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Supplementary Tables description

Supplementary Table 1. Description of the cohort. MS, Multiple Sclerosis, NNC, non-neurological

disease controls, F, female, M, male, NAWM, normal-appearing white matter, WM, white matter.

Supplementary Table 2. DNA methylation changes in glial cells of Multiple Sclerosis (MS) patients
compared to non-neurological disease control (NNC) (P.gj < 0.05). Gene expression (RNA-sequencing)
data in MS vs. controls bulk brain tissue (Huynh et al., 2014) or in single cells (Schirmer et al., 2019,

Jakel & Agrirre et al., 2018) are indicated for each identified gene.

Supplementary Table 3. Differentially methylated regions (DMR) in glial cells of Multiple Sclerosis (MS)

patients compared to non-neurological disease control (NNC).

Supplementary Table 4. Gene ontology (GO) analyses. Each sheet lists data from GO analyses
performed on all DMPs (P.g < 0.05), microglia-, oligodendrocyte-, astrocyte-annotated DMPs (P.q4j <

0.05) as well as GenesetCluster and Reactome analyses.

Supplementary Table 5. DMP-genes annotated according to constitutive expression in astrocytes,
microglia and oligodendrocytes. Gene expression data from the healthy brain (Darmanis et al., 2015;

Zhang et al., 2016). nd, not definable, na, not available.
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Fraction #1 Fraction #2 Fraction #3

Fraction %

Mean NNC  SD NNC Mean MS SDMS Pvalue

Fraction #1 0.61 0.24 0.37 0.28 0.0102
Fraction #2 0.11 0.11 0.39 0.29 0.0020
Fraction #3 0.27 0.24 0.24 0.24 0.6552

Supplementary Figure 1. Deconvolution.

a. Deviance plotting from RefFreeEwas shows the accuracy of the model with the minimal amount of
deviance around three different fractions using both more repeats (left) and more iterations (right) of
the model. b. Plot and Table containing the mean and standard deviation (SD) of each fraction per MS

and NNC samples with the independent samples T-test P-value.
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Description Glia Neurons
Probes Chr. Position gene feature cgi P.val adj.P.Val Mean.MS Mean.NNC AB Mean.MS Mean.NNC  AB
cg02282631 5 42953543 IGR shore 1.1E-05 1.6E-02  0.209 0.188 0.079 0.117 0.145 -0.028
cg03839074 5 43000303 IGR shore 5.5E-05 3.9E-02 0.345 0.331 0.077 0.160 0.199 -0.040
cg04831505 12 72233240 TBC1D15 TSS1500 shore 1.3E-06 4.3E-03 0471 0.373 0.116 0.413 0.325 0.088
cg05241461 19 22816980  ZNF492 TSS200  shore 8.6E-05  4.9e-02 0.038 0.064 -0.029 0.053 0.074 -0.022
cg13264183 3 126194992 ZXDC TSS1500 island 5.9E-06 1.1E-02 0.304 0.232 0.093 0.213 0.151 0.061
cg16206678 6 30122152 TRIM10 Body opensea 2.1E-05 2.36-02  0.703 0.762 -0.090 0.771 0.804 -0.033
€g22992730 19 4784940 IGR shore 3.86-05 3.3E-02 0.570 0.760 -0.184 0.062 0.090 -0.027

Description Glia Bulk tissue
Probes Chr. Position gene feature cgi P.Value adj.P.Val Mean.MS Mean.NNC AB Mean.MS Mean.NNC aAB
¢g05930207 17 38518520 GID3 1stExon  shore 5.6E-06 1.1E-02 0.760 0.714 0.060 0.683 0.684 -0.001
cg17383186 1 154127629 NUP210L TSS200  opensea 5.9E-06 1.1E-02 0.289 0.278 0.056 0.290 0.272 0.018
cg05245094 16 85669572 KIAA0182 S'UTR shore 6.0E-05 4.1E-02 0.836 0.805 0.044 0.784 0.776 0.008

Supplementary Figure 2. Overlap of DMPs with bulk brain tissue and neuron analyses.

a. Dot plot correlating the effect size of differentially methylated CpGs overlapping between glial cell
and bulk brain (green) or neuron (blue) b. List of all overlapping DMPs between glial cell and bulk brain
(green) or neuron (blue). Comparison was performed on CpGs identified in DMR and DMP analyses in
bulk tissue and neurons (BS-DMP, cohort 2), respectively, from published studies (Huynh et al. 2014
and Kular et al. 2019).
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Supplementary Figure 3. GO analysis of DMPs according to their genomic location.

a. Venn diagram illustrating the overlap between DMPs in different genomic segments, with barplots
representing enrichment of GO terms (using overrepresentation analysis) in each genomic feature. b.
GO analysis of hypomethylated (blue) and hypermethylated (red) DMPs located in gene bodies (filled
bars) or in promoters (TSS1500+TSS200, unfilled bars). Enrichment is represented with -log10 (P-value)
using overrepresentation analysis. Of note, since fewer DMP-genes were analyzed in some genomic
features, results should be taken with caution and the number depicted next to GO terms indicate the

number of genes included in each enriched category.
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Supplementary Figure 4. Annotation of the DMP-genes according to their cellular origin.

a. Heatmap illustrating the hierarchical clustering of DMP-gene (P ad < 0.05 in publically available

dataset from normal human post-mortem brain transcriptomic analyses (Darmanis et al., 2015; Zhang

et al., 2016). Color gradient depicts z score-transformed expression values. b. Venn diagram illustrating



the overlap of cell type-annotated genes between the two datasets. c. Venn diagram illustrating the
overlap between astrocyte-, microglia- and oligodendrocyte-annotated (union of genes from the two
dataset-specific analyses). d-f. Annotation of DMPs genes (P.qj < 0.05) according to cell type-specific
expression in astrocytes (d), oligodendrocytes (e) and microglia (f) in the healthy brain (Darmanis et
al., 2015, Zhang et al., 2016) using STRING network analysis. Genes reported dysregulated in single-
cell transcriptomics from MS vs. NNC brain are highlighted (circled node, bold font). Grey gradient
indicated the strength of data support (darker grey representing stronger evidence, dotted line
showing lower level of evidence). Colors gradient represent different clusters (kmeans clustering set
at 5 clusters). g. Association of DNA methylation changes expressed by microglial cells, astrocytes and
oligodendrocytes with gene expression data (RNA-seq) in bulk NAWM vs. control WM (Huynh et al.,
2014). In each panel, the gradient of colors indicates the degree of significance of the differentially
expressed genes (dark color reflecting P < 0.05, moderate-dark color P < 0.1, light color non-significant)

in a given cell type while grey colors represent the other genes not annotated for this given cell type.
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Supplementary Figure 5. GO analysis of cell type-annotated DMPs according to their genomic location.

a-b. Venn diagram illustrating the overlap between DMPs located in gene body (a) and promoter (b)
annotated as astrocytic (green), microglial (purple) and oligodendrocytic (orange) genes. c-d.
Enrichment of GO terms from DMPs located in gene body (c) or promoter (d). Enrichment is
represented with -logl0 (P-value) using overrepresentation analysis. The number depicted next to GO

terms indicate the number of genes included in each enriched category.
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Supplementary Figure 6. Pathway (Reactome) analysis of cell type-annotated DMP-genes.

a. Shared and unique pathways enriched in glial cells. Enrichment is represented with -log10 (P-value)
from Reactome analysis. b-c. Schematic illustration of the enriched pathways involved in signal
transduction (R-HSA-162582) (b), Wnt signaling (R-HSA-195721) (c), gene expression (R-HSA-74160)
(d), neuronal system (R-HSA-112316) (e) and ECM organization (R-HSA-1474290) (f).
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