
Minimizing the infected peak utilizing a single lockdown: a technical
result regarding equal peaks

James M. Greene1,2 Eduardo D. Sontag2,3

June 26, 2021

Abstract

Due to the usage of social distancing as a means to control the spread of the novel coronavirus disease COVID-19,
there has been a large amount of research into the dynamics of epidemiological models with time-varying transmission
rates. Such studies attempt to capture population responses to differing levels of social distancing, and are used for
designing policies which both inhibit disease spread but also allow for limited economic activity. One common criterion
utilized for the recent pandemic is the peak of the infected population, a measure of the strain placed upon the health
care system; protocols which reduce this peak are commonly said to ‘flatten the curve." In this work, we consider a very
specialized distancing mandate, which consists of one period of fixed length of distancing, and addresses the question of
optimal initiation time. We prove rigorously that this time is characterized by an equal peaks phenomenon: the optimal
protocol will experience a rebound in the infected peak after distancing is relaxed, which is equal in size to the peak
when distancing is commenced. In the case of a non-perfect lockdown (i.e. disease transmission is not completely
suppressed), explicit formulas for the initiation time cannot be computed, but implicit relations are provided which can
be pre-computed given the current state of the epidemic. Expected extensions to more general distancing policies are also
hypothesized, which suggest designs for the optimal timing of non-overlapping lockdowns.

1 Introduction

The ongoing global COVID-19 (coronavirus disease 2019) pandemic, caused by SARS-CoV-2 (severe acute respiratory
coronavirus 2), has necessitated the use of non-pharmaceutical interventions (NPIs) as a means to slow transmission of
the disease. Although controversial, there is clear evidence that NPIs such as social distancing have saved millions of lives
globally [1]. Social distancing mandates, denoted in this manuscript as “lockdowns," cannot be implemented indefinitely,
as it carries both a high economic [2, 3] and psychological [4] cost. Furthermore, a lack of compliance may make
extended protocols unfeasible to implement [5, 6]. Hence there is a need to optimize the timing of prescribed lockdowns.
The optimization of such schedules is the focus of this work. Specifically, we characterize the implementation time of
a single non-strict lockdown, with fixed transmission reduction, which minimizes the peak of the infected population in
the Susceptible-Recovered-Removed (SIR) model. The main contribution is Theorem 1, which we term an equal peak
phenomenon.

There have been a large number of mathematical analyses applied to the spread of COVID-19. In this work, as we solve a
small technical problem, we do not attempt to provide a comprehensive literature review. We do however note a number
of closely related works based on optimal social distancing strategies. The analysis presented here is a direct extension
of [7], where the case of multiple fixed-length non-overlapping complete (i.e. zero disease transmission) lockdowns is
completely characterized as a linear programming problem; this manuscript should be viewed as a direct extension of this
previous work. Again minimizing the infected peak, the authors of [8] determine the optimal (again, possibly complete)
lockdown schedule as a feedback mechanism. Numerical results for a variety of epidemic objectives with respect to a
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single interval of distancing are provided in [9, 10], and [11] studies the same problem both numerically and theoretically.
A constrained optimization problem is solved in [12], where the time minimal distancing policy which maintains an
upper bounded on the infected population is derived. There are also a number of works which minimize the total number
of infections during an epidemic during a period of such distancing; this is studied numerically in [9] and analytically
in [13, 14, 15]. Interestingly, the main result of [13] is that the optimal lockdown policy to minimize the total number of
infected individuals coincides with the protocol considered in this work; see equation (4) below. However, as observed
in [9], the timing with respect to these differing objectives (minimizing infected peak vs. minimizing total number of
infections) in general do not agree, so that policy makers cannot generally hope to achieve both simultaneously.

This work is organized as follows. In Section 2, we recall the SIR model and precisely formulate the social distancing
protocol to be optimized. Results are presented in Section 3, and a discussion with potential (unproven) extensions are
postulated in Section 4. Some preliminary numerical simulations are also provided in Section 4. Proofs of all results are
provided in Section 5.

2 Problem formulation

We consider the classic SIR epidemic model introduced by Kermack and McKendrick in 1927 [16], which we briefly
review here. The ordinary differential equations (ODEs) describing the evolution of the system are given below:

dS

dt
= −β(t)SI

dI

dt
= β(t)SI − νI

dR

dt
= νI,

(1)

together with initial conditions

S(0) = S0

I(0) = I0

R(0) = 0.

(2)

Here S denotes the susceptible population, I the infected population, and R the removed population, where the latter
combines those individuals that have either obtained immunity or died. Parameter ν represents the combined recovery
and death rate of the disease, and hence if mortality is relatively small, is a measure of the rate of recovery to immunity.
We assume that ν is constant. Parameter β = β(t) quantifies the transmission rate between susceptible and infected
individuals. We consider this a time-varying parameter, since NPIs are generally viewed as altering this transmission rate.
Specifically, during a lockdown, where contacts are reduced and/or mask mandates are enforced, the transmission rate
may be modeled as decreasing by a factor of p, where 0 ≤ p < 1:

β
lockdown−−−−−→ pβ.

For example, in [17], estimated reductions in R0 (which for the SIR model is equivalent to reducing β; see equation (7)
below) yield p values as large as 0.58, with this value corresponding to mandates limiting gatherings to 10 people or less.

We are specifically interested in the effect of a single fixed period of social distancing (i.e. a single lockdown) on the peak
of the infected population:

Imax := max
t∈[0,∞)

I(t). (3)

Our goal is thus to understand the behavior of Imax as a function of β(t), where β(t) take the following form:

β(t) =


β, 0 ≤ t ≤ ts
pβ, ts < t ≤ ts + T

β, ts + T ≤ t
(4)
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Figure 1: Visualization of idealized lockdown (4). We assume that transmission is reduced by an effective amount p
during the lockdown, where 0 < p < 1. The lockdown is initiated at ts and is enacted for T units of time.

As discussed above, 0 ≤ p < 1 represents the reduction in transmission rate due to distancing mandates, which are
enacted at time ts for a length of time T . That is, a lockdown occurs for t ∈ [ts, ts + T ]. For a visualization of the
lockdown protocol, see Figure 1. We assume that β, ν, p, and T are fixed and known, and we are interested in optimizing
the start time ts of distancing so as to minimize the infected peak as a function of ts:

min
ts∈[0,∞)

{Imax(ts)}. (5)

It is intuitively clear that t∗ should not occur too early or too late: begin too early and we simply delay the full effect of the
epidemic, and begin too late and the epidemic has already passed throughout the susceptible population, and hence social
distancing has minimal impact. It is the goal of this work to understand the optimal timing with respect to the metric (5),
with transmission rate of the form (4). This problem is a generalization of [7], which studied the same problem for p = 0.
In general we allow p > 0 in the following.

We lastly note the maximum appearing in (3) is indeed a maximum (i.e. it is achieved at some time, as opposed to a
supremum), since I is continuous and I(t)→ 0 as t→∞ for all distancing protocols β(t). For more details and a proof,
see for example [18].

We assume that the populations are normalized, so that

S0 + I0 = 1. (6)

Assumption (6) ensures that S(t) + I(t) + R(t) = 1 for all t ≥ 0, i.e. that variables S, I , and R represent population
fractions. System (1) is also seen to be positively invariant. Note lastly that the removed population R does not affect the
dynamics of the above system, but may serve as a useful measure of disease progression.

2.1 Additional assumptions

In this section, we impose additional assumptions on the model introduced in Section 2. We note that these assumptions
are not crucial for the following theory, but instead are useful for limiting the number of potential cases which we feel
would otherwise obfuscate the exposition. Specifically, they allow us to conclude with certainty the exact locations of the
potential relative maxima of the infected population curves, while excluding particular “boundary cases".

Our first additional assumption is that the lockdown has the ability to immediately stop disease progression independently
of the start time. In other words, we assume that the transmission rate is able to be reduced such that for any start time ts,

dI

dt
(t) ≤ 0.
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for all t ∈ [ts, ts + T ]. Since on this time interval

dI

dt
= ν

(
pβ

ν
S − 1

)
I,

this assumption is equivalent to

pβ

ν
S0 < 1,

as S is non-increasing on [0,∞). Defining the basic reproduction numberR0 as

R0(β) :=
β

ν
, (7)

the previous assumption is equivalent to

p <
1

R0(β)S0
,

or again equivalently

R0(pβ)S0 < 1.

Furthermore, for an epidemic to exist (i.e. for I to increase at any time point, which is equivalent to increasing initially,
since S is non-increasing), we must assume that İ(0) > 0. Examining the second of (1) (together with β(t) = β and the
definition ofR0(β)), this implies that

R0(β)S0 > 1.

Thus, for the remainder of the manuscript, we assume the following:

R0(pβ)S0 < 1

R0(β)S0 > 1.
(8)

3 Results

3.1 Infected peak formulas

The assumptions presented in Section 2.1 imply that the graph of I : [0,∞)→ [0, 1] may have at most two local maxima,
one of which must be global. In fact, there are exactly two possible cases, dependent on the lockdown initiation time ts:

1. I has a unique local maximum Imax occurring on [0, ts].

2. I has one maxima at ts (I(ts)), and another local maximum on [ts + T,∞).

Note that Case 2 occurs precisely because of the second assumption in (8), i.e. since I is non-increasing on [ts, ts + T ].
More precisely, Case 2 occurs for ts such that

R0(β)S(ts + T ) > 1, (9)

which in words means that I initially increases after the lockdown is released (i.e. at time ts + T ). Since S is non-
increasing, (9) implies that

R0(β)S(ts) > 1, (10)

i.e. that I was also increasing prior to lockdown initiation.

It is not hard to see that the maximum in Case 1 is always larger than the pair of maxima in Case 2, so that the minimization
problem is solved by ts of the form of Case 2. In fact, we have the following proposition.
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PROPOSITION 1. Assume that the lockdown initiation time ts is such that two relative maxima of I exist. Then the second
maxima, occurring at some time t ∈ [ts + T,∞), is given by

Ip(ts) := V0 −
1− p
p
· 1

R0(β)
log

(
S(ts)

S(ts + T )

)
, (11)

where

V0 := I0 + S0 −
1

R0(β)
(1 + log(R0(β)S0)). (12)

Furthermore, V0 is the maximum of I corresponding to the case of a unique global maximum occurring in [0, ts] (Case 1
above). Thus, the minimization problem (5) is solved for ts such that I admits two relative maxima (Case 2 above).

Recall that we are assuming that 0 < p < 1, which implies S(ts + T ) < S(ts). Since I(ts) ≤ V0 and the second term on
the right-hand side of (11) is positive, we have that (5) is solved for ts corresponding to Case 2 above, as claimed.

Before undertaking an analysis of Ip(ts), we note that there are several equivalent representations of the second peak Ip.
By the change of variables S = S(t), we see that

log

(
S(ts + T )

S(ts)

)
=

∫ S(ts+T )

S(ts)

dS

S

=

∫ ts+T

ts

1

S(t)

dS

dt
(t) dt

=

∫ ts+T

ts

1

S(t)
(−pβS(t)I(t)) dt

= −pβ
∫ ts+T

ts

I(t) dt,

(13)

since Ṡ = −pβSI on (ts, ts + T ). Hence we can write (11) in the following form:

Ip(ts) = V0 − (1− p)β · 1

R0(β)

∫ ts+T

ts

I(t) dt+

= V0 − (1− p)ν
∫ ts+T

ts

I(t) dt

Since Ṙ(t) = νI(t), we can also write the previous integral as∫ ts+T

ts

I(t) dt =
1

ν

∫ ts+T

ts

Ṙ(t) dt

=
1

ν
(R(ts + T )−R(ts)).

Thus, another equivalent form for Ip(ts) is given by

Ip(ts) = V0 − (1− p)(R(ts + T )−R(ts)). (14)

3.2 Analysis of relative maxima of I

Under assumptions (8), Proposition 1 implies that to minimize the peak of the infected population with respect to a
lockdown represented by (4), we must minimize both relative maxima I(ts) and Ip(ts) simultaneously with respect to ts.
Recall that I(ts) denotes the infected population at the onset of the lockdown (i.e. I at time ts), and Ip(ts) is the relative
maxima of I occurring at some t ∈ [ts + T,∞), i.e. after the lockdown has been lifted. Specifically we note that we do
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not have an explicit formula for the time Ip occurs, and the notation is meant to emphasize that Ip depends on ts via the
expression (11).

Numerical simulations for a specific set of β, p, ν, S0 and I0 are provided in Figure 2. Here we simply vary the start time
ts for the distancing protocol represented by (4), and plot representative infection response dynamics in Figure 2a. Note
that if the distancing starts too early (e.g. ts = 20 days), then the peak of the infected population Imax is simply delayed
until after the lockdown is lifted; V0 ≈ 0.4037 for the set of parameters in Figure 2. Similarly, if the lockdown is initiated
too late (e.g. ts = 70 days), then the distancing mandate has only a marginal effect on reducing Imax. For intermediate
ts, we observe two relative maxima I(ts) and Ip(ts), as discussed in the beginning of this section. It appears that as ts
is increased, the first peak I(ts) increases, while the second peak Ip(ts) decreases. This is intuitive, since increasing ts
allows us to initiate the lockdown closer to V0 (increasing I(ts)), which at the same time builds immunity in the population
and hence decreases the magnitude of the “second wave" (which is quantified by Ip(ts)). Furthermore, it appears that the
optimal choice of ts balances these two effects precisely:

the minimizer ts of Imax is the unique start time such that I(ts) = Ip(ts), i.e. the two relative maxima of I are equal

This hypothesis is generally true, and is stated precisely in the following theorem.
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Figure 2: Response of infected population to a single lockdown as characterized by (4). The following parameters were
utilized in the above simulation: β = 0.2, p = 0.2252, ν = 0.05, I0 = 10−4, and S0 = 1− I0. Note that according to (7),
R0 = 4 prior to lockdown, while R0 ≈ 0.9 during the lockdown. We observe a global minimum of Imax at ts ≈ 39.2
days, which is corresponds to the black curve in Figure 2a. Note that both relative maxima appear to be equal for this
minimizing ts.

THEOREM 1. Consider the SIR epidemic model (1) with time-varying transmission rate (4) representing a single lock-
down of relative efficacy p and fixed duration T . Under assumptions (8), the optimal time ts of lockdown initiation to
minimize the peak of the infected population is such that I has two relative maxima of equal size. In this case, the two
maxima of I are precisely I(ts) and Ip(ts).

A proof of Theorem 1 is postponed until Section 5. Theorem 1 thus says that the optimal choice of ts to “flatten the
curve" is such that the infected population will have precisely two relative maxima of equal size: one of which occurs
at lockdown initiation (ts), and the other given by a second wave occurring after the lockdown has been released (after
ts + T ). We call this an equal peaks phenomena, with an unavoidable second wave of infections which will rebound
to the same maximum intensity as experienced prior to the lockdown. We note that such a phenomenon occurs only for
optimally designed interventions (indeed, it is a characterization), and it is possible to choose ts large enough to reduce
the second peak, or even remove it entirely (see the ts = 70 days curve in Figure 2a). However, such distancing mandates
will necessarily lead to a larger first peak in infections. Similarly, the first peak can be made as small as I0 if ts is initiated
early, but in this case a large second wave is encountered (see the ts = 20 days curve in Figure 2a).
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The result of Theorem 1 provides an implicit method of determining the optimal lockdown initiation time given the current
state of the epidemic. The initiation time ts is characterized by the relation

I(ts) = Ip(ts). (15)

Utilizing (14) together with the (normalized conservation law)

R(t) = 1− S(t)− I(t),

equation (15) can be written as

I(ts) + (1− p) (S(ts)− S(ts + T ) + I(ts)− I(ts + T ))) = V0, (16)

which yields an implicit relation to determine ts. Note that the time ts cannot be computed explicitly (unlike the formulas
which appear in [7]), since when p > 0 there are no analytic solutions to the SIR system in [ts, ts+T ]. But of course, as the
epidemic evolves, the relation (16) can be tested numerically. More precisely, policy could be designed by utilizing current
epidemic data, assuming ts = 0, and checking whether relation (16) is currently satisfied (with uncertainty sufficiently
quantified, and assuming good estimates for lockdown efficacy p exist). If this equation is satisfied, the lockdown should
be initiated as soon as possible. We finally note that other relations similar to (16) exist, which utilize the alternate forms
of Ip presented in Section 3.1, as well as the conserved quantity H(S, I) to compute I(ts) as a function of S(ts) and the
initial data (see the proof of Proposition 1 in Section 5). Specifically, a relation only involving S(ts) and S(ts + T ) is
given as follows:

1 + log(R0(β)) + log(S(ts))−R0(β)S(ts) +
1− p
p

log

(
S(ts)

S(ts + T )

)
= 0.

4 Discussion and extensions

In this work we have proven a characterization of the optimal start time with respect to (5) for a lockdown of fixed length
T and transmission reduction factor p in the SIR model. This characterization is classified according to an equal peaks
phenomenon: the infection response will exhibit two local maxima of equal magnitude. The result (Theorem 1) was
proven under certain assumptions (8), but these were assumed for clarity of exposition, and the result remains valid under
weaker hypothesis. In particular, if the lockdown is not “strong enough" (i.e. p does not satisfy the first of (8)), then the
first relative maxima of I may occur interior to the lockdown interval [ts, ts+T ], and not at ts. But the result of Theorem 1
remains true: the optimal initiation time is such that both relative maxima are equal, i.e. the response of I possesses equal
peaks.

The results of this work are concerned with optimizing the initiation time of a single non-perfect lockdown. In reality,
social distancing directives are not designed utilizing a single interval of distancing, but more generally consist of multiple
periods of possibly different levels of mandated distancing, which in the above model, correspond to different transmission
reduction factors p. We conjecture that the above equal peaks phenomenon generalizes to the case of multiple lockdowns.
More precisely, for k = 1, 2, . . . , n define disjoint intervals

Jk := [tsk , tsk + Tk],

and β(t) be the time-varying transmission rate

β(t) =

{
pkβ, t ∈ Jk
β, t 6∈ ∪nk=1Jk.

(17)

Here β(t) represents a series of n lockdowns, each of fixed (but generally different) length Tk and transmission reduction
factor pk. A visualization for n = 2 is provided in Figure 3. We then can consider an optimization problem analogous
to (5), where we minimize the peak of the infected population with respect to the start times tsk of the k = 1, 2, . . . , n
lockdowns (assuming all other parameters are fixed and known). The conjecture generalizing Theorem 1 is then that the
initiation times are such that the infected population exhibits n+1 relative maxima, each of equal size; that is, it possesses
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𝒕𝒔𝟏 + 𝑻𝟏𝒕𝒔𝟏
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𝒑𝟏β
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𝒕𝒔𝟐 + 𝑻𝟐

β(t)

Figure 3: Visualization of n = 2 lockdowns (17). We assume that transmission is reduced by an effective amount p1
during [ts1 , ts1 + T1] and p2 during [ts2 , ts2 + T2], where 0 < p1, p2 < 1.

n + 1 equal peaks. Although we do not prove the result here, numerical simulations seem to suggest its validity. A
numerical experiment for n = 2 is provided in Figure 4a. Here we simply iterate over all possible intervals [ts1 , ts1 + T1]
and [ts2 , ts2+T2] that do not overlap, as we cannot start a second lockdown before the first one has ended; these prohibited
times correspond to the white region in Figure 4a, and is given parametrically by ts2 ≥ 0, ts1 − T2 < ts2 < ts1 + T1 in
the first quadrant. Bluer shades in Figure 4a correspond to smaller infection peaks, and the approximate optimal policy
together with the infection response is provided in Figure 4b. Note that the infected population exhibits 3 = n+1 relatives
maxima (peaks) of equal size, as hypothesized.
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Figure 4: Numerical investigation of optimal lockdown schedule of the form (17) with n = 2. Parameters utilized are
β = 0.2, p1 = 0.5, p2 = 0.2, T1 = 30, T2 = 14, ν = 0.05, I0 = 10−4, and S0 = 1 − I0. As in Figure 2, our goal
is to minimize the peak of the infected population, which corresponds to bluer shades in Figure 4a. The white region
is prohibited, as it would correspond to overalapping lockdowns. The optimal initiation times ts1 ≈ 54.1 days and
ts2 ≈ 37.4 days is provided in Figure 4b. Note that the response I exhibits 3 = n + 1 relative maxima (peaks) of equal
size.
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5 Proofs of results

In this section, we provide proofs of all results stated in the above manuscript, including our main result Theorem 1. We
also present an intermediate proposition (Proposition blah) which allows us to compute the sensitivities of the susceptible
population (and also the infected population) with respect to the initiation time ts; this is the main tool used to prove
Theorem 1.

Proof of Proposition 1. The following calculation is tedious, but elementary. It is well known that the quantity

H(S, I) := I + S − 1

R0(β)
log(S) (18)

is conserved along solutions curves with constant β and ν. Since transmission rates of the form (4) are piecewise constant,
we thus need to consider two two transmission rates: β and pβ. The second local maximum of I must occur after the
lockdown is released, since İ ≤ 0 on (ts, ts + T ). We use repeated use of the conserved quantity H(S, I) on intervals
where β(t) is constant. Since I is guaranteed to increase after the lockdown is released (assumption (9)), ts+ T is a local
minimum of I , and hence the local maximum must occur on the open interval (ts + T,∞). On this interval, β(t) ≡ β
(i.e. R0 is given byR0(β)), we have the conservation law

H(S(t), I(t)) = H(S(ts + T ), I(ts + T ))

for t ≥ ts + T . Thus, we can solve for I as a function of S and the initial conditions (S(ts + T ), I(ts + T )) along
trajectories:

I = −S +
1

R0(β)
logS + I(ts + T ) + S(ts + T )− 1

R0(β)
logS(ts + T ) (19)

A relative maximum of I with respect to t thus corresponds to a relative maximum of I with respect to S, which must
occur at a susceptible population S∗ such that (dI/dS)(S∗) = 0. Utilizing (19) above then implies that S∗ is given by

S∗ =
1

R0(β)
. (20)

Note that S∗ corresponds to the herd immunity population for the SIR model, and (9) ensures that S∗ = S(t∗) satisfies

S(t∗) < S(ts + T ),

i.e. that

t∗ > ts + T.

Substituting (20) into (19) yields an expression for the second peak Ip of I:

Ip = −
1

R0(β)
(1 + log(R0(β))) + I(ts + T ) + S(ts + T )− 1

R0(β)
log(S(ts + T )). (21)

We now iterate the above procedure on [ts, ts + T ] to simplify the above expression for Ip (by simplify, we mean remove
as many dependencies on time ts + T as possible). On [ts, ts + T ], β(t) ≡ pβ, and the conservation law implies that

H(S(ts + T ), I(ts + T )) = H(S(ts), I(ts)).

Thus, we can solve for I(ts + T ) + S(ts + T ) as

I(ts + T ) + S(ts + T ) =
1

R0(pβ)
log(S(ts + T )) + I(ts) + S(ts)−

1

R0(pβ)
log(S(ts))

9
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Substituting this into (21) yields

Ip = −
1

R0(β)
(1 + log(R0(β))) +

1

R0(pβ)
log(S(ts + T ))

+ I(ts) + S(ts)−
1

R0(pβ)
log(S(ts))−

1

R0(β)
log(S(ts + T ))

(22)

Lastly on [0, ts], where β(t) ≡ β, we have that

H(S(ts), I(ts)) = H(S0, I0),

which allows us to solve for I(ts) + S(ts) as

I(ts) + S(ts) =
1

R0(β)
log(S(ts)) + I0 + S0 −

1

R0(β)
log(S0), (23)

which yields in (22) the expression

Ip = −
1

R0(β)
(1 + log(R0(β))) +

1

R0(pβ)
log(S(ts + T ))

+
1

R0(β)
log(S(ts)) + I0 + S0 −

1

R0(β)
log(S0)

− 1

R0(pβ)
log(S(ts))−

1

R0(β)
log(S(ts + T ))

=

(
1

R0(pβ)
− 1

R0(β)

)
log

(
S(ts + T )

S(ts)

)
+ I0 + S0 −

1

R0(β)
(1 + log(R0(β)S0)).

(24)

We can further simplify (24) by noting that

1

R0(pβ)
− 1

R0(β)
=

1

pR0(β)
− 1

R0(β)

=
1− p
p
· 1

R0(β)
,

and defining the constant V0 as in (12), we have that the second relative maximum of I , Ip = Ip(ts), is given by

Ip(ts) = V0 −
1− p
p
· 1

R0(β)
log

(
S(ts)

S(ts + T )

)
+ V0,

as claimed.

We note that V0 is the maximum value of I if a lockdown is never implemented (β(t) ≡ β on [0,∞)), or if the lockdown
is “too late" to reduce the peak of the infected population. Equivalently, a peak of V0 corresponds to a locktown initiation
ts such that

S(ts) ≤ 1/R0(β);

compare this to (10). In such cases, I has only one (global) maximum V0, and is a subset of Case 1 in Section 3.1 (the
other disjoint subset is when the lockdown length T is long enough so that the global maximum of I occurs at ts, and no
other local maxima exist).

Before stating and proving the next proposition, we note that the conserved quantity (18) allows us to transform the two-
dimensional system (1) into a one-dimensional (nonlinear) ODE if β(t) is constant. Specifically, it allows us to solve for
I(t) as a function of S(t). For example, on [0, ts] where β(t) ≡ β, we have that

H(S(t), I(t)) = H(S0, I0), (25)

10

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted June 30, 2021. ; https://doi.org/10.1101/2021.06.26.21259589doi: medRxiv preprint 

https://doi.org/10.1101/2021.06.26.21259589


or equivalently,

I(t) = −S(t) + 1

R0(β)
logS(t) + I0 + S0 −

1

R0(β)
logS0. (26)

Thus, the dynamics on [0, ts] can be understood by analyzing the one-dimensional ODE

Ṡ(t) = −βS(t)I(t)

= −βS(t)
(
−S(t) + 1

R0(β)
logS(t) + I0 + S0 −

1

R0(β)
logS0

)
,

(27)

with the infected population given by (26). Similarly, on [ts, ts + T ],

Ṡ(t) = −pβS(t)I(t) (28)

= −pβS(t)
(
I0 + S0 −

1

R0(β)
logS0 −

1

R0(β)

1− p
p

logS(ts)− S(t) +
1

pR0(β)
logS(t)

)
, (29)

where we have used (23) to replace I(ts) + S(ts).

PROPOSITION 2. For any fixed t > 0, S = S(t; ts) is differentiable with respect to the lockdown initiation time ts;
call this derivative the sensitivity of S with respect to ts at time t. Furthermore, we have the following formulas for the
sensitivities of S at times ts and ts + T :

∂S

∂ts
(ts; ts) = −βS(ts)I(ts), (30)

∂S

∂ts
(ts + T ; ts) = −βS(ts + T )I(ts + T )

(
1 + ν(1− p)I(ts)

∫ ts+T

ts

dt

I(t)

)
. (31)

Proof of Proposition 2. Differentiability is clear. In the following, we suppress the dependence of S on the parameter ts
for notational ease. To see (30), we utilize (27), which we write in the form

dS

dt
(t) = −βS(t)h1(S(t)),

with h1(S) := −S+ 1
R0(β)

logS+ I0+S0− 1
R0(β)

logS0. Note by the argument preceding the proposition we have that
h1(S(t)) = I(S(t)) (see (27)). Since the above is autonomous and one-dimensional, it is separable, and hence we have
the relation ∫ S(ts)

S0

dS

Sh1(S)
= −βts.

Differentiating with respect to ts yields the equation

1

S(ts)h1(S(ts))

∂S

∂ts
(ts) = −β.

Thus,

∂S

∂ts
(ts) = −βS(ts)h1(S(ts)).

As mentioned previously, h1(S(ts)) = I(ts), which yields (30).

We perform the same calculation to obtain (31). That is, write

dS

dt
(t) = −pβS(t)h2(S(t), ts), (32)

11
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on [ts, ts + T ], with

h2(S, ts) = I0 + S0 −
1

R0(β)
logS0 −

1

R0(β)

1− p
p

logS(ts)− S +
1

pR0(β)
logS.

Note that in this case, h2 has an additional ts dependence via the S(ts) term. Separating and integrating (32) yields the
relation ∫ S(ts+T )

S(ts)

dS

Sh2(S, ts)
= −pβT.

Differentiating the above (using the Leibniz rule, since ts appears in both the bounds and the integrand), we obtain

1

S(ts + T )h2(S(ts + T ), ts)
· ∂S
∂ts

(ts + T )− 1

S(ts)h2(S(ts), ts)
· ∂S
∂ts

(ts)

+

∫ S(ts+T )

S(ts)

1

S

∂

∂ts

(
1

h2(S, ts)

)
dS = 0.

(33)

The integral term can simplified as follows:

∂

∂ts

(
1

h2(S, ts)

)
= − 1

(h2(S, ts))2
∂h2
∂ts

(S, ts)

=
1

(h2(S, ts))2
· 1

R0(β)
· 1− p

p
· 1

S(ts)
· ∂S
∂ts

(ts)

Hence ∫ S(ts+T )

S(ts)

1

S

∂

∂ts

(
1

h2(S, ts)

)
dS =

1

R0(β)
· 1− p

p
· 1

S(ts)
· ∂S
∂ts

(ts)

∫ S(ts+T )

S(ts)

dS

S(h2(S, ts))2
.

Recalling that h2(S, ts) = I on [ts, ts + T ] and changing variables on the integral (S = S(t), as in the first line of (13)),
we obtain ∫ S(ts+T )

S(ts)

dS

S(h2(S, ts))2
= −pβ

∫ ts+T

ts

dt

I(t)
.

Thus the third term on the left-hand side of (33) becomes∫ S(ts+T )

S(ts)

1

S

∂

∂ts

(
1

h2(S, ts)

)
dS = (−pβ) 1

R0(β)
· 1− p

p
· 1

S(ts)
· ∂S
∂ts

(ts)

∫ ts+T

ts

dt

I(t)

= −ν(1− p) 1

S(ts)
· ∂S
∂ts

(ts)

∫ ts+T

ts

dt

I(t)

= βν(1− p)I(ts)
∫ ts+T

ts

dt

I(t)
,

where in the final equality we used (30). We can now solve (33) for (∂S/∂ts)(ts + T ), again using (30) and the fact that
h2(S(ts + T, ts) = I(ts + T ), h2(S(ts), ts) = I(ts) to obtain

∂S

∂ts
(ts + T ) = −βS(ts + T )I(ts + T )− S(ts + T )I(ts + T )βν(1− p)I(ts)

∫ ts+T

ts

dt

I(t)
,

which is precisely (31).

Proof of Theorem 1. We have already seen that I must have two relative maxima for Imax to be minimized, and we have
also seen that these maxima are given by I(ts) and Ip(ts). Thus, all that remains to show is that the minimizing ts
of (5) must occur when I(ts) = Ip(ts). Note that it will be sufficient to show that I(ts) increases as a function of ts
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(again, assuming (8)), and that Ip(ts) decreases as a function of ts, and that they have a (thus necessarily unique) point of
intersection. Note that the latter is clear, assuming I0 is small, since I(ts) → I0 and Ip(ts) → V0 as ts → 0. Hence all
that remains is to show the monotonicity properties of I(ts) and Ip(ts).

Note that is intuitively clear that I(ts), the value of the first relative maxima of I , increases as a function of ts, since
(dI/dt)−(ts) > 0 by (10), so increasing ts increases I(ts). More rigorously, via the conserved quantity H (see equa-
tion (18)), we have that

H(S(ts), I(ts)) = H(S0, I0)

I(ts) + S(ts)−
1

R0(β)
log(S(ts)) = I0 + S0 −

1

R0(β)
log(S0)

I(ts) = I0 + S0 −
1

R0(β)
log(S0)− S(ts) +

1

R0(β)
log(S(ts))

(34)

Taking a derivative with respect to ts of the latter equality yields

∂I

∂ts
(ts) =

(
1

R0(β)S(ts)
− 1

)
∂S

∂ts
(ts) (35)

Since R0(β)S(ts) > 1 (this is again (10), which is a consequence of I possessing a local maximum at ts), it is sufficient
to show that S(ts) decreases as a function of ts at t = ts. But this is clear from (30) of Proposition 2.

To prove that Ip(ts) decreases as a function of ts, note that by (11), it is sufficient to prove that S(ts)/S(ts+T ) is increas-
ing as a function of ts, or equivalently that S(ts + T )/S(ts) is decreasing as a function of ts. Since S is differentiable
with respect to ts for all fixed t, it is sufficient to analyze the sign of the derivative of S(ts + T )/S(ts). By elementary
calculus, we have that

∂

∂ts

(
S(ts + T )

S(ts)

)
=
S(ts)

∂S
∂ts

(ts + T )− S(ts + T ) ∂S∂ts (ts)

(S(ts))2

We can now use formulas (30) and (31) in Proposition 2 to compute the numerator:

S(ts)
∂S

∂ts
(ts + T )−S(ts + T )

∂S

∂ts
(ts) = −βS(ts)S(ts + T )I(ts + T )

(
1 + ν(1− p)I(ts)

∫ ts+T

ts

dt

I(t)

)
+ βS(ts + T )S(ts)I(ts)

= βS(ts)S(ts + T )I(ts)I(ts + T )

(
1

I(ts + T )
− 1

I(ts)
− ν(1− p)

∫ ts+T

ts

dt

I(t)

)
To complete the proof, we thus need to show that the parenthetical term on the right-hand side of the above is negative.
Equivalently, we need to show that ∫ ts+T

ts

(
ν(1− p)
I(t)

− d

dt

(
1

I(t)

))
dt > 0. (36)

On (ts, ts + T ), we have that (since İ = pβSI − νI)

ν(1− p)
I(t)

− d

dt

(
1

I(t)

)
=
ν(1− p)
I(t)

+
İ(t)

I(t)2

=
1

I(t)

(
ν(1− p) + pβS(t)I(t)− νI(t)

I(t)

)
=

pν

I(t)
(R0(β)S(t)− 1).

As S is non-increasing, we have that S(t) ≥ S(ts + T ) for all t ∈ (ts, ts + T ). This together with assumption (9) imply
that

R0(β)S(t) > 1

for all t ∈ (ts, ts + T ). Hence the integrand in (36) is positive, which is sufficient to complete the proof.
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