Supplementary information

Model inputs

The key cost-of-illness model inputs are detailed in Table S1.

Table S1. Key cost-of-illness model inputs

ParameterValue (units)		Assumptions*
AS prevalence		
AS population prevalence, lower scenario	0.001 (percentage of the population, %) ¹	A1
AS population prevalence, upper scenario	0.01 (percentage of the population, %) ²	A1
Disabled population age and sex distribution	Age and sex dependent ³	A2
AS population life expectancy	70.00 (years of age) ^{4,5}	A3
Parental prevalence		
Average parental age at child's birth	Age and sex dependent ⁶	A4-A8, A19
PALYs lost		
Average paternal workforce participation	97.27 (percentage of fathers, %) ⁷	A10-A12, A15
Average maternal workforce participation	47.42 (percentage of mothers, %) 7	A10-A12, A15
Attributable absenteeism	7.15 (hours per week) ⁸	A14, A15
Attributable presenteeism	58.00 (percentage of total working time, %) ⁸	A14, A15
Average workforce participation rate	Age and sex dependent (percentage of the population, $\%$) ⁹	A16
Cost to society		

Parameter	Value (units)	Assumptions*
Gross domestic product (GDP) per hour worked per person	100.00 (Australian dollars, AUD\$) ¹⁰	A17, A18
Proportion full-time equivalent (FTE) Age and sex dependent (percentage of the population, %) ⁹		
Background		
General population, total	25,365,745.00 (number of people) ¹¹	-
General population, mortality rate	Age and sex dependent (percentage of the population, $\%$) ¹²	A9
Annual discount rate	5.00 (percentage per annum, %) ¹³	A19

*Refer to Supplementary Table S4 for more detail.

Parental productivity index

The parental productivity index cost-of-illness model inputs are detailed in Table S2.

Table S2. Parental productivity cost-of-illness model inputs

Parameter	Fathers	Mothers
Average workforce participation	97.27%	47.42%
AS attributable absenteeism	19.07%	19.07%
AS attributable presenteeism	58.00%	58.00%
Productivity index	0.33	0.16

Control productivity index

The control productivity index cost-of-illness model inputs are detailed in Table S3.

Table S3. Control productivity index cost-of-illness model inputs

Age group	Average workforce participation	AS attributable absenteeism	AS attributable presenteeism	Productivity index
Males				
20–24	53.59%	0.00%	0.00%	0.54
25–29	68.17%	0.00%	0.00%	0.68
30–34	69.94%	0.00%	0.00%	0.70
35–39	64.58%	0.00%	0.00%	0.65
40–44	72.06%	0.00%	0.00%	0.72
45–49	56.93%	0.00%	0.00%	0.57
50–54	62.61%	0.00%	0.00%	0.63
55–59	50.30%	0.00%	0.00%	0.50
60–64	37.51%	0.00%	0.00%	0.38
65–69	21.53%	0.00%	0.00%	0.22
Females				
20–24	45.67%	0.00%	0.00%	0.46
25–29	56.56%	0.00%	0.00%	0.57
30–34	55.96%	0.00%	0.00%	0.56
35–39	48.33%	0.00%	0.00%	0.48

Age group	Average workforce participation	AS attributable absenteeism	AS attributable presenteeism	Productivity index
40-44	54.02%	0.00%	0.00%	0.54
45–49	50.24%	0.00%	0.00%	0.50
50–54	54.66%	0.00%	0.00%	0.55
55–59	44.60%	0.00%	0.00%	0.45
60–64	31.16%	0.00%	0.00%	0.31
65–69	15.09%	0.00%	0.00%	0.15

Assumptions

The assumptions underlying the cost-of-illness modelling approach are detailed in Table S4.

Table S4. Assumptions underlying the cost-of-illness modelling approach

ID Assumption

A1	The prevalence of AS falls within the range of 1 in 10,000 to 1 in 86,250 ^{1,2}
A2	The age and sex distribution of AS prevalence followed the same distribution as that of the disabled population and the prevalence of AS within each age group was equally distributed
A3	The average life expectancy of persons with AS was 70 years ^{4,5}
A4	Each person with AS had one biological mother and one biological father who experienced productivity impacts attributable to AS
A5	The parents of persons with AS had the same average age as all Australians when their child was born
A6	The impact of average maternal and paternal ages not stated were negligible, and ages falling within the 0 to 15 years range could be taken as 15 years of age, and ages falling within the 49 (maternal) or 59 (paternal) years and over range could be taken as 49 or 59 years of age, respectively
A7	The compound annual growth rate observed in average maternal and paternal age could be applied retrospectively to estimate the average maternal and paternal age for years where data is not available (i.e. from 1919 to 1974)
A8	The mortality rate of persons with AS had a negligible impact on the AS attributable productivity impacts experienced by parents
A9	The mortality rate of the parents of persons with AS was the same as that of the general population, meaning there was no parental mortality attributable to having a child with AS; therefore, the parental and control life years lived were the same
A10	The average workforce participation reported by the small sample size of parents of persons who participated in the natural history study of chromosome 15 imprinting disorders ⁷ was reflective of the average workforce participation of the parents of persons with AS across all age groups included in the analysis
A11	The impact of the following data cleaning decisions on the parental productivity index estimated was negligible: blank responses were not included, siblings were not removed, data reported for partners was taken as the other biological parent, parental age was estimated by summing the age of the child at collection with the time since collection to the mid-point of the initial cycle year (i.e. 1 July 2019)
A12	The parents of persons with AS who worked part-time had the same average FTE rate as the part-time general population

ID Assumption

A13	There were 52 paid weeks in a year, 48 working weeks in a year, 5 working days in a week and 7.5 working hours in a day
A14	The level of parental absenteeism and presenteeism attributable to Dravet syndrome was a reasonable approximation of the parental absenteeism and presenteeism attributable to AS.is
A15	The productivity index estimated for the parents of persons with AS was a reasonable approximation of the average productivity index across all age groups included in the analysis
A16	Employment statistics for the age group 65 and over were mostly attributable to persons falling within the 65 to 69 age group
A17	The hourly contributions to GDP made by parents who worked were the same as the average for all working Australians
A18	The impact of other mechanisms by which parents contributed to the economy, such as through greater purchasing of healthcare goods and services, were negligible
A19	Productivity adjusted life years (PALYs) and GDP contributions could be discounted at 5% per annum

Epidemiology

Supplementary notes

Estimates of Angelman syndrome (AS) prevalence published to date range greatly from 1 in 10,000 to 1 in 86,250.^{1,2} While estimates of AS incidence range from 1:22,305 to 1:40,000.^{14,15} The available prevalence and incidence estimates of AS in the peer-reviewed literature are detailed in Table S5.

In Denmark, an evaluation of patients referred to a university hospital identified 5 patients with AS over 5 years, corresponding to a prevalence of 1:10,000.² By contrast, a retrospective registry review in Denmark identified 80 patients with AS out of the 6.9 million patients in the Danish National Patient Registry (DNPR) from 1994-2015, corresponding to a prevalence of 1:86,250.¹ The other available estimates of AS population prevalence fall within this range, with a prospective focused search in Estonia having identified 6 live individuals with AS from 2000-2004, corresponding to a prevalence of 1:56,112.¹⁶ A Saudi Arabian prospective screening study identified 1 child with AS out of 45,682 children screened from 2004-2005, corresponding to a prevalence of 1:50,000.¹⁷

In Australia, a retrospective record review identified 34 patients with AS, with 26 having been born in Western Australia during the 50 years that Disability Services Commission (DSC) records were kept, corresponding to a live birth incidence of 1:40,000 among a birth population of 1.05 million.¹⁵ The other available estimates of AS incidence are lower than that reported by Thomson et al (2006), with a retrospective record review in China having identified 55 patients with AS from 1995-2015, corresponding to a birth incidence of 1:22,305 among a live birth population of 1,226,780.¹⁴ Similarly, in Denmark, a retrospective registry review identified 51 patients with AS from 1991-2009, corresponding to a birth incidence of 1:24,580 among a birth population of 1,250,000.¹⁸

Table S5. Prevalence and incidence estimates of AS available in the peer-reviewed literature

First author	Year	Country	Study design	Key findings	Prevalence estimate	Incidence estimate
Jørgensen ¹	2019	Denmark	Retrospective registry review	80 patients with AS were identified out of the 6.90 million patients in the Danish National Patient Registry (DNPR) from 1994–2015.	1:86,250	-
Oiglane- Shlik ¹⁶	2006	Estonia	Prospective focused search	7 individuals with AS were identified from 2000-2004; however, 1 individual died during the study period, corresponding to a live birth prevalence from 1984-2004 of 1:52,181 (95% CI 1:25,326-1:1,29,785) and a point prevalence of 1:56,112 (95% CI 1:25,780-1:1,52,899).	1:52,181 (birth prevalence) 1:56,112 (point prevalence)	-
Al Salloum ¹⁷	2015	Saudi Arabia	Prospective screening study	1 child (male) with AS was identified out of 45,682 children screened from 2004-2005, corresponding to a prevalence rate of 0.22 per 10,000 children.	1:50,000	-
Petersen ²	1995	Denmark	Evaluation of patients referred to a university hospital	5 patients with AS were identified over 5 years, corresponding to a prevalence rate of 1:10,000.	1:10,000	-
Luk ¹⁴	2016	China	Retrospective record review	55 patients with AS were identified from 1995-2015, corresponding to a birth incidence of 1:22,305 among a live birth population of 1,226,780.	-	1:22,305
Mertz ¹⁸	2013	Denmark	Retrospective registry review	51 patients with AS were identified from 1991-2009, corresponding to a birth incidence of 1:24,580 (95% CI: 1:23,727-1:25,433) among a birth population of 1,250,000.	-	1:24,580
Thomson ¹⁵	2006	Australia	Retrospective record review	34 patients (19 females and 15 males) with AS were identified, with 26 having been born in Western Australia during the 50 years that Disability Services Commission (DSC) records were kept, corresponding to a live birth incidence of 1:40,000 among a birth population of 1.05 million.	-	1:40,000

First author	Year	Country	Study design	Key findings	Prevalence estimate	Incidence estimate
Tones ¹⁹	2018	Global	Cross-sectional registry review	Almost 470 individuals with AS had been signed up to the Global Angelman Syndrome Registry since it was launched in September 2016. 14.00% (65.8) of these individuals were from Australia.	-	-
Davies ²⁰	2007	UK	Evaluation of patients referred to sequencing with suspected AS	11 of the 298 patients (3.69%) referred with AS or phenotypic characteristics indicative of AS were deleted at the D15S10 locus.	-	-
Vercesi ²¹	1999	Brazil	Evaluation of individuals with ID in a special school	0 of the 256 boys with intellectual disability (ID) were diagnosed with AS.	-	-
Buckley ²²	1998	US	Evaluation of individuals with ID in long-term residential care	11 (9 female and 2 male) of the 225 residents examined were diagnosed with AS, corresponding to an incidence rate of 4.89 per 100.	-	-
Hou ²³	1998	Taiwan	Evaluation of individuals with ID in special schools and institutions	56 of the 11,892 patients with ID were diagnosed with AS from 1991-1996.	-	-
Jacobsen ²⁴	1998	US	Evaluation of individuals with ID in institutions	4 of the 285 participants (1.40%) with ID were diagnosed with AS.	-	-
Sandanam ²⁵	1997	Australia	Evaluation of individuals with ID in institutions	11 (9 male and 2 female) of 22 patients tested were diagnosed with AS.	-	-
Steffenburg ²⁶	1996	Sweden	Evaluation of prepubertal school- aged children	4 of the 49,000 prepubertal school-aged children (6 to 3 years of age) evaluated were diagnosed with AS. 4 of the 98 children with 'mental retardation with epilepsy (MR/ERP)' were diagnosed with AS.	-	-

Detailed results

 Table S6. The productivity burden borne by the parents (fathers and mothers, combined) of persons AS in Australia over a 10-year

 period

Age group	Parental PALYs lived	Control PALYs lived	Parental PALYs lost	Proportion of PALYs lost	Cost to society
Upper prevalen	ce scenario				
20–24	-	-	-	-	\$0.00
25–29	-	-	-	-	\$0.00
30–34	25.07	69.82	44.75	64%	\$5,030,142.57
35–39	129.41	315.63	186.21	59%	\$17,877,160.95
40–44	263.98	698.24	434.27	62%	\$44,890,611.83
45–49	347.13	756.35	409.22	54%	\$35,222,577.21
50–54	368.16	873.49	505.33	58%	\$47,491,399.83
55–59	366.63	711.26	344.62	48%	\$25,957,054.94
60–64	372.08	522.93	150.85	29%	\$7,940,803.66
65–69	383.46	288.43	(95.03)	-33%	-\$3,212,776.45
All ages	2,255.93	4,236.15	1,980.22	38% (weighted average)	\$181,196,974.54
Lower prevaler	ice scenario				
20–24	-	-	-	-	\$0.00
25–29	-	-	-	-	\$0.00
30–34	2.91	8.10	5.19	64%	\$583,204.94

Age group	Parental PALYs lived	Control PALYs lived	Parental PALYs lost	Proportion of PALYs lost	Cost to society
35–39	15.00	36.59	21.59	59%	\$2,072,714.31
40–44	30.61	80.96	50.35	62%	\$5,204,708.62
45–49	40.25	87.69	47.45	54%	\$4,083,777.07
50–54	42.69	101.27	58.59	58%	\$5,506,249.26
55–59	42.51	82.46	39.96	48%	\$3,009,513.62
60–64	43.14	60.63	17.49	29%	\$920,672.89
65–69	44.46	33.44	(11.02)	-33%	-\$372,495.82
All ages	261.56	491.15	229.59	38% (weighted average)	\$21,008,344.87

Note: A negative productivity loss was estimated for the 65-to-69-year age group due to the lack of age specific parental productivity indices,

resulting in the parental population accruing greater PALYs in this age group than the control population.

Age group	Parental PALYs lived	Control PALYs lived	Parental PALYs lost	Proportion of PALYs lost	Cost to society
Upper prevalen	ce scenario				
20–24	-	-	-	-	\$0.00
25–29	-	-	-	-	\$0.00
30–34	12.69	26.85	14.16	53%	\$1,843,244.83
35–39	69.29	135.34	66.06	49%	\$7,595,519.50
40–44	159.03	346.59	187.56	54%	\$22,923,739.88
45–49	233.41	401.90	168.49	42%	\$15,803,646.86
50-54	250.41	474.20	223.78	47%	\$22,473,126.28
55–59	243.40	370.27	126.87	34%	\$10,286,907.33
60–64	245.86	278.93	33.07	12%	\$2,004,133.62
65–69	247.74	161.36	(86.38)	-54%	-\$3,000,476.28
All ages	1,461.85	2,195.45	733.60	53% (weighted average)	\$79,929,842.02
Lower nrevalen	ce scenario			(Weighted average)	
					¢0.00
20–24	-	-	-	-	\$0.00
25–29	-	-	-	-	\$0.00
30–34	1.47	3.11	1.64	53%	\$213,709.55
35–39	8.03	15.69	7.66	49%	\$880,639.94
40-44	18.44	40.18	21.75	54%	\$2,657,824.91
45–49	27.06	46.60	19.54	42%	\$1,832,306.88

Table S7. The productivity burden borne by the fathers of persons with AS in Australia over a 10-year period

Age group	Parental PALYs lived	Control PALYs lived	Parental PALYs lost	Proportion of PALYs lost	Cost to society	
50–54	29.03	54.98	25.95	47%	\$2,605,579.86	
55–59	28.22	42.93	14.71	34%	\$1,192,684.91	
60–64	28.51	32.34	3.83	12%	\$232,363.32	
65–69	28.72	18.71	(10.02)	-54%	-\$347,881.31	
All ages	169.49	254.54	85.06	53% (weighted average)	\$9,267,228.06	

Note: A negative productivity loss was estimated for the 65-to-69-year age group due to the lack of age specific parental productivity indices,

resulting in the parental population accruing greater PALYs in this age group than the control population.

Age group	Parental PALYs lived	Control PALYs lived	Parental PALYs lost	Proportion of PALYs lost	Cost to society
Upper prevalence	ce scenario				
20–24	-	-	-	-	\$0.00
25–29	-	-	-	-	\$0.00
30–34	12.38	42.97	30.59	71%	\$3,186,897.74
35–39	60.13	180.28	120.16	67%	\$10,281,641.45
40–44	104.94	351.65	246.71	70%	\$21,966,871.95
45–49	113.72	354.45	240.73	68%	\$19,418,930.35
50–54	117.75	399.30	281.55	71%	\$25,018,273.55
55–59	123.23	340.99	217.75	64%	\$15,670,147.61
60–64	126.22	244.00	117.78	48%	\$5,936,670.04
65–69	135.72	127.07	(8.65)	-7%	-\$212,300.17
All ages	794.08	2,040.70	1,246.62	25% (weighted average)	\$101,267,132.52
Lower prevalence	ce scenario				
20–24	-	-	-	-	\$0.00
25–29	-	-	-	-	\$0.00
30–34	1.44	4.98	3.55	71%	\$369,495.39
35–39	6.97	20.90	13.93	67%	\$1,192,074.37
40–44	12.17	40.77	28.60	70%	\$2,546,883.70
45–49	13.19	41.10	27.91	68%	\$2,251,470.19

Table S8. The productivity burden borne by the mothers of persons with AS in Australia over a 10-year period

Age group	Parental PALYs lived	Control PALYs lived	Parental PALYs lost	Proportion of PALYs lost	Cost to society	
50–54	13.65	46.30	32.64	71%	\$2,900,669.40	
55–59	14.29	39.53	25.25	64%	\$1,816,828.71	
60–64	14.63	28.29	13.66	48%	\$688,309.57	
65–69	15.74	14.73	(1.00)	-7%	-\$24,614.51	
All ages	92.07	236.60	144.54	25% (weighted average)	\$11,741,116.81	

Note: A negative productivity loss was estimated for the 65-to-69-year age group due to the lack of age specific parental productivity indices,

resulting in the parental population accruing greater PALYs in this age group than the control population.

Sensitivity analyses

Table S9. Sensitivity analyses

Age group	PALYs lost Cost to societ					
	Fathers	Mothers	Total	Fathers	Mothers	Total
Upper prevalence scenario						
Base case	733.60	1,246.62	1,980.22	\$79,929,842.02	\$101,267,132.52	\$181,196,974.54
Average parental workforce pa	articipation					
-20%	1025.97	1405.44	2431.41	\$103,797,549.00	\$112,062,491.81	\$215,860,040.81
+20%	441.23	1,087.80	1,529.04	\$56,062,135.05	\$90,471,773.22	\$146,533,908.27
AS attributable absenteeism						
-20%	664.72	1,209.21	1,873.93	\$74,306,972.01	\$98,723,909.49	\$173,030,881.50
+20%	802.48	1,284.03	2,086.52	\$85,552,712.04	\$103,810,355.55	\$189,363,067.58
AS attributable presenteeism						
-20%	329.85	1,027.30	1,357.16	\$46,969,675.25	\$86,359,255.39	\$133,328,930.65
+20%	1,137.35	1,465.94	2,603.29	\$112,890,008.80	\$116,175,009.64	\$229,065,018.44
Lower prevalence scenario						
Base case	85.06	144.54	229.59	\$9,267,228.06	\$11,741,116.81	\$21,008,344.87
Average parental workforce pa	articipation					
-20%	118.95	162.95	281.90	\$12,034,498.43	\$12,992,752.67	\$25,027,251.11
+20%	51.16	126.12	177.28	\$6,499,957.69	\$10,489,480.95	\$16,989,438.64

Age group	PALYs lost	s lost			Cost to society			
	Fathers	Mothers	Total	Fathers	Mothers	Total		
AS attributable absenteeism								
-20%	77.07	140.20	217.27	\$8,615,301.10	\$11,446,250.38	\$20,061,551.48		
+20%	93.04	148.87	241.91	\$9,919,155.02	\$12,035,983.25	\$21,955,138.27		
AS attributable presenteeism								
-20%	38.24	119.11	157.35	\$5,445,759.45	\$10,012,667.29	\$15,458,426.74		
+20%	131.87	169.96	301.83	\$13,088,696.67	\$13,469,566.34	\$26,558,263.01		

Table S10.	The magnitude	of change	observed	in the r	esults fo	llowing the	e sensitivitv	analyses

Age group	PALYs lost					
	Fathers	Mothers	Total	Fathers	Mothers	Total
Upper prevalence scenario						
Average parental workforce p	participation					
-20%	39.85%	12.74%	22.78%	29.86%	10.66%	19.13%
+20%	-39.85%	-12.74%	-22.78%	-29.86%	-10.66%	-19.13%
AS attributable absenteeism						
-20%	-9.39%	-3.00%	-5.37%	-7.03%	-2.51%	-4.51%
+20%	9.39%	3.00%	5.37%	7.03%	2.51%	4.51%
AS attributable presenteeism						
-20%	-55.04%	-17.59%	-31.46%	-41.24%	-14.72%	-26.42%
+20%	55.04%	17.59%	31.46%	41.24%	14.72%	26.42%
Lower prevalence scenario						
Average parental workforce p	participation					
-20%	39.85%	12.74%	22.78%	29.86%	10.66%	19.13%
+20%	-39.85%	-12.74%	-22.78%	-29.86%	-10.66%	-19.13%
AS attributable absenteeism						
-20%	-9.39%	-3.00%	-5.37%	-7.03%	-2.51%	-4.51%
+20%	9.39%	3.00%	5.37%	7.03%	2.51%	4.51%
AS attributable presenteeism						
-20%	-55.04%	-17.59%	-31.46%	-41.24%	-14.72%	-26.42%

Age group	PALYs lost			Co	Cost to society			
	Fathers	Mothers	Total	Fat	thers	Mothers	Total	
+20%	55.04%		17.59%	31.46%	41.24%	14.72%	26.42%	

References

- Jørgensen IF, Russo F, Jensen AB, et al. Comorbidity landscape of the Danish patient population affected by chromosome abnormalities. *Genet Med.* 2019;21(11):2485-2495. doi:10.1038/s41436-019-0519-9
- Petersen MB, Brøndum-Nielsen K, Hansen LK, Wulff K. Clinical, cytogenetic, and molecular diagnosis of Angelman syndrome: Estimated prevalence rate in a Danish county. *Am J Med Genet*. 1995;60(3):261-262. doi:10.1002/ajmg.1320600317
- Disability, Ageing and Carers, Australia: Summary of Findings, 2018 | Australian Bureau of Statistics. https://www.abs.gov.au/statistics/health/disability/disabilityageing-and-carers-australia-summary-findings/latest-release#data-download. Accessed March 13, 2021.
- 4. Coppus AMW. People with intellectual disability: What do we know about adulthood and life expectancy? *Dev Disabil Res Rev.* 2013;18(1):6-16. doi:10.1002/ddrr.1123
- Dagli A, Buiting K, Williams CA. Molecular and Clinical Aspects of Angelman Syndrome. *Mol Syndromol.* 2011;2(3-5):100-112. doi:10.1159/000328837
- Births, Australia, 2019 | Australian Bureau of Statistics. https://www.abs.gov.au/statistics/people/population/births-australia/latestrelease#data-download. Accessed March 20, 2021.
- Baker EK, Godler DE, Bui M, et al. Exploring autism symptoms in an Australian cohort of patients with Prader-Willi and Angelman syndromes. *J Neurodev Disord*. 2018;10(1):24. doi:10.1186/s11689-018-9242-0
- Campbell JD, Whittington MD, Kim CH, VanderVeen GR, Knupp KG, Gammaitoni
 A. Assessing the impact of caring for a child with Dravet syndrome: Results of a caregiver survey. *Epilepsy Behav.* 2018;80:152-156. doi:10.1016/j.yebeh.2018.01.003

- Characteristics of Employment, Australia, August 2020 | Australian Bureau of Statistics. https://www.abs.gov.au/statistics/labour/earnings-and-workhours/characteristics-employment-australia/latest-release. Accessed April 10, 2021.
- 10. Australian National Accounts: National Income, Expenditure and Product, December
 2020 | Australian Bureau of Statistics.
 https://www.abs.gov.au/statistics/economy/national-accounts/australian-nationalaccounts-national-income-expenditure-and-product/latest-release#data-download.
 Accessed May 15, 2021.
- 11. National, state and territory population, June 2020 | Australian Bureau of Statistics. https://www.abs.gov.au/statistics/people/population/national-state-and-territorypopulation/jun-2020#data-download. Accessed March 13, 2021.
- Deaths, Australia, 2019 | Australian Bureau of Statistics.
 https://www.abs.gov.au/statistics/people/population/deaths-australia/latest-release.
 Accessed March 27, 2021.
- Larg A, Moss JR. Cost-of-Illness Studies. *Pharmacoeconomics*. 2011;29(8):653-671. doi:10.2165/11588380-00000000-00000
- Luk HM, Lo IFM. Angelman syndrome in Hong Kong Chinese: A 20 years' experience. *Eur J Med Genet*. 2016;59(6-7):315-319. doi:10.1016/j.ejmg.2016.05.003
- Thomson AK, Glasson EJ, Bittles AH. A long-term population-based clinical and morbidity profile of Angelman syndrome in Western Australia: 1953–2003. *Disabil Rehabil*. 2006;28(5):299-305. doi:10.1080/09638280500190631
- Õiglane-Shlik E, Talvik T, Žordania R, et al. Prevalence of Angelman syndrome and Prader–Willi syndrome in Estonian children: Sister syndromes not equally represented. *Am J Med Genet Part A*. 2006;140A(18):1936-1943. doi:10.1002/ajmg.a.31423
- 17. Al Salloum A, El Mouzan MI, Al Herbish A, Al Omer A, Qurashi M. Prevalence of

selected congenital anomalies in Saudi children: a community-based study. *Ann Saudi Med.* 2015;35(2):107-110. doi:10.5144/0256-4947.2015.107

- Mertz LGB, Christensen R, Vogel I, et al. Angelman syndrome in Denmark. Birth incidence, genetic findings, and age at diagnosis. *Am J Med Genet Part A*. 2013;161(9):2197-2203. doi:10.1002/ajmg.a.36058
- Tones M, Cross M, Simons C, et al. Research protocol: The initiation, design and establishment of the Global Angelman Syndrome Registry. *J Intellect Disabil Res*. 2018;62(5):431-443. doi:10.1111/jir.12482
- Davies AF, Ogilvie CM. Prevalence of Angelman syndrome amongst referrals with epilepsy and developmental delay. *Am J Med Genet Part A*. 2007;143A(18):2189-2191. doi:10.1002/ajmg.a.31879
- Vercesi AML, Carvalho MRS, Aguiar MJB, Pena SDJ. Prevalence of Prader-Willi and Angelman syndromes among mentally retarded boys in Brazil [3]. *J Med Genet*. 1999;36(6):498. doi:10.1136/jmg.36.6.498
- Buckley RH, Dinno N, Weber P. Angelman syndrome: Are the estimates too low? *Am J Med Genet*. 1998;80(4):385-390. doi:10.1002/(SICI)1096-8628(19981204)80:4<385::AID-AJMG15>3.0.CO;2-9
- Hou J-W, Wang T-R, Chuang S-M. An epidemiological and aetiological study of children with intellectual disability in Taiwan. *J Intellect Disabil Res.* 1998;42(2):137-143. doi:10.1046/j.1365-2788.1998.00104.x
- Jacobsen J, King BH, Leventhal BL, Christian SL, Ledbetter DH, Cook EH. Molecular screening for proximal 15q abnormalities in a mentally retarded population. *J Med Genet.* 1998;35(7):534-538. doi:10.1136/jmg.35.7.534
- 25. Sandanam T, Beange H, Robson L, Woolnough H, Buchholz T, Smith A.Manifestations in institutionalised adults with Angelman syndrome due to deletion. *Am*

J Med Genet. 1997;70(4):415-420. doi:10.1002/(SICI)1096-8628(19970627)70:4<415::AID-AJMG16>3.0.CO;2-K

26. Steffenburg S, Gillberg CL, Steffenburg U, Kyllerman M. Autism in Angelman syndrome: a population-based study. *Pediatr Neurol.* 1996;14(2):131-136. doi:10.1016/0887-8994(96)00011-2