently quite unrealistic values of the effective reproduction number (R = 1.8−2.1)

(11). In parallel with vaccination, an epidemic continues and many people still get infected and

eventually immunized, or die. Moreover, the vaccine supply and distribution are themselves is

dynamic: in the two-dose scheme, we do not set aside one vaccine per any applied one, because

others are coming on a more or less regular basis. None of the studies thus appears to model

any current epidemic and any more or less realistic vaccine rollout scenario.

Here we explore whether and when delaying the second vaccine dose from 21 days origi-

nally suggested for the BNT162b2 vaccine (Pfizer/BioNTech) by additional three weeks to 42

days is advantageous, on the basis of the numbers of COVID-19-related deaths averted by June

30, 2021. In doing this, so as to cover many plausible situations, we consider a variety of po-

tential vaccine efficacies, modes of vaccine action, epidemic severities, and (time-dependent)

vaccine supply rates. In addition, to provide robust results, we use three different epidemic mod-

els that all independently account for real epidemic in Czechia, including the rise and eventual

prevalence of the B.1.1.7 variant of SARS-CoV-2 virus early in 2021, and the actual vaccination

rollout strategy. All three models are of the SEIR type, the generally agreed framework to model

COVID-19, and all explicitly consider both the asymptomatic and presymptomatic infectious

classes. That is, once infected, individuals remain non-infectious for a (latent) period. Then,

a proportion of them become infectious yet asymptomatic for the rest of infection, while the

others become symptomatic following a short presymptomatic (yet already infectious) period.
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Symptomatic individuals either recover or die, with different models using various other states

of infectiousness within this period. Moreover, all models are structured by age of individuals

and type of inter-individual contacts. Nonetheless, each model also has a number of unique

assumptions and characteristics (Methods).

Results

In Czechia, and also in many other countries, the BNT162b2 (Pfizer/BioNTech) vaccine is the

dominat one. We thus motivate timing of individual vaccine doses by this vaccine brand. The

first dose efficacy is commonly reported to establish roughly two weeks after its application,

while the second dose efficacy is fully unrolled about one week after its application (Table 1).

Also, we assume that the first dose efficacy holds until one week after the second dose applica-

tion, not considering any vaccine efficacy fadeout before the second dose. These assumptions

are common in modeling studies (2, 11), although other assumptions can also be made (12).

Since our major question is whether and when delaying the second vaccine dose beyond the

period recommended by producers is advantageous, we assume that the second dose is applied

either 21 or 42 days after the first one and present the results following a uniform structure:

given a model of vaccine action (or a combination of model), vaccine supply rate and epidemic

severity, then for any plausible vaccine efficacy combination we, as our main summary statistic,

calculate the amount of COVID-19-related deaths averted among adults 65+ years by June

30, 2021, when adopting the longer delay. To account for inevitable uncertainty in model

predictions, each model is run for repeatedly (Models M and F) or over different plausible

parameter sets (Model H; Methods) and the average summary statistic is provided. Whereas

blue shades in the figures that follow indicate that 21-day inter-dose period is preferable, in the

red shaded regions more deaths are averted when 42-day inter-dose period is used.
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Effects of vaccine action

We consider a number of plausible vaccine actions; see Methods for their detailed description.

The mode of vaccine action has a non-negligible effect on whether it is advantageous to delay

the second dose by 42 rather than 21 days (Figs 1-3). In particular, delaying the second vaccine

dose by 42 rather than 21 days is most beneficial and significant when the vaccine acts simul-

taneously on the probabilities of needing an ICU when in hospital and dying when in the ICU

(Fig. 3 bottom right). On the contrary, the effect seems virtually negligible when the vaccine

acts simultaneously on the earliest two elements in the infection progression (probabilities of

(leaky) transmission and becoming symptomatic; Fig. 1 bottom row).

Importantly, effects of vaccine actions in different steps of infection progression do not add

up but rather multiply. This of course follows trivially from the model formulation, but may

be surprising at first glance. Just compare the vaccine effect o leaky transmission (Fig. 1 top

row), probability of symptoms appearance (Fig. 1 middle row) and their combined effect (Fig. 1

bottom row). Or alternatively the effect on hospitalization probability (Fig. 3 left), probability

of symptom appearance (Fig. 1 middle row), and on all elements during infection progression

(Fig. 3 right). The multiplicity of the modes of action means that when the infection of a pro-

portion of individuals in a model state are averted due to a vaccine action, only a proportion of

the infections in remaining proportion are averted in a following state of infection progression

(symptoms appearance, probability of getting hospitalized, needing an ICU, or dying) .
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Figure 1: Efficacy of delaying the second vaccine dose by three weeks from 21 to 42 days,
for different modes of vaccine action and different adopted epidemiological models. Top row:
leaky vaccine effect on the probability of infection transmission, second row: vaccine effect
on the probability of becoming symptomatic when infected, bottom row: combination of leaky
transmission and probability of becoming symptomatic. Left column: model M, middle col-
umn: model H, right column: model F.
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Figure 2: Efficacy of delaying the second vaccine dose by three weeks from 21 to 42 days, for
all-or-nothing vaccine effect on the probability of infection transmission. Left column: model
M, middle column: model H, right column: model F.

Figure 3: Efficacy of delaying the second vaccine dose by three weeks from 21 to 42 days,
assuming vaccine effect on the probability that a symptomatic individual becomes hospitalized
(top left), the probability that a hospitalized individual needs an ICU (top right), the probability
of dying when on the ICU (bottom left), and combination of effects on the probability of needing
an ICU and probability to die when on ICU (bottom right). Only model H is used here.
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Effects of epidemic severity

The above results are based on the actual infection severity of epidemic in the Czech Republic.

This is to a large extent driven by the contact structure, estimated to be at 45% of the pre-

pandemic state since March 1, 2021 (Methods). An increase in the number of contacts, that is,

in epidemic severity, corresponding to a uniform increase in the effective reproduction number

over time, results in a larger set of vaccine efficacy combinations for which it is advantageous to

delay the second dose for 42 days (Fig. 4). Importantly, this effect is analogous for any mode of

vaccine action (or their combination; just the combination of effects on infection transmission

and symptoms appearance shown here). In conclusion, the more severe the epidemic is, the

more advantageous is to delay the second vaccine dose by 42 days.
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Figure 4: Efficacy of delaying the second vaccine dose by three weeks from 21 to 42 days,
assuming leaky vaccine effect on the probability that a vaccinated person gets infected by con-
tact with an infectious one, and at the same time on the probability that a vaccinated person
becomes symptomatic when infected. Top left: contacts at 35% of the pre-pandemic state, top
right: contacts at 45% (real situation in Czechia), bottom left: contacts at 55%, bottom right:
contacts at 65%. Only model H is used here.

Effects of vaccine availability

We also test effects of vaccine supply scenarios that differ from the actual state in Czechia. As

Fig. 5 clearly demonstrates, the less vaccines are available the more advantageous it is to delay

the second vaccine dose for 42 days. Again, these results do not change qualitatively if other

modes of action (or their combinations) are considered. Interestingly, further improvement

in vaccine supply rate relative to the actual vaccination rollout in Czechia does not suggest

any significant change in the inter-dose delay preferences, but shortage of supplies, on the

other hand, results in much wider vaccine efficacy combinations at which the 42-days delay
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is advantageous (Fig. 5).

Figure 5: Efficacy of delaying the second vaccine dose by three weeks from 21 to 42 days, as-
suming leaky vaccine effect on the probability that a vaccinated person gets infected by contact
with an infectious one, and at the same time on the probability that a vaccinated person be-
comes symptomatic when infected. Top left: twice more doses available, top right: actual state
in Czechia, bottom left: twice less doses available, bottom right: four time less doses available.
Only model H used here.

The extreme scenarios

Vaccine effect on leaky transmission and probability of having symptoms when infected, mild

epidemic and sufficient vaccine supply rate call for the original inter-delay scenario of 21 days

regardless of the vaccine efficacy combination (Fig. 6 left). On the contrary, for the vaccine

effect on the probabilities of needing an ICU when hospitalized and dying when in the ICU,

severe epidemic and insufficient vaccine supply rate, the 42-day inter-dose period is more ad-
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vantageous than 21 days at any plausible vaccine efficacy combination: if the first dose is more

than about 50% efficient, it is beneficial to delay the second dose by other three weeks at any

efficacy of the second dose. (Fig. 6 right).

Figure 6: The extreme scenario. Efficacy of delaying the second vaccine dose by three weeks
from 21 to 42 days, assuming (top row) vaccine effect on infection transmission and the proba-
bility that an infected person shows symptoms, contacts at 35% of pre-pandemic state and twice
more doses available, and (bottom row) vaccine effect on the probabilities of needing an ICU
and dying when on the ICU, contacts at 65% and four times less doses available. Each of these
extreme scenarios is moreover supplemented by the course of the numbers of hospitalized and
dead individuals (legend as in Fig. 7 in Methods). Only model H is used here, with 70% and
90% efficacy of the first and second dose, respectively.

Discussion

The limited supply of COVID-19 vaccines around the world has called for a search for ways to

distribute vaccines to a larger number of people. One such strategy, widely used in Europe, is to
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increase the period between the first and second dose of vaccines based on two-dose schemes.

This strategy, based on the idea that it is better to vaccinate more people with just one dose, even

if full vaccine efficacy is not reached, rather than to put aside one dose for the re-vaccination

for each administered one, is at a glance reasonable. As recently found by a study led by

the University of Birmingham, an antibody response in adults 80+ years is 3.5 times larger in

individuals that got the second dose of the Pfizer/BioNTech vaccine after 12 weeks compared

to those who got it after 21 days (13).

The argument that delaying the second vaccine dose is advantageous has received some

support also via mathematical models (11, 12). Both these studies suggest that such a dose-

sparing strategy would avert a significant proportion of infections that would otherwise occur if

the originally recommended two-dose vaccination scheme is kept, provided that roughly 50%

protection is achieved by the first dose. On the other hand, both studies are simplified in many

respects. The study of (12) does not account for epidemic dynamics, spans a short time period

and as the main comparative statistic considers the numbers of averted COVID-19 cases. The

study of (11), while based on a SEIR-type epidemic model, does not consider any dynamics

in vaccine supply and is based on an artificial epidemic, assuming excessively high effective

reproductive numbers (R = 1.8 − 2.1). Moreover, neither of these studies consider various

modes in which this vaccine may act.

Here we attempted to complement these studies and get further insight by: (i) considering a

fully dynamic epidemic model calibrated for COVID-19 epidemic in Czechia, (ii) considering

actual vaccination rollout scenarios adjusted for actual inter-dose periods and realistic supply

rates, (iii) using the number of COVID-19-related death as the comparative statistic, (iv) con-

sidering various vaccine efficacies, epidemic severities, and modes in which vaccines may act.

Our main conclusion is that vaccine effect on leaky transmission, mild epidemic and sufficient

vaccine supply rate call for the original inter-delay scenario of 21 days regardless of the vaccine
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efficacy combination. On the contrary, for the vaccine effect on probability of dying when on

the ICU, severe epidemic and insufficient vaccine supply rate, the 42-day inter-dose period is

more advantageous than 21 days at any plausible vaccine efficacy combination. This is cur-

rently the case in many Asian and South American countries, as opposed to in many European

countries.

In (12), the impact of vaccine shortages has a modal form: a moderate decrease in the vac-

cine supply rate implies more cases averted when the second dose is a bit postponed, but a larger

reduction has a clear negative effect and should not lead to postponing the second dose admin-

istration. Also, they show that more severe epidemic should mean not prolonging the inter-dose

period. Here we show just the opposite: less vaccine availability leads to stronger support for

the inter-dose period of 42 days; higher epidemic severity carries the same implication (even

though here the effect is not that strong). We also show that postponing the second dose may be

more effective even when the first dose efficacy is deeply under 50%, depending on its mode of

action, and that the efficiency of the second dose also plays the role.

The vaccine efficacy values published in the literature get more and more precise as new

studies arise in response to intense vaccination campaigns in some countries; we provide a

summary of those values in Table 1. Overall, it appears that the 14-20 days after first dose

the vaccine efficacy level at a value between 50-70%, and 7 days after the second dose the

vaccine efficacy settles in between 90-97%, irrespective of the mode of action. We found that

the vaccine effect at the beginning of infection progress (transmission, symptom appearance),

mild epidemic and sufficient vaccine supply rate call for the original inter-delay scenario of 21

days regardless of vaccine efficacy. On the contrary, for vaccine effect at the end of infection

progress (severe symptoms, death), severe epidemic and low vaccine supply rate, 42-day inter-

dose period is better, at any plausible vaccine efficacy.
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1st dose VE 2nd dose VE Mode of Remark Source
(% (95% CI)) (% (95% CI)) action
52.4 (29.5-68.4) 94.8 (89.8-97.6) ? Early assessment by Pfizer,

after 1st dose and 7 days af-
ter 2nd dose

(14)

85 (76-91) H Increasing over time, peak-
ing at 28-34 days post-
vaccination

(15)

72 (58-86) 86 (76-97) T&S (?) 21 days after 1st dose and 7
days after 2nd dose, dominant
variant B.1.1.7

(16)

68.5 (46.5-81.5) ? 7 days after the 1st dose, crit-
icism of (14)

(17)

92.6 (69-98.3) ? 14 days after the 1st dose,
criticism of (14)

(17)

46 (40-51) 92 (88-95) T 14-20 days after first dose, 7
days after 2nd dose

(18)

57 (50-63) 94 (87-98) S 14-20 days after first dose, 7
days after 2nd dose

(18)

74 (56-86) 87 (55-100) H 14-20 days after first dose, 7
days after 2nd dose

(18)

62 (39-80) 92 (75-100) J 14-20 days after first dose, 7
days after 2nd dose

(18)

72 (19-100) D 14-20 days after first dose (18)
95.3 (94.9-95.7) T 7 days after 2nd dose (19)
97 (96.7-97.2) S 7 days after 2nd dose (19)
97.2 (96.8-97.5) H 7 days after 2nd dose (19)
97.5 (97.1-97.8) J 7 days after 2nd dose (19)
96.7 (96-97.3) D 7 days after 2nd dose (19)

Table 1: Published values on efficacy for the Comirnaty (Pfizer/BioNTech) vaccine. Modes of
action: H - preventing hospitalization, T - preventing transmission, S - reducing probability of
symptoms appearance upon infection, J - preventing severe or critical state in hospitals, D -
preventing COVID-19 related death. The study of (19) also shows only negligible dependence
on age and further slight increase in vaccine efficiency 14 days after the second dose.

Methods

Here we give a short overview of the models we use to address our questions, as well as describe

the vaccination rollout scenarios we consider.
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Vaccination scenarios Two vaccination rollout scenarios are considered, corresponding to

delaying the second vaccine dose by either 21 or 42 days. Each scenario provides the daily

amount of available first doses (to be) administered to two population groups: general popula-

tion and health (and other critical infrastructure) workers. Since our models are age-structured

(see below), we follow the widely accepted prioritization strategy and in the latter group vac-

cinate according to age, starting with the eldest individuals. It is important to say that the way

epidemic further unrolls depends on its severity and the way the vaccine acts, so the tempo-

ral dynamics of people vaccinated in each age group, including the times at which younger

age classes are allowed, will be scenario-specific (individuals that become infected will not be

vaccinated).

The vaccination scenarios have been generated by a vaccination calculator, developed for a

practical use by vaccination coordinators in the Czech Republic regions (20). This calculator

plans day-to-day vaccination for each of the assessed groups. Also, it calculates the maximum

amount of applied doses by an inter-temporal choice algorithm together with several bound-

aries. The boundaries were calibrated by empirical data on the actual age-group vaccination

in Czechia in between December 27, 2020 (start of vaccination) and March 15, 2021, with the

scenarios being generated up to July 4, 2021. All data up to March 15, 2021 are therefore

matching the reality. The maximal amount of daily administered doses has been set to 1/12 of

the available doses at the respective day to account for empirically observed limits of the sys-

tem. The size of group of (health care) workers was set to 550, 000, the rest of the population

is vaccinated starting from the oldest ones. Each of the two groups were given 50% of each

day’s capacity. For the people who were on a waiting for the second dose by the date of data

generation (March 15, 2021) was the second dose date shifted according to the currently evalu-

ated delay. The amounts of doses, delivered to particular dates, were set according to expected

delivery as communicated within governments’ strategical documents and the media. See the
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calculator excel file attached to the reference (20) for a list of all sources on dose quantity.

Vaccine effects and their timing Given diverse and steadily appearing reports on how the

vaccine may act and to what degree of efficacy, e.g., from the UK (15, 16) or Israel (19), we

consider several possibilities: (1) Leaky transmission effect. Vaccinated individuals have re-

duced chance of infection transmission upon contact with an infectious person, such that the

probability to get infected upon such a contact is reduced by the factor 1 − ve, where ve is

vaccine efficacy. Infected vaccinated individuals have the same further infection course as the

non-vaccinated ones, and those that are not infected by an actual contact may get so upon fur-

ther such contact. (2) All-or-nothing transmission effect. Vaccinated individuals have reduced

chance to get infected upon contact with an infectious person, such that after two weeks follow-

ing the first dose, a vaccinated individual becomes 100% protected with probability ve and 0%

protected with probability 1 − ve. Individuals that do not become protected after the first dose

may become so a week after the second dose, with probability of 100% protection correspond-

ing to the difference between second dose and first dose efficacies. (3) Probability of becoming

symptomatic. Vaccine does not affect chance of infection transmission, but when a vaccinated

individual gets infected, probability of getting symptoms is reduced by the factor 1 − ve. (4)

Variants 1 and 3 combined. (5) When a vaccinated individual gets infected and shows symp-

toms, probability of becoming hospitalized is reduced by the factor 1− ve. (6) Variants 1, 3 and

5 combined. (7) Variant 6, extended to account also for the action on the probability of needing

an ICU and on the probability of dying when on ICU, both reduced by the factor 1− ve.

Model H One of the models we consider is a deterministic compartmental model the major

focus of which is on dynamics of hospitalizations. Because of that, symptomatic individuals

may have either mild symptoms and be isolated at home, or have severe symptoms and get

hospitalized. Hospitalized individuals are first put on a common bed, with some of them later
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getting worse and moving to an ICU, where after some time a proportion of individuals die.

Individuals that do not go to the ICU recover, and those that improve on the ICU return to a

common bed for a while to eventually recover and leave hospital. This model discerns four

age cohorts: 0-19 years (children), 20-64 years (adults), 65-79 years (seniors), and 80+ years

(elderly).

Vaccination is here implemented as follows. Only susceptible individuals are vaccinated,

and three sequential vaccination classes are considered. Individuals just getting the first vaccine

dose go to the first of these classes that corresponds to no vaccine effect for the first two weeks

after the first dose. If not infected during this period, they pass to the second class where they

stay for until one week after the second dose is administered; vaccine efficacy v1e is associated

with this class. Finally, if still not infected, they eventually pass to the third class for which

vaccine efficacy is v2e ≥ v1e . Individuals that are infected in any vaccine class stay in that class

and go through the analogous sequence of events as the infected non-vaccinated individuals.

This model is calibrated on real time series of the actual number of hospitalized individuals

and the total number of COVID-19-related death, using the stochastic Approximate Bayesian

Computation (ABC) technique (21,22). More details on this model, including equations, model

parameters and specific values used to run it are provided in the Electronic Supplementary

Material. In particular, the calibration period is from August 31, 2020, until February 15,

2021. Within this period, epidemic dynamics was largely modulated by temporal changes in

the number of social contacts, surveyed throughout all waves of COVID-19 in Czechia (23);

Fig. 7. Then, until March 1, 2021, contacts were set at 55%, respecting results of further rounds

of that panel survey. Since March 1, 2021, further restriction were imposed in Czechia, with

sociological data suggesting contacts at 45%. We keep this value until present, even though

some intervention relaxation has already started. We also account for the B.1.1.7 variant of

SARS-CoV-2 virus in this models, where we implement its effect as a linear increase in infection
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transmission by 50% from January 1, 2021, to March 1, 2021. Last but not least, for validation

purposes, we assume three weeks difference between the first and second vaccine doses, with

v1e = 0.6 and v2e = 0.9 and the action on leaky infection transmission. A sound fit has been

achieved for the model, at the level of both total and age-specific populations (Fig. 7).

Figure 7: Model H calibration results performed via the Approximate Bayesian Computation
technique. The top left panel: proportional reduction of contacts due to COVID-19-related
interventions in Czechia; since March 1, 2021, contacts are set at 45% outside schools and 1% in
schools. The top right and bottom left panels: while thin lines correspond to the best 20 worlds
out of 100.000 simulated ones (selected on the basis of the smallest Euclidean distance between
simulated and observed data), thick dashed lines are respective mean model trajectories. While
the thick solid lines are real data up to February 15, 2021, that is, data used for calibration, the
black lines are data after that date, providing sound model validation. The bottom right panel:
daily numbers of the first vaccine doses administered among the considered age cohorts with
21-day delay.
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Model M An alternative model used in the experiments is an agent-based model with agents

representing a synthetic population of 56,000 people connected by a realistic network of social

contacts. This network comprises 2.7 million edges in 30 layers corresponding to various types

of contact, from families and neighborhood to work, school and public transportation. The pop-

ulation and its contact network represent the Hodonin county in the Czech Republic. The un-

derlying epidemic model that runs for every agent is a SEIR-type model with asymptomatic and

presymptomatic infectious classes, and a parallel set of states for individuals detected through

testing and contact tracing. The model allows for individually assigned parameters based on

age, sex, level of protection and other characteristics.

The vaccination is here implemented as a special policy with several parameters operating

on the individual level. Non-detected individuals are vaccinated in a stochastic manner accord-

ing to the given scenario which reflects (age-based) vaccination constrains and preferences. The

vaccinated node is marked as vaccinated and has a new counter: the number of days since first

vaccine dose. As soon as this counter reaches 14 days, the vaccine efficacy v1e is applied. And,

as the counter reaches δ + 7 days (where δ is the delay between the first and second vaccine

shot), actions are implemented with vaccine efficacy v2e .

This model is fitted to real time series on COVID-19-related deaths. The calibration was

done using extensive grid search. More details about the underlying model and its parameters

can be found in (24). In particular, the model was calibrated on data from October 5, 2021,

until February 17, 2021 (Fig. 8). The contact rates in 30 layers were set according to contact

reduction in the Czech public given in (23) and were kept constant from January 24, 2021.
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Figure 8: Calibration of Model M. The y-axis shows the model-predicted cumulative number
of COVID-19-related deaths in simulation (blue, mean ± one standard deviation) compared to
the real situation in the Czech Republic scaled to the model population size (orange).

Model F Our third model is a stochastic, discrete-time SEIR model distinguishing the same

four age cohorts as Model H. This model takes into account both the visible part of the epidemic

(i.e. cases revealed by testing) and its hidden part (a certain proportion of asymptomatic and

symptomatic cases remain undetected). The course of epidemic is modeled as dependent on

the social contact restrictions and the level of fear from epidemic, both surveyed by (23); thus,

the simulated vaccination scenarios are realistic in the sense that they use true values of these

determinants.

The vaccination is implemented as follows. First, the probability πit of being protected

within the i-th age cohort at time t is determined as πit = µitv
1
e + νitv

2
e , where µit and νit are

the ratios of individuals two weeks after the first dose and one week after the second dose, re-

spectively, and v1e and v2e are the corresponding efficacies. For the leaky transmission approach,

the force of infection (transition rate from S to E classes) is simply multiplied by 1 − πit. For

the all-or-nothing transmission approach, in addition to this reduction, the transition from S

to R classes is considered with the rate πitβ
i
t , where βit is the original infection rate. Finally,
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for the “symptoms reduction” variant, the infection rate is left intact yet the probability that a

vaccinated person becomes symptomatic after getting infected is multiplied by 1− πit.

The model is calibrated by real time series on reported cases, admissions and releases from

hospitals, deaths due to COVID-19, and the overall rate of asymptomatic cases revealed by

testing and contact tracing. For details, see (25). In particular, data for calibration cover the

period up to April 10, 2021, after which we assumed contact reduction at 50%. For the cali-

bration, we assumed (and estimated) different infection transmission and hospitalization rates

of the B.1.1.7 variant of the SARS-CoV-2 virus, gradually prevailing since January until March

in the Czech Republic. Using vaccine efficacies v1e = 0.7 and v2e = 0.9 of the first and second

doses, respectively, calibration and validation results are provided in Fig. 9.

Figure 9: Model F calibration. Left panel: daily detected incidences of COVID-19. Right panel:
daily deaths due to COVID-19. Legend: blue line is the mean prediction, while the yellow and
red lines delimit the 95% confidence interval. Green curve represents real data.
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Materials and Methods

All three models we use to address our research question are of the SEIR type, the generally

accepted framework for modeling COVID-19, and all explicitly account for asymptomatic and

presymptomatic infectious classes. That is, once infected, individuals are not infectious for a

period. Once infectious, they either stay asymptomatic for the rest of infection (asymptomatic

state) or are asymptomatic only for a short period (presymptomatic state) before symptoms

eventually appear (symptomatic state). Symptomatic individuals may have only mild symptoms

in which case they are (largely) isolated at home, or may have severe symptoms requiring

hospitalization. Some hospitalized individuals eventually die. In addition, all three models are

structured by age of individuals and type of inter-individual contacts. On the other hand, each
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model has a number of unique assumptions and characteristics. Here we describe Model H that

focuses on dynamics in hospitals, while referring to publicly available descriptions of Model

M (24) and Model F (25).

Description of Model H

Epidemic model Due to contacts with infectious individuals, susceptible individuals (class

S) may become exposed (E), that is, infected but not yet infectious, with probability λ cor-

responding to the force of infection. The exposed individuals then become asymptomatic for

the whole course of infection (A, with probability 1 − pS) or presymptomatic for just a short

period of time before becoming symptomatic (P , with probability pS). Average lengths of ex-

posed, asymptomatic and presymptomatic periods are dE , dA and dP days, respectively. The

P individuals then become symptomatic (I), reducing their contacts with others by a factor rC

(imperfect social isolation). The A individuals eventually recover (R).

After an average period of dI days, a proportion pH of symptomatic individuals (those with

relatively severe symptoms) are hospitalized (H). The remaining proportion 1 − pH of symp-

tomatic individuals (those that have only mild symptoms) remain isolated at home, staying in

class IR until recovery, with contacts again reduced by rC , which lasts on average dA− dP − dI

days. Here we assume that the average period from infection to recovery is the same for in-

dividuals with no or mild symptoms. And since the period from appearance of symptoms to

recovery differs from that from symptoms occurrence to hospitalization, and the probability of

hospitalization pH is independent of these periods, we need to introduce an artificial inter-class

IR.

Hospitalized individuals follow two different pathways. After dHJ days spent on a common

hospital bed, a proportion pJ of such individuals require intensive care (J). Individuals that do

not need intensive care go after those dHJ days to another inter-class HR where they eventually

2

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 5, 2021. ; https://doi.org/10.1101/2021.06.30.21259752doi: medRxiv preprint 

https://doi.org/10.1101/2021.06.30.21259752
http://creativecommons.org/licenses/by-nc-nd/4.0/


recover after next dHR days. While on an ICU, individuals may die (D) with probability pD

(after dJD days). If not dying, which happens with the complementary probability 1− pD, they

eventually recover, after spending further dJH days on the ICU (inter-class JH) and other dHR2

days on the common bed (HR2). All model variables are summarized in Table S1.

Notation Description
S Susceptible individuals
E Exposed individuals
A Asymptomatic individuals for the whole course of infection
P Presymptomatic individuals before becoming symptomatic
I Symptomatic individuals
IR Symptomatic individuals that continue to stay in isolation
H Hospitalized individuals initially on common bed
J Hospitalized individuals on ICU
HR Hospitalized individuals that continue on common bed
D Individuals that die when on ICU
JH Hospitalized individuals that continue on ICU
HR2 Hospitalized individuals after leaving ICU
R Recovered individuals

Table S1: List of variables used in Model H.

Finally, the SARS-CoV-2 virus is known to differently impact various age cohorts (27).

Therefore, we distinguish four age cohorts, 0-19 years (named children, coded 1), 20-64 years

(adults, 2), 65-79 years (seniors, 3), and 80+ years (elderly, 4). These classes interact via the

force of infection (see below). Once infected, individuals of each age cohort proceed indepen-

dently of individuals of other age cohorts. Nonetheless, some model parameters used to decide

on specific pathways through the model are age-specific. These are probabilities of becom-

ing symptomatic pS , requiring hospitalization pH , needing ICU pJ , and dying pD, but also all

periods of staying in various hospital classes.

In discrete time, with one time step corresponding to one day, the above model description
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can be translated into the following system of equations:

S[t+ 1, a] = S[t, a]− λ[t]S[t, a],

E[t+ 1, a] = E[t, a] + λ[t]S[t, a]− σ E[t, a],

A[t+ 1, a] = A[t, a] + (1− pS[a])σ E[t, a]− γAA[t, a],

P [t+ 1, a] = P [t, a] + pS[a]σ E[t, a]− ξ P [t, a],

I[t+ 1, a] = I[t, a] + ξ P [t, a]− αI I[t, a],

IR[t+ 1, a] = IR[t, a] + (1− pH [a])αI I[t, a]− γIR IR[t, a],

H[t+ 1, a] = H[t, a] + pH [a]αI I[t, a]− αH [a]H[t, a],

HR[t+ 1, a] = HR[t, a] + (1− pJ [a])αH [a]H[t, a]− γHR[a]HR[t, a],

J [t+ 1, a] = J [t, a] + pJ [a]αH [a]H[t, a]− αJ [a] J [t, a],

D[t+ 1, a] = D[t, a] + pD[a]αJ [a] J [t, a],

JH [t+ 1, a] = JH [t, a] + (1− pD[a])αJ [a] J [t, a]− αJH [a] JH [t, a],

HR2[t+ 1, a] = HR2[t, a] + αJH [a] JH [t, a]− γHR2[a]HR2[t, a],

R[t+ 1, a] = R[t, a] + γHR2[a]HR2[t, a] + γHR[a]HR[t, a] + γIR IR[t, a] + γAA[t, a],

(1)

where all variables are functions of time t and age cohort a = 1, 2, 3, 4. The model parameters σ,

ξ, αI/H/J/JH , and γA/IR/HR/HR2 represent probabilities with which individuals leave respective

model classes. These probabilities are related to the average periods an individual spends in

each such class (Table S2).

Notation Description Relationship to delays
σ Probability of leaving E class 1− exp(−1/dE)
ξ Probability of leaving P class 1− exp(−1/dP )
αI Probability of leaving I class for H or IR classes 1− exp(−1/dIH)
αH Probability of leaving H class for J or HR classes 1− exp(−1/dHJ)
αJ Probability of leaving J class for D or JH classes 1− exp(−1/dJD)
αJH Probability of leaving class JH for class HR2 1− exp(−1/dJH)
γA Probability of leaving class A for recovery 1− exp(−1/dA)
γIR Probability of leaving class IR for recovery 1− exp(−1/dIR)
γHR Probability of leaving class HR for recovery 1− exp(−1/dHR)
γHR2 Probability of leaving class HR2 for recovery 1− exp(−1/dHR2)

Table S2: Probabilities of leaving particular model classes calculated from average periods
spent in those classes.
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Force of infection The force of infection λ in the model (1) sums contributions from all

infectious classes (A, P , I , IR) across all age cohorts we consider:

λ[t] =
4∑

k=1

wβ[t] β[k]
4∑
l=1

C[t, l, k]
rβ A[t, l] + P [t, l] + rC I[t, l] + rC IR[t, l]

N [t, l]
. (2)

Here, β[k] is the age-specific probability that a susceptible individual from age cohort k is in-

fected by a (sufficiently close and lengthy) with an infectious individual of any age cohort,

C[t, l, k] is the contact rate (the mean number of individuals of age l that an individual of age

k has an effective contact with during day t), rβ is a factor reducing the infection transmission

probability for an asymptomatic individual relative to a (pre)symptomatic, rC is a factor reduc-

ing the contact rate of a symptomatic individual relative to an a/presymptomatic one (having

symptoms should force an individual to reduce contacts with others but in reality isolation is

imperfect), and N [t, l] is the number of ‘active’ age l individuals at time t, that is, those except

dead, in hospitals and symptomatic individuals that are isolated. All parameters and their values

we run the model with are given in Table S3.

In addition, wβ[t] is the time-varying (but age-independent) factor reducing (in case of per-

sonal protective measures such as masks) or enhancing (in case of more contagious viral vari-

ants) the probability of infection transmission upon contact β. We may thus view it as a product

of reducing and enhancing forces. We set the reducing force to 0.3 until February 28, 2020,

and decrease it further to 0.23 from March 1, 2021, the day from which FN95 respirators were

ordered to wear instead of common medical masks. We calculate these numbers as

r2P p
2
P + 2 rP (1− rP ) pP + (1− rP )

2, (3)

where rP = 0.6 represents 60% compliance of using personal protection measures and pP is

the proportional reduction in transmission due to personal protection measures. We set pP to

0.25 until February 28, 2020, and to 0.125 from March 1, 2021. Moreover, we increase the
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enhancing force from 1 to 1.5 since January 1, 2021, to March 1, 2021, to account for invasion

and eventual domination of the B.1.1.7 variant of SARS-CoV-2 virus in the Czech Republic.

Finally, construction of the time-varying contact matrix C starts with (26), a study in which

such a matrix was published for 152 countries, including Czechia, for the pre-pandemic times.

They expressed it as a sum of four specific contact matrices describing daily numbers of contacts

at home (CH), school (CS), work (CW ), and of other types of contact (CO). We transform the

Czech matrices of (26), structured by 5-year age classes, to fit our three age cohorts. This is

because data in (26) end with the 75-80 years age class. To supply values for our age cohort 4

(adults 80+ years), we replicate data for our age cohort 3 (adults 65-79 years) to our age cohort

4, too, to get:

CH =


1.52 0.67 0.036 0.036
2.84 2.05 0.20 0.20
0.93 0.58 0.75 0.75
0.93 0.58 0.75 0.75

 , CS =


4.77 0.20 0.0014 0.0014
1.81 0.33 0.0075 0.0075
0.022 0.019 0.022 0.022
0.022 0.019 0.022 0.022

 , (4)

CW =


0.085 0.19 1.4× 10−5 1.4× 10−5

0.42 5.28 9.4× 10−5 9.4× 10−5

1.75× 10−5 0.00012 4× 10−5 4× 10−5

1.75× 10−5 0.00012 4× 10−5 4× 10−5

 , CO =


1.61 0.78 0.24 0.24
1.10 3.94 1.01 1.01
0.15 0.89 0.93 0.93
0.15 0.89 0.93 0.93

 .
(5)

The time-varying contact matrix C is then calculate as a weighted sum of these four specific

matrices,

C[t] = sH [t]CH + sW [t]CW + sS[t]CS + sO[t]C0,

where the weights sX , X = H,W, S,O are time-varying (changing on a weekly basis) pro-

portional reduction factors due to adopted interventions and their compliance, estimated from

panel surveys conducted by the PAQ Reseach agency1 (Fig.S1).

1www.zivotbehempandemie.cz
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Figure S1: Proportional reductions in different types of contact evolving in time on a
weekly basis. Based on panel surveys conducted by the PAQ Reseach agency (www.
zivotbehempandemie.cz).

Initial conditions Our simulations start on August 31, 2020, the day around which the second

COVID-19 wave in Czechia presumably began and also corresponds to Monday (contact data

described above are provided for calendar weeks). Whereas initial values of state variables re-

lated to hospitals are inferred from data, initial values for the remaining (hidden) state variables

(E, A, P , I , IR) are regarded as parameters to which the model is calibrated; see below for the

calibration procedure.

Vaccination Only susceptible individuals are vaccinated. When vaccinated, individuals pass

through three sequential vaccination classes. Just vaccinated individuals enter the class with no

vaccine effect in which they stay on average for two weeks. If not infected during this time,

they pass to the second class for until one week after the second dose; the vaccine efficacy is v1e

when in this class. Eventually, if still not infected, vaccinated individuals pass to the third class

in which vaccine efficacy is v2e . Vaccinated individuals can be infected when in any of these

three classes. Once this happens, they stay in the current class and go through the sequence of
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states analogous to that for non-vaccinated infected individuals.

With these three classes of vaccinated individuals, the force of infection changes to

λ[t] =
∑4
k=1wβ[t] β[k]

∑4
l=1C[t, l, k] (rβ (A[t, l] + Av[t, l]) + (P [t, l] + P v[t, l]) +

+ rC (I[t, l] + Iv[t, l]) + rC (IR[t, l] + IvR[t, l])) /N [t, l],
(6)

where we assume that the infected vaccinated individuals are infectious to the same extent as the

infected non-vaccinated individuals, and where the terms with the upper index v are numbers

of the respective individuals over all three vaccination classes.

The ways vaccine is in this study assumed to acts in four ways (and some of their combina-

tion). These ways and the manner in which they are modeled are as follows:

(1) Reduction of the probability of getting infected upon contact with an infectious individual

(the ‘leaky’ variant): the force of infection λ[t] is reduced by the factor 1− vie;

(2) Reduction of the probability of becoming symptomatic when infected: the probability pS is

reduced by the factor 1− vie;

(3) Reduction of the probability of getting hospitalized when symptomatic: the probability pH

is reduced by the factor 1− vie;

(4) Reduction of the probability of getting infected upon contact with an infectious individual

(the ‘all-or-nothing’ variant): two weeks after the first dose, the vaccinated individual

is fully protected with probability v1e and completely unprotected with complementary

probability; when unprotected, then after the second dose it becomes fully protected with

probability v2e − v1e , while it remains completely unprotected with the complementary

probability;

(5) Reduction of the probability of needing ICU when getting hospitalized: the probability pJ

is reduced by the factor 1− vie;
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(6) Reduction of the probability of dying when on ICU: the probability pD is reduced by the

factor 1− vie.

Model calibration Many model parameters can be taken from the literature or estimated

from data provided by the Institute of Health Information and Statistics of the Czech Republic

(UZIS); www.uzis.cz. However, values of some model parameters will always remain un-

certain, of which the transmission probabilities β[i], i = 1, 2, 3, 4, are commonly of this kind.

These and some other model parameters, listed in Table S3, are estimated by fitting the simu-

lated cumulative numbers of deaths and the actual numbers of hospitalized individuals in age

classes 2, 3 and 4 to the corresponding age-specific actual time series collected in the Czech

Republic.

Many optimization and filtering methods have been developed to meaningfully perform

model calibration (30). Here we adopted the Approximate Bayesian Computation (ABC) tech-

nique, used to estimate parameters of complex models in genomics and other biological disci-

plines, including epidemiology (21,22,32,34,35). The major advantage of this method is that it

naturally works with all sources of uncertainty acknowledged in the model. At the same time,

the ABC does not rely on likelihood calculation and in case of sufficient computation power

can be used with models of virtually any complexity.

The variant of ABC with rejection sampling that we used consisted of three steps. First, we

performed K = 200, 000 model simulations, collecting the age-specific cumulative numbers of

deaths (D) and actual numbers of hospitalized individuals (H +HR+ J + JH +HR2), drawing

values of the uncertain model parameters from prior distributions based on literature and avail-

able data on the Czech Republic epidemic; selected prior distributions for the parameters to be

estimated are given in Table S3. Second, we calculated summary statistics on the simulated

and corresponding observed time series, using their Euclidean distance D. Third, we selected
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model simulations that satisfied D < ε, where ε was chosen to pass 0.025% (50) of the simula-

tions into the selected set. Since the used summary statistics are informative, the distribution of

parameters corresponding to the selected simulations is known to converge from outside to the

Bayesian posterior distribution of parameter values with N going to infinity and ε going to 0,

and is referred to as the approximate posterior (32). The choice of N and ε in the ABC is driven

by compromise between computation power and smoothness and accuracy of the approximate

posterior.

The set of selected parametric sets thus allows us to evaluate remaining parameter uncer-

tainty, given the available data and adopted summary statistics (21, 22, 32). This is crucial to

realize, since although different parameter sets may similarly fit the available data (have simi-

lar summary statistics), and often provide similar short-term predictions, they may demonstrate

significant differences in longer term and in interplay with intervention policies. To apply the

ABC technique, we use the abc package in R (36), modified to work with non-normalized

summary statistics.

10

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 5, 2021. ; https://doi.org/10.1101/2021.06.30.21259752doi: medRxiv preprint 

https://doi.org/10.1101/2021.06.30.21259752
http://creativecommons.org/licenses/by-nc-nd/4.0/


Parameter Meaning Value Reference
β1, β2, β3, β4 Age-specific transmission

probabilities
uniform on [0.01, 0.99] calibration

rβ Factor reducing infection
transmission from asymp-
tomatic individuals

0.5 (27)

rC proportional contact reduc-
tion in isolated individuals

uniform on [0.01, 0.4] calibration

pS proportion symptomatic uniform on [0.65, 0.84] calibration,
halved for the
0-19 years age
cohort

pH proportion hospitalized
among symptomatic

(0.0052, 0.056, 0.270.43) UZIS

pJ proportion on ICU among
hospitalized

uniform on (0 − 0.02, 0 −
0.3, 0.1− 0.4, 0.1− 0.7)

UZIS
(0, 0.16, 0.24, 0.19),
calibration

pD proportion dying on ICU uniform on (0 − 0.02, 0.1 −
0.5, 0.3− 0.9, 0.5− 0.9)

UZIS
(0, 0.24, 0.51, 0.74),
calibration

dE latent period uniform on 3-7 days calibration
dA time to recovery when

asymptomatic
uniform on 8-14 days calibration

dP presymptomatic period uniform on 2-6 days calibration
dIH period from symptoms ap-

pearance
(5.71, 7.41, 5.87, 5.87) days UZIS

dIR recovery time when isolated dA − dP − dIH –
dHJ period from hospital to ICU

admission
(1.88, 3.01, 3.85, 4.50) UZIS

dJD time on ICU till death (10.0, 9.41, 7.89, 4.43) UZIS
dJH extra time on ICU when not

dying
(0, 0, 0.71, 2.22) UZIS

dHR2 time from leaving ICU to re-
covery

(3.08, 4.51, 4.95, 6.12) UZIS

Table S3: Parameters of Model H. UZIS = The Institute of Health Information and Statistics of
the Czech Republic (www.uzis.cz); mean values are provided over the period from August
31, 2020, until February 14, 2021. Distributions of all the indicated delays were checked and
all are exponential. Times are given in days. The indicated distributions are prior distributions
for the calibration procedure, and are based on the literature.
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36. K. Csilléry, L. Lemaire, O. François, M. G. Blum, abc: tools for Approximate Bayesian

Computation (ABC) (2015).

12

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 5, 2021. ; https://doi.org/10.1101/2021.06.30.21259752doi: medRxiv preprint 

https://doi.org/10.1101/2021.06.30.21259752
http://creativecommons.org/licenses/by-nc-nd/4.0/

