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Abstract

The moving epidemic method (MEM) and the WHO method are widely used to determine intensity
levels for seasonal influenza. The two approaches are conceptually similar, but differ in two aspects.
Firstly, the MEM involves a log transformation of incidence data, while the WHO method operates on
the original scale. Secondly, the MEM uses more than one observation from each past season to compute
intensity thresholds, fixing the total number to include. The WHO method uses only the highest value
from each season. To assess the impact of these choices on thresholds we perform simulation studies which
are based on re-sampling of ILI data from France, Spain, Switzerland and the US. When no transformation
is applied, a rather large proportion of season peaks are classified as high or very high intensity. This can
be mitigated by a logarithmic transformation. When fixing the total number of included past observations,
thresholds increase the more seasons are available. When only few are available, there is a high chance of
classifying new season peaks as high or very high intensity. We therefore suggest using one observation
per season and a log transformation, i.e. a hybrid of the default settings of the MEM and WHO methods.

1 Introduction

Following the 2009 influenza H1N1 pandemic, the need for a rapid assessment tool for influenza intensity
was recognized. The Review Committee on the Functioning of the International Health Regulations and
on Pandemic Influenza (H1N1) recommended that member states perform yearly updates and evalua-
tions of intensity thresholds (WHO, 2011, p.118). In the subsequent WHO Pandemic Influenza Severity
Assessment (PISA) guideline (WHO, 2017) the so-called WHO method (WHO, 2014) and the moving
epidemic method (MEM; Vega et al. 2013, 2015) were recommended to this end. The latter, which is
also employed by the European Centre for Disease Prevention and Control (e.g., ECDC 2017), has been
adopted by numerous national public health agencies (e.g., Dickson et al. 2020, Rakocevic et al. 2019,
Redondo-Bravo et al. 2020, Vos et al. 2019); see Supplement C for an overview of recent applications.
The statistical properties of the MEM and WHO methods, however, have not yet been studied in detail.
We here address this aspect via simulation experiments based on re-sampling of historical influenza data.
Our results indicate that it may be beneficial to use a hybrid of the default settings of these two methods.

2 Definition of the moving epidemic and WHO methods

We describe the computation of influenza/influenza-like illness (ILI) intensity thresholds, framing the
MEM and WHO methods as two special cases of the same general approach. We assume that thresholds
are based on weekly data (typically incidences) from m past seasons and applied to the (m+1)-th season.
Vega et al. (2015) recommend to use 5 ≤ m ≤ 10 seasons for the MEM to ensure a recent data basis.
Computation of thresholds then proceeds as follows:

1. Select the n largest observations from each of the m past seasons to construct a set of reference
observations.

2. Apply an (invertible) transformation to all selected observations.

3. Assume that the m × n transformed reference observations come from a normal distribution and
compute estimates ȳ, s of its mean and standard deviation.
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4. Define intensity thresholds on the transformed scale as quantiles of the normal distribution N(ȳ, s2).
A common choice for both methods is

� the 40th percentile ȳ − 0.25s as the threshold between low and medium intensity;

� the 90th percentile ȳ + 1.28s as the threshold between medium and high intensity;

� the 97.5th percentile ȳ + 1.96s as the threshold between high and very high intensity.

5. Transform thresholds back to the original scale (e.g. using the exponential function if a log trans-
formation was used).

The MEM and WHO methods are special cases of this procedure:

� In the WHO method, n = 1 observation per season is used and by default no transformation is
applied. If peak incidences vary strongly across seasons, a log transformation is recommended
(WHO, 2017).

� In the MEM method, the default transformation is the natural logarithm, while the number of
included observations per season is set to n = 30/m, rounded to the nearest integer. The total
number of historical observations is thus kept approximately fixed.

The rationale behind the percentile-based approach is that “about 50–60% of the season peaks should
be above the moderate threshold, ±10% above the high threshold and ±2.5% above the extraordinary
threshold” (WHO, 2017, p.10).

The implementation of the moving epidemic method in the R package mem (Lozano, 2020) permits the
user to choose n, m, and f (i.type.intensity = 5 for no transformation, i.type.intensity = 6 for
the log transformation). The term moving epidemic method could thus also be used as an umbrella term
for the general procedure described above. We here use it in a more narrow sense for the specification
from Vega et al. (2015), reflected in the default settings of the mem package.

In previous works (WHO 2014; Vega et al. 2015), the above thresholds have been described as upper
ends of one-sided confidence intervals for the arithmetic (WHO method) or geometric mean (MEM) of
the reference observations. This, however, is imprecise terminology as in the computations the standard
deviation s rather than the standard error s/

√
nm is used (see documentation of the mem package and

WHO 2014, p.69). We note that the use of actual confidence intervals is also possible in the mem package
(i.type.intensity = 1 for the geometric, i.type.intensity = 2 for the arithmetic mean). However,
thresholds for all levels will then converge to the arithmetic or geometric mean if sufficient historical data
are available. As illustrated in Supplement B, this is not a desirable behaviour.

3 Simulation study

3.1 Goal

We aim to assess how thresholds depend on the employed transformation, the number of observations n
used per season and the number m of seasons included. In particular, the following aspects are of interest:

� The application of a logarithmic transformation is expected to lead to higher thresholds for the
extreme categories and thus a lower proportion of seasons peaks classified as high or very high.

� In the MEM, the reference set also contains past observations which are not actually peak observa-
tions. This may introduce a downward bias in thresholds, especially if due to a small number m of
available seasons n is large.

The latter aspect is intuitive, but also supported by formal statistical considerations detailed in Supple-
ment A. These imply that thresholds are unbiased for n = 1 in the sense that, as intended, they will be
exceeded by around 60%/10%/2.5% of the season peaks in the long run (if some auxiliary assumptions
are fulfilled). When n > 1, thresholds will tend to be lower and exceeded more frequently.

3.2 Simulation setup

We compare four versions of the general approach described in Section 2:

(a) No transformation, n = 1. This corresponds to the WHO method.

(b) No transformation, n = 30/m.
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(c) Logarithmic transformation, n = 1.

(d) Logarithmic transformation, n = 30/m. This corresponds to the MEM approach.

In order to closely mimic the seasonal patterns of influenza, we re-sample historical surveillance data
rather than generating fully synthetic data. Assume M seasons of historical data on a measure of influenza
activity are available. We then repeat the following steps 500 times:

� Sample a sequence of 15 seasons from the M available seasons. This is done with equal probability
for each season and with replacement, meaning that the same season can appear more than once.
This approach is called the seasonal block bootstrap (Politis, 2001).

� For each value m = 5, . . . , 15:

– Restrict the generated sequence to the first m seasons.

– Apply approaches (a)–(d) to compute thresholds for medium (40th percentile), high (90th
percentile) and very high intensity (97.5th percentile).

– Compute which fraction of all M available historical season peaks would be classified as low,
moderate, high and very high.

The range m = 5, . . . , 15 is motivated by the range of values found in real-world applications, see overview
in Supplement C. All analyses were performed using the R language for statistical computing (R Core
Team, 2020) and the package mem (Lozano, 2020).

3.3 Data

We use publicly available influenza surveillance data from four countries. Data on the weekly incidence
of influenza-like illness in France, 1985–2019, were obtained from Réseau Sentinelles (INSERM/Sorbonne
Université, https://www.sentiweb.fr, Flahault et al. 2006). Data on weekly confirmed influenza cases in
Spain, 1998–2019, were extracted from graphs shown in the Informe Anual of the Sistema de la vigilancia
de gripe en España (https://vgripe.isciii.es/; Sistema de Vigilancia de Gripe en España 2019).
Weekly ILI counts from Switzerland, 2000–2016, collected by the Swiss Federal Office of Public Health
are available in the R package HIDDA.forecasting (Held and Meyer, 2019). Weekly weighted ILI (wILI)
data at the US national level from CDC FluView (Charbonneau and James, 2019), 1998–2017, were
obtained via the CDC FluSight influenza forecasting platform (https://github.com/FluSightNetwork/
cdc-flusight-ensemble/). These wILI values correspond to the fraction of general practitioner visits due
to influenza-like symptoms. All four time series are displayed in Figure 1, with the pandemic 2009/2010
season removed. We also show boxplots of the first through sixth largest observation per season. Not
surprisingly, values on average get smaller for increasing ranks. Interestingly, they also get less dispersed,
meaning that variability among e.g. the sixth largest observations per season is smaller than among the
peak values.

3.4 Results

Results from our simulation study are shown in Figures 2 (France, Spain) and 3 (Switzerland and US).
In the first and third column of each figure we also show an analytical approximation of the expected
thresholds, which agrees very well with the simulation results; see Supplement A for details. In all four
countries, using a log transformation leads to increased thresholds, in particular for the high and very high
levels. Especially in France and Spain, thresholds obtained without the log transformation are too low,
as can be seen from the large proportion of season peaks classified as very high (around 10% when using
n = 1). As expected, when letting the number of observations used per season depend on the number of
available seasons via n = 30/m, average thresholds increase in m. As a particularly striking example, the
average threshold for high intensity in France (when using a log transformation) increases from 834 for
m = 5, n = 6 to 1011 for m = 10, n = 3 and 1080 for m = 15, n = 2. For n = 1, in which case thresholds
can be interpreted as unbiased (Supplement A), the average is 1147. Including historical observations
which are not from actual peak weeks thus leads to a considerable lowering of alarm thresholds and will
increase the number of alerts for high and very high influenza activity. This is not surprising given the
pronounced differences between the distribution of season peak values and e.g. fifth largest observation
per season, see right column of Figure 1. In the US and France, on average one in three season peaks is
classified as high and one in seven as very high intensity when applying the MEM with log transformation
and m = 5, n = 6. This is rather far from the intended exceedance probabilities of 10% and 2.5%.
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Figure 1: Time series of influenza activity measures in four countries: Weekly ILI cases per 100,000 population
in France, 1985–2019; weekly number of confirmed influenza cases per 100,000 population in Spain, 1998–
2019; weekly ILI cases per 100,000 in Switzerland, 2000–2016; weekly wILI values in the United States,
1998–2017. Off-season weeks are omitted in the plot, with grey lines delimiting the different seasons. The
right column shows boxplots of the largest value per season, second largest etc.

When always using n = 1, the average thresholds and shares of the different categories are more well-
behaved also for small m. This holds especially when applying a log transformation, even though certain
mismatches with the nominal exceedance probabilities remain. Also, there is considerable variability in
the estimated thresholds (shaded areas in Figures 2 and 3). These difficulties, however, are inherent in
the problem of estimating a 90% or 97.5% quantile based on 5–10 observations.

4 Discussion

We provided a statistical assessment of implementation choices in a widely used framework for the com-
putation of influenza intensity thresholds. We found that applying a log transformation leads to better
behaved thresholds and closer to nominal exceedance rates. Concerning the question of how many ob-
servations per historical season should be included to compute thresholds, we found that the common
choice n = 30/m results in too low thresholds when few historical seasons are available. We therefore
recommend adopting n = 1 irrespective of the number of available historical seasons. This is possible in
the R package mem by setting i.n.max = 1 when the function memmodel is called.

We think that a simple and interpretable tool with a well-documented and open source software
implementation like mem is a valuable tool in practice. The use of a standard approach at the European
level will improve comparability of results, facilitating the evaluation and refinement of the tool. With
this work we hope to contribute a statistical perspective on this topic, complementing public health
practitioners’ experience from applied analyses.

Data and code

Materials to reproduce the presented results are available at https://github.com/jbracher/mem.
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Figure 2: Results of simulation study, France and Spain. First and third column: mean intensity thresholds
along with bands delimited by the empirical 5% and 95% quantiles. Analytical approximations of the mean
threshold values are marked as small black crosses. Second and fourth columns: resulting average shares of
season peaks classified as low, medium, high and very high intensity.
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Figure 3: Results of simulation study, Switzerland and United States. First and third column: mean intensity
thresholds along with bands delimited by the empirical 5% and 95% quantiles. Analytical approximations of
the mean threshold values are marked as small black crosses. Second and fourth columns: resulting average
shares of season peaks classified as low, medium, high and very high intensity.
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A Formal statistical analysis

A.1 Re-stating the definitions

We start by re-stating the definitions of the MEM and WHO method in a slighty more formal way and
introducing relevant notation. We assume again that thresholds are based on data from m past seasons and
applied to the (m+ 1)-th season. Thresholds for an intensity measure X are then obtained as follows.

1. Within each historical season j = 1, . . . ,m order all observations in decreasing order, denoting the i-th

largest observation from season j by x
(j)
i .

2. Select the n largest observations from each of the m past seasons to construct a reference set X =

{x(j)i : j = 1, . . . ,m; i = 1, . . . , n}.

3. Apply an (invertible) transformation y
(j)
i = f(x

(j)
i ) to all members of the reference set X to obtain a

reference set Y of transformed historical observations.

4. Assume that the transformed values in Y come from a normal distribution and compute estimates ȳ, s
of its mean and standard deviation.

5. Define intensity thresholds on the transformed scale as quantiles of the normal distribution N(ȳ, s2),
i.e. compute

qY,α = ȳ + zαs, (1)

where zα is the α quantile of the standard normal distribution. A common choice for both methods is

� the 40th percentile qY,0.4 = ȳ − 0.25s as the threshold between low and medium intensity;

� the 90th percentile qY,0.9 = ȳ + 1.28s as the threshold between medium and high intensity;

� the 97.5th percentile qY,0.975 = ȳ + 1.96s as the threshold between high and very high intensity.

6. Obtain thresholds on the original scale by applying the inverse transformation, i.e. setting q0.4 =
f−1(qY,0.4), q0.9 = f−1(qY,0.9), q0.975 = f−1(qY,0.975).
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The MEM and WHO methods are special cases of this procedure with the following specifications:

� In the WHO method, n = 1 observation per season is used irrespective of the number m of historical
seasons. The standard procedure is to apply no transformation, i.e. set f to the identity function.

� In the MEM method, the default choice for f is the natural logarithm, while the number of ob-
servations per season is set to n = 30/m. (The exact specification used in the R package mem is
n = max(1, b30/me), where b·e denotes rounding to the nearest integer.) The total number of historical
observations is thus kept approximately fixed.

A.2 Results

We assume that the different historical seasons are independent realizations of the same random process,
which is certainly not strictly true, but should hold in good approximation. Denote by Y(j) the random

vector of the n largest transformed incidences from season j in decreasing order, i.e. Y(j) = (Y
(j)
1 , . . . , Y

(j)
n )>

with Y
(j)
1 ≥ Y (j)

2 ≥ · · · ≥ Y (j)
n . The mean and covariance matrix of Y(j) are denoted by

E
(
Y(j)

)
= µ =

 µ1

...
µn

 and Cov
(
Y(j)

)
= Σ =

 σ1,1 · · · σ1,n
...

. . .
...

σn,1 · · · σn,n

 , (2)

respectively, where to make notation more intuitive we also write σ2
i = σi,i. It can then be shown that the

expectations of Ȳ and S2 when using m seasons and n observations from each season are given by

E(Ȳ ) =
1

n

n∑
i=1

µi, (3)

E(S2) =
m

mn− 1

n∑
i=1

(σ2
i + µ2

i ) −
1

n(mn− 1)

n∑
i=1

n∑
i′=1

σi,i′ −
m

n(mn− 1)

(
n∑
i=1

µi

)2

, (4)

respectively. The derivation is provided in the next subsection. For reasons detailed there, if the transfor-
mation function f is the identity or the natural logarithm,

E(qα) ≈ f−1
{
E(Ȳ ) + zα

√
E(S2)

}
(5)

usually holds in good approximation in our applied setting. It can be shown that for n = 1, we have

E(qα) ≈ f−1(µ1 + zασ1),

usually in good approximation. This is a desirable property. Loosely speaking, if in addition the Y
(j)
1 come

from a normal distribution, the nominal exceedance probabilities (60%/10%/2.5%) for the different thresholds
would in the long run be achieved. If a different value n > 1 is chosen, this will generally no longer be the case.
Equations (3)–(5) tell us by how much qα can be expected to differ from the intended value f−1(µ1 + zασ1).
By the definition of the µi (with µi the expectation of the i-th largest observation in a given season), E(Ȳ )
decreases in n. In most (possibly all) settings this also translates to the qα. As a consequence, when choosing
n > 1, one must expect to classify a larger number of season peaks as high or very high intensity. When
choosing n = 30/m as suggested for the MEM, thresholds will then tend to increase the more years of data
are used to compute thresholds.
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A.3 Derivation

We start by addressing the expectations of empirical mean Ȳ and variance S2 of the reference observations,
where

Ȳ =
1

mn

m∑
j=1

n∑
i=1

Y
(j)
i

S2 =
1

mn− 1

m∑
j=1

n∑
i=1

(
Y

(j)
i − Ȳ

)2
.

It is straightforward to see that

E(Ȳ ) =
1

n

n∑
i=1

µi. (6)

For the variance S2, we first note that it can be re-written as

S2 =
mn

mn− 1

 1

mn

m∑
j=1

n∑
i=1

(
Y

(j)
i − Ȳ

)2 (7)

=
mn

mn− 1


1

mn

m∑
j=1

n∑
i=1

Y
(j)2
i︸ ︷︷ ︸

denote this by a

−

 1

mn

m∑
j=1

n∑
i=1

Y
(j)
i

2

︸ ︷︷ ︸
denote this by b


(8)

We consider the two terms a and b separately, starting by

E(a) =
1

mn

m∑
j=1

n∑
i=1

E
(
Y

(j)2
i

)
=

1

mn

m∑
j=1

n∑
i=1

{
Var

(
Y

(j)
i

)
+ E

(
Y

(j)
i

)2}

=
m

mn

n∑
i=1

(σ2
i + µ2

i ).

Then we note that

E(b) = E


 1

mn

m∑
j=1

n∑
i=1

Y
(j)
i

2


= Var

 1

mn

m∑
j=1

n∑
i=1

Y
(j)
i

 + E

 1

mn

m∑
j=1

n∑
i=1

Y
(j)
i

2

=
1

(mn)2

m∑
j=1

Var

(
n∑
i=1

Y
(j)
i

)
+

(
m

mn

n∑
i=1

µi

)2

=
m

(mn)2

n∑
i=1

n∑
i′=1

σi,i′ +
m2

(mn)2

(
n∑
i=1

µi

)2

.

Plugging these results back into equation (8) we obtain

E(S2) =
m

mn− 1

n∑
i=1

(σ2
i + µ2

i ) − 1

n(mn− 1)

n∑
i=1

n∑
i′=1

σi,i′ − m

n(mn− 1)

(
n∑
i=1

µi

)2

. (9)
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It is straightforward to see that for n = 1 the expressions (3) and (9) simplify to

E(Ȳ ) = µ1 and E(S2) = σ2
1 ,

as given in equation (4).
There is no general way of computing the expectation E(S) from the respective standard deviation, but

unless the true distribution of S2 has strong excess curtosis,

E(S) ≈
√
E(S2) (10)

is a reasonable approximation. We can then plug equations (3) and (10) into the formulae for the thresholds
qY,α on the transformed scale and obtain

E(qY,α) ≈ E(Ȳ ) + zα
√
E(S2),

where zα is the α quantile of the standard normal distribution (with α ∈ {0.4, 0.9, 0.975}).
If f was set to the natural logarithm, the question remains how to obtain statements concerning thresholds

qα on the original scale. Approximation via a second-order Taylor expansion yields

E(qα) = E {exp(qY,α)} ≈ exp {E(qY,α)} ×
{

1 +
Var(qY,α)

2

}
. (11)

Empirically, after transformation to the log scale, the variance of the reference observations is low in our
applied setting. The resulting variances of qY,α are then quite small and do not play an important role in
equation (11). We can thus use the even simpler approximation

E(qα) ≈ exp {E(qY,α)} ≈ exp{E(Ȳ ) + zα
√

E(S2)}. (12)

As can be seen from Figures 2 and 3 from the main manuscript, this approximation works very well in praxis.
To compute the values indicated by the small black crosses, we just plugged the empirical mean vectors and
covariance matrices of the y(j) in the respective data sets into equations (3)–(5).

4

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 24, 2021. ; https://doi.org/10.1101/2021.06.22.21259305doi: medRxiv preprint 

https://doi.org/10.1101/2021.06.22.21259305
http://creativecommons.org/licenses/by-nc/4.0/


B Intensity thresholds based on confidence intervals

Previous works have referred to the thresholds discussed in our manuscript as upper ends of one-sided confi-
dence intervals associated with the arithmetic (WHO) or geometric mean (MEM) of the reference observations
(WHO 2014; Vega et al. 2015). This, however, is an imprecise use of terminology as the thresholds are com-
puted using the standard deviation s. Confidence intervals, on the other hand, would be computed using
the standard error s/

√
nm. A more precise term would thus be “prediction interval”, which implies that the

interval refers to one future realization rather than a theoretical mean.
These terminology questions aside, we note that the mem R package also offers threshold computation

based on actual confidence intervals (i.type.intensity = 1 for the geometric, i.type.intensity = 2 for
the arithmetic mean). On the transformed scale these are computed as

qY,α = ȳ + zα
s√
mn

. (13)

These thresholds show somewhat peculiar behaviour. We illustrate this by repeating the simulation study
the main manuscript for France with the respective settings. The result is shown in Figure S1.
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Figure S1: Simulation results for France as in Figure 2 of the main manuscript, but using confidence intervals
based on standard errors rather than prediction intervals based on standard deviations.

Here, two different mechanisms are at work. If one chooses n = 1 per season irrespective of the number
m of available seasons, the number of included observations mn increases in m. With growing m this leads
to confidence intervals which get narrower and a funnel-like pattern in the different thresholds (bottom row
of Figure S1). If one chooses n = 30/m, the number mn will remain constant (or approximately, as some
rounding is necessary). The funnel-like shape is thus not observed and an increasing pattern like in our
main analyses emerges instead. In both cases, there is an excessive number of seasons classified as very high
intensity. This reflects the fact that the extreme thresholds necessarily get smaller when using the standard
error rather than standard deviation in equation (13). We thus conclude that these variants of the moving
epidemic method are not advisable in practice.
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C An overview of recent applications

To get a better understanding of the different settings in which the MEM and WHO methods are applied in
practice we performed a literature search of articles published in English and citing the papers Vega et al.
(2015), WHO (2014) and WHO (2017) until December 2020 (identified via CrossRef and Google Scholar).
The results are summarized in Table S1.

Table S1: Applications of the MEM and WHO method to determine intensity thresholds for respiratory
diseases. We did not include works where only baseline thresholds are computed. The number of seasons
included to compute thresholds is denoted by m, the number of observations used per season by n. The
“Percentiles” column indicates which percentiles were used for the medium, high and very high thresholds,
with “?” indicating that no explicit information was found. Abbreviations: SARI = severe acute respiratory
infection; ILI = influenza-like illness; RSV = respiratory syncytial virus.

(a) Moving epidemic method

Region Disease Years covered m n Percentiles Authors

Australia ILI/influenza 2012–2017 5 6 40, 90, 99 Vette et al. (2018)
Australia, Chile, ILI/SARI 2013–2019 6 5 40, 90, 97.5 Sullivan et al. (2019)
New Zealand,
South Africa
Catalonia ILI 2010–2016 5 6 ? Basile et al. (2018)
Catalonia ILI 2005–2018 12 3 ? Basile et al. (2019)
Catalonia ILI/influenza 2010–2017 7 4 ? Torner et al. (2019)
Egypt SARI/ILI 2010–2017 6 5 40, 90, 97.5 AbdElGawad et al. (2020)
Egypt SARI 2013–2015 3 10 ? Elhakim et al. (2019)
England ILI 2010–2016 6 5 ? Wagner et al. (2018)
Finland influenza 2011–2016 5 6 ? Pesälä et al. (2019)
Montenegro ILI 2010–2018 7 4 40, 90, 97.5 Rakocevic et al. (2019)
Morocco ILI 2005–2017 11 3 40, 90, 97.5 Rguig et al. (2020)
Netherlands RSV 2005–2017 12 3 40, 90, 97.5 Vos et al. (2019)
Norway influenza 2006–2015 9 3 ? Benedetti et al. (2019)
Pakistan ILI, SARI 2008–2017 10 3 40, 90, 97.5 Nisar et al. (2020)
Portugal ILI 2012–2017 5 6 40, 90, 97.5 Páscoa et al. (2018)
Scotland influenza 2010–2018 7 4 ? Murray et al. (2018)
Scotland influenza 2010–2019 7–8 4 40, 90, 97.5 Dickson et al. (2020)
Slovenia RSV 2008–2018 10 3 40, 90, 97.5 Grilc et al. (2021)
Spain (17 regions) ILI 2003–2015 4–10 3–8 40, 90, 97.5 Bangert et al. (2017)
Spain ILI 2001–2018 16 2 40, 90, 97.5 Redondo-Bravo et al. (2020)
Tunisia ILI 2009-2018 9 3 50, 90, 95 Bouguerra et al. (2020)
United Kingdom ILI 2000–2013 10 3 40, 90, 97.5 Green et al. (2015)
United Kingdom ILI/RSV 2011–2018 4–6 5–8 40, 90, 97.5 Harcourt et al. (2019)
USA ILI/influenza 2003–2015 11 3 50, 90, 98 Biggerstaff et al. (2017)
USA ILI 2010–2015 5 6 50, 90, 98 Dahlgren et al. (2018)
USA influenza 2010–2016 6 5 50, 90, 98 Dahlgren et al. (2019)

(b) WHO method

Region Disease years covered m n percentiles authors

Cambodia ILI 2009–2015 7 1 mean, 90, 95 Ly et al. (2017)
Morocco ILI 2005–2017 11 1 40, 90, 97.5 Rguig et al. (2020)
Philippines ILI 2006–2012 7 1 90 Lucero et al. (2016)
Victoria/Australia ILI 2002–2011 6–10 1 90, 95 Tay et al. (2013)

As can be seen from the large number of entries from the years 2019 and 2020, the MEM has quickly
become a standard approach in the determination of intensity thresholds for influenza and other respiratory
diseases. Indeed, the contributions come from numerous countries and in many cases have been co-authored
by representatives of national or regional public health agencies. In most analyses, the suggested threshold
levels at the 40th, 90th and 97.5th percentile as described in Section A.1 are used. Variability with respect to
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the number m of historical seasons included is considerable, with a range from 3 to 16 seasons. Consequently,
the number n of observations included per season ranges from two to ten (none of the above papers indicated
a modification of the default setting n = 30/m of the moving epidemic method). We only found three
published applications of the WHO method, one of them providing a comparison to the thresholds from the
MEM method (Rguig et al., 2020).
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