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Supplementary methods 

Imputation on censored immune marker data in main analysis 
Immune marker values were log10-transformed prior to analysis. Values which were 
censored at the lower limit of quantification (LLOQ) were imputed with the value LLOQ/2. 
Approximately 10% of the pseudovirus neutralisation titre were censored at the LLOQ, and 
sensitivity analysis were conducted by imputing these values using a Gibbs sampler. 

Inverse probability weighting  
Immune marker data were not available for everyone in the correlates population, and 

cases are over-represented in the immune marker datasets as these were preferentially 

processed over non-cases. Unadjusted estimates of absolute risk of infection will therefore 

be inflated and result in bias to correlates estimates. We used a logistic regression model to 

predict the probability that a participant will have immune marker data available to the 

analysis. The outcome variables were each immune marker, and predictors were age group 

(18-55 years, 56-69 years, 70 years or above), whether the participant is a case or non-case, 

the type of case (primary symptomatic, non-primary symptomatic, asymptomatic), prime-

boost interval, and dosage (LD/LD, LD/SD, SD/SD). The inverse probability from this model 

was used to weight the correlates of risk models for each immune marker to remove this 

source of bias.  

Bootstrap 
We resampled from all participants enrolled in the study. For each bootstrap sample, we 

calculated the inverse probability weights to account for sampling bias. We then estimated 

the CoR by GAM, adjusting for the baseline risk exposure and weighting by inverse 

probability weights. We compared the predicted absolute risk from the GAM across the full 

range of antibody values, with the resampled MenACWY control population weighted 

overall risk. 10,000 bootstrap samples were used for each immune marker and outcome. 

The overall estimates for correlates of risk and correlates of vaccine efficacy were given by 

the median value in the bootstrap. 95% confidence intervals were calculated using the 

bootstrap percentile method, i.e., the 2.5% and 97.5% quantiles from the bootstrap.  

Correlates and their CIs were not computed for assays in which the relationship between 

antibody and outcome was non-significant. Where CIs were outside the range of values of 

the assay these are reported as ‘not computed’ (NC). 

 

Sensitivity analyses 

Viral load 

To account for potential of misclassification in asymptomatic infections, a sensitivity analysis 

was conducted excluding cases with lower viral loads (defined as those for whom all 

returned PCR positive tests had a Ct value ≥ 30) as these are potential false positives.  

Imputation of censored antibody values 

Approximately 10% of the pseudovirus neutralisation antibody titre were below the LLOQ. 

We performed a sensitivity analysis to account for the potential bias caused by imputing 
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LLOQ/2. Studies have shown that imputing LLOQ/2 can lead to bias and confidence intervals 

with poor coverage when a significant proportion of the data are censored1-3. When a 

bootstrap is required for missing data, Brand et al. (2019) found single imputation 

embedded inside a bootstrap showed better statistical properties than other methods3. We 

used an iterative Gibbs sampler proposed by Chen et al. (2013) to impute the censored log 

pseudoneutralising antibody values2. 

For each bootstrap sample we predicted the censored log pseudovirus neutralisation titre  

based on the log anti-spike and anti-RBD IgG values, log live neutralising antibody values, 

baseline risk score and all variables used in the inverse probability weighting model.  

More specifically, for each bootstrap sample we used a Bayesian imputation method to 

predict the censored values. Not all participants with results from the pseudovirus 

neutralisation titre also have results from the anti-spike, anti-RBD and live neutralising 

antibody titres. We iteratively predicted the missing and censored values for each antibody 

titre in a Gibbs sampler, constraining the predictions for the censored values to be less than 

or equal to the LLOQ. Each antibody titre was predicted by a Bayesian linear regression, with 

independent variables being the current prediction for all other titres and the other 

predictor variables in the model. We imputed a single value for each of the censored log 

pseudovirus neutralisation antibody values from the 100th iteration of the Gibbs sampler. 

The sensitivity analysis was then run on the imputed dataset for the bootstrap sample. 

We initialised the Gibbs sampler by predicting the missing and censored values from a series 

of linear regressions on the non-missing data. We ran multiple chains on bootstrap samples 

and tested for convergence by inspecting trace plots of the censored log pseudovirus 

neutralisation titres. From these plots we determined the 100th iteration to be 

approximately converged. 

Data cut-off 
The data cut-off date for inclusion in this analysis was Feb 28, 2021. 

Software  
Data analysis was done using R version 3.6.1 or later.4 The GAM was coded using the mgcv 

package.5 Three knots were used for each GAM, and the smoothing parameter was 

estimated by generalized cross validation.
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Figure S1 Participant Flow chart showing inclusion in correlates models
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Figure S2. Immune markers measured at day 28 post-second dose, in primary 

symptomatic, asymptomatic, non-primary cases, NAAT-positive cases and NAAT-negative 

non-cases 

 

IgG: Immunoglobulin G; RBD: receptor binding domain. 



6 
 

Figure S3. Correlations between 1). top-left: Anti-SARS-CoV-2 Spike and RBD IgG, 2) top-

right: Anti-SARS-CoV-2 Spike IgG and pseudovirus neutralisation titre, 3) bottom-left: Anti-

SARS-CoV-2 Spike IgG and live neutralisation titre, 4) bottom-right pseudovirus 

neutralisation titre and live neutralisation titre.  

 

Ellipse shows the 95% confidence intervals for primary symptomatic cases, asymptomatic 

cases and negative controls assuming t-distribution. Pearson correlation coefficients shown 

as r values.



7 
 

Figure S4A. Adjusted risk of asymptomatic SARS-CoV-2 infection as a function of immune 

markers measured 28 days post second dose.  

 

Top left: Anti-Spike IgG 28 days post boost Top right: Anti-RBD IgG 28 days post boost  
Bottom left: pseudovirus neutralisation antibody titres 28 days post boost  
Bottom right: live neutralisation antibody titres 28 days post boost.   
Grey lines show control (MenACWY) overall risk and vaccine (ChAdOx1 nCoV-19) overall risk.   
Blue dots show the absolute risk predicted from the model across the range of antibody 
values included in the analysis, adjusting for baseline exposure risk to SARS-CoV-2 infection (logit-
transformed linear covariate including age, ethnicity, BMI, co-morbidities and healthcare worker 
status). Green shaded areas shows the confidence interval around the predicted mean probability 
(green line)  
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Figure S4B. Sensitivity analysis showing adjusted risk of asymptomatic SARS-CoV-2 

infection as a function of immune markers measured 28 days post second dose 

  

Top left: Anti-Spike IgG 28 days post boost Top right: Anti-RBD IgG 28 days post boost  
Bottom left: pseudovirus neutralisation antibody titres 28 days post boost  
Bottom right: live neutralisation antibody titres 28 days post boost.   
Grey lines show control (MenACWY) overall risk and vaccine (ChAdOx1 nCoV-19) overall risk.   
Blue dots show the absolute risk predicted from the model across the range of antibody 
values included in the analysis, adjusting for baseline exposure risk to SARS-CoV-2 infection (logit-
transformed linear covariate including age, ethnicity, BMI, co-morbidities and healthcare worker 
status). Green shaded areas shows the confidence interval around the predicted mean probability 
(green line)  
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Figure S5A. Adjusted risk of primary symptomatic SARS-CoV-2 infection with shortness of 

breath as a function of immune markers measured 28 days post second dose 

 

Top left: Anti-Spike IgG 28 days post boost Top right: Anti-RBD IgG 28 days post boost  
Bottom left: pseudovirus neutralisation antibody titres 28 days post boost  
Bottom right: live neutralisation antibody titres 28 days post boost.   
Grey lines show control (MenACWY) overall risk and vaccine (ChAdOx1 nCoV-19) overall risk.   
Blue dots show the absolute risk predicted from the model across the range of antibody 
values included in the analysis, adjusting for baseline exposure risk to SARS-CoV-2 infection (logit-
transformed linear covariate including age, ethnicity, BMI, co-morbidities and healthcare worker 
status). Green shaded areas shows the confidence interval around the predicted mean probability 
(green line)  
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Figure S5B. Adjusted risk of primary symptomatic SARS-CoV-2 infection with no shortness 

of breath as a function of immune markers measured 28 days post second dose 

 

Top left: Anti-Spike IgG 28 days post boost Top right: Anti-RBD IgG 28 days post boost  
Bottom left: pseudovirus neutralisation antibody titres 28 days post boost  
Bottom right: live neutralisation antibody titres 28 days post boost.   
Grey lines show control (MenACWY) overall risk and vaccine (ChAdOx1 nCoV-19) overall risk.   
Blue dots show the absolute risk predicted from the model across the range of antibody 
values included in the analysis, adjusting for baseline exposure risk to SARS-CoV-2 infection (logit-
transformed linear covariate including age, ethnicity, BMI, co-morbidities and healthcare worker 
status). Green shaded areas shows the confidence interval around the predicted mean probability 
(green line)  
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Figure S6A. Adjusted risk of primary symptomatic SARS-CoV-2 infections with 3 or more 

COVID-19 symptoms as a function of immune markers measured 28 days post second 

dose 

  

Top left: Anti-Spike IgG 28 days post boost Top right: Anti-RBD IgG 28 days post boost  
Bottom left: pseudovirus neutralisation antibody titres 28 days post boost  
Bottom right: live neutralisation antibody titres 28 days post boost.   
Grey lines show control (MenACWY) overall risk and vaccine (ChAdOx1 nCoV-19) overall risk.   
Blue dots show the absolute risk predicted from the model across the range of antibody 
values included in the analysis, adjusting for baseline exposure risk to SARS-CoV-2 infection (logit-
transformed linear covariate including age, ethnicity, BMI, co-morbidities and healthcare worker 
status). Green shaded areas shows the confidence interval around the predicted mean probability 
(green line)  
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Figure S6B. Relative risk of primary symptomatic SARS-CoV-2 infections with 3 or more 

COVID-19 symptoms among vaccine recipients compared with MenACWY control arm 

participants as a function of immune markers measured at day 28 post-second dose 

 

 

The red shaded areas represent the immune marker density distribution. Green lines show 

the relative risk of infection among vaccine arm compared to the control arm. Green shaded 

areas are 95% confidence intervals for the relative risk. The arrows point to the immune 

marker values at 20% and 50% relative risk, i.e., 80% and 50% vaccine efficacy.
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Table S1. Anti-SARS-CoV-2 Spike and RBD IgG, pseudovirus neutralisation antibody titres 

and live neutralisation antibody titres (Median and IQR) by primary symptomatic, 

asymptomatic/unknown, non-primary cases, NAAT positive cases and negative controls 

Immune marker Outcome No. 
participant 

Median (IQR) 

Anti-Spike IgG Negative 1155 33945 (18450, 59260) 

 Positive 163 30501 (16088, 49529) 

 Primary 52 26144 (16147, 39996) 

 Asymptomatic 91 31115 (16112, 54118) 

 Non-primary 20 33896 (15976, 45307) 

Anti-RBD IgG Negative 1155 45693 (24009, 82432) 

 Positive 163 40884 (20871, 62934) 

 Primary 52 37276 (21560, 58033) 

 Asymptomatic 91 40884 (20944, 74226) 

 Non-primary 20 43673 (20474, 54332) 

Pseudovirus neutralisation 
titre 

Negative 
828 158 (81, 328) 

 Positive 149 160 (85, 304) 

 Primary 47 135 (75, 240) 

 Asymptomatic 86 172 (91, 338) 

 Non-primary 16 162 (109, 260) 

Live neutralisation titre Negative 412 184 (101, 344) 

 Positive 110 206 (124, 331) 

 Primary 36 166 (112, 231) 

 Asymptomatic 62 261 (129, 359) 

 Non-primary 12 176 (138, 277) 
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