Supplementary Files

Table of Contents

1.	Supplementary MethodsPg. 2
2.	Figure S1 Participant Flow chart showing inclusion in correlates modelsPg. 4
3.	Figure S2. Immune markers measured at day 28 post-second dose, in primary
	symptomatic, asymptomatic, non-primary cases, NAAT-positive cases and NAAT-
	negative non-casesPg. 5
4.	Figure S3. Correlations between 1). top-left: Anti-SARS-CoV-2 Spike and RBD IgG, 2)
	top-right: Anti-SARS-CoV-2 Spike IgG and pseudovirus neutralisation titre, 3) bottom-
	left: Anti-SARS-CoV-2 Spike IgG and live neutralisation titre, 4) bottom-right
	pseudovirus neutralisation titre and live neutralisation titrePg. 6
5.	Figure S4A. Adjusted risk of asymptomatic SARS-CoV-2 infection as a function of
	immune markers measured 28 days post second dosePg. 7
6.	Figure S4B. Sensitivity analysis showing adjusted risk of asymptomatic SARS-CoV-2
	infection as a function of immune markers measured 28 days post second
	dosePg. 8
7.	Figure S5A. Adjusted risk of primary symptomatic SARS-CoV-2 infection with
	shortness of breath as a function of immune markers measured 28 days post second
	dosePg. 9
8.	Figure S5B. Adjusted risk of primary symptomatic SARS-CoV-2 infection with no
	shortness of breath as a function of immune markers measured 28 days post second
	dosePg. 10
9.	Figure S6A. Adjusted risk of primary symptomatic SARS-CoV-2 infections with 3 or
	more COVID-19 symptoms as a function of immune markers measured 28 days post
	second dosePg. 11
10.	Figure S6B. Relative risk of primary symptomatic SARS-CoV-2 infections with 3 or
	more COVID-19 symptoms among vaccine recipients compared with MenACWY
	control arm participants as a function of immune markers measured at day 28 post-
	second dosePg. 12
11.	Table S1. Anti-SARS-CoV-2 Spike and RBD IgG, pseudovirus neutralisation antibody
	titres and live neutralisation antibody titres (Median and IQR) by primary
	symptomatic, asymptomatic/unknown, non-primary cases, NAAT positive cases and
	negative controlsPg. 13
12.	The Oxford Vaccine Trial GroupPg. 14
13.	AcknowledgementsPg. 16
14.	ReferencesPg. 19

Supplementary methods

Imputation on censored immune marker data in main analysis

Immune marker values were log₁₀-transformed prior to analysis. Values which were censored at the lower limit of quantification (LLOQ) were imputed with the value LLOQ/2. Approximately 10% of the pseudovirus neutralisation titre were censored at the LLOQ, and sensitivity analysis were conducted by imputing these values using a Gibbs sampler.

Inverse probability weighting

Immune marker data were not available for everyone in the correlates population, and cases are over-represented in the immune marker datasets as these were preferentially processed over non-cases. Unadjusted estimates of absolute risk of infection will therefore be inflated and result in bias to correlates estimates. We used a logistic regression model to predict the probability that a participant will have immune marker data available to the analysis. The outcome variables were each immune marker, and predictors were age group (18-55 years, 56-69 years, 70 years or above), whether the participant is a case or non-case, the type of case (primary symptomatic, non-primary symptomatic, asymptomatic), primeboost interval, and dosage (LD/LD, LD/SD, SD/SD). The inverse probability from this model was used to weight the correlates of risk models for each immune marker to remove this source of bias.

Bootstrap

We resampled from all participants enrolled in the study. For each bootstrap sample, we calculated the inverse probability weights to account for sampling bias. We then estimated the CoR by GAM, adjusting for the baseline risk exposure and weighting by inverse probability weights. We compared the predicted absolute risk from the GAM across the full range of antibody values, with the resampled MenACWY control population weighted overall risk. 10,000 bootstrap samples were used for each immune marker and outcome. The overall estimates for correlates of risk and correlates of vaccine efficacy were given by the median value in the bootstrap. 95% confidence intervals were calculated using the bootstrap percentile method, i.e., the 2.5% and 97.5% quantiles from the bootstrap.

Correlates and their CIs were not computed for assays in which the relationship between antibody and outcome was non-significant. Where CIs were outside the range of values of the assay these are reported as 'not computed' (NC).

Sensitivity analyses

Viral load

To account for potential of misclassification in asymptomatic infections, a sensitivity analysis was conducted excluding cases with lower viral loads (defined as those for whom all returned PCR positive tests had a Ct value \geq 30) as these are potential false positives.

Imputation of censored antibody values

Approximately 10% of the pseudovirus neutralisation antibody titre were below the LLOQ. We performed a sensitivity analysis to account for the potential bias caused by imputing

LLOQ/2. Studies have shown that imputing LLOQ/2 can lead to bias and confidence intervals with poor coverage when a significant proportion of the data are censored¹⁻³. When a bootstrap is required for missing data, Brand et al. (2019) found single imputation embedded inside a bootstrap showed better statistical properties than other methods³. We used an iterative Gibbs sampler proposed by Chen et al. (2013) to impute the censored log pseudoneutralising antibody values².

For each bootstrap sample we predicted the censored log pseudovirus neutralisation titre

based on the log anti-spike and anti-RBD IgG values, log live neutralising antibody values, baseline risk score and all variables used in the inverse probability weighting model.

More specifically, for each bootstrap sample we used a Bayesian imputation method to predict the censored values. Not all participants with results from the pseudovirus neutralisation titre also have results from the anti-spike, anti-RBD and live neutralising antibody titres. We iteratively predicted the missing and censored values for each antibody titre in a Gibbs sampler, constraining the predictions for the censored values to be less than or equal to the LLOQ. Each antibody titre was predicted by a Bayesian linear regression, with independent variables being the current prediction for all other titres and the other predictor variables in the model. We imputed a single value for each of the censored log pseudovirus neutralisation antibody values from the 100th iteration of the Gibbs sampler. The sensitivity analysis was then run on the imputed dataset for the bootstrap sample.

We initialised the Gibbs sampler by predicting the missing and censored values from a series of linear regressions on the non-missing data. We ran multiple chains on bootstrap samples and tested for convergence by inspecting trace plots of the censored log pseudovirus neutralisation titres. From these plots we determined the 100th iteration to be approximately converged.

Data cut-off

The data cut-off date for inclusion in this analysis was Feb 28, 2021.

Software

Data analysis was done using R version 3.6.1 or later.⁴ The GAM was coded using the mgcv package.⁵ Three knots were used for each GAM, and the smoothing parameter was estimated by generalized cross validation.

Figure S1 Participant Flow chart showing inclusion in correlates models

Single blind immunogenicity and efficacy cohorts receiving ChAdOx1 n-CoV 19								
Group 1 Age 56-69 years LD N=0 LDLD N=30 LDSD N=30	Group 2 Age 70+ years LD N=8 LDLD N=46 LDSD N=46	Group 4 Age 18-55 years LD N=242 LDLD N=51 LDSD N=1,424	Group 5 Age 18-55 years LD N=2 SD N=46 LDSD N=63 SDSD N=64	Group 6 Age 18-55 years SD N=325 SDSD N=1,973	Group 7 Age 56-69 years SD N=30 SDSD N=30	Group 8 Age 70+ years SD N=51 SDSD N=49	Group 9 Age 56-69 years SD N=8 SDSD N=505	Group 10 Age 70+ years SD N=5 SDSD N=508
Excluded N=0 baseline serostatus positive/NA N=0 single dose recipients N=0 cases ≤7 days since PB28 N=0 follow-up ≤7 days since PB28 N=1 samples not collected or out of PB28 window	Excluded N=1 baseline serostatus positive/NA N=8 single dose recipients N=0 vaccine error N=0 cases ≤7 days since PB28 N=0 follow-up ≤7 days since PB28 N=3 samples not collected or out of PB28 window	Excluded N=23 baseline serostatus positive/NA N=236 single dose recipients N=2 vaccine error N=13 cases ≤7 days since PB28 N=10 follow-up ≤7 days since PB28 N=79 samples not collected or out of PB28 window	Excluded N=32 baseline serostatus positive/NA N=48 single dose recipients N=0 vaccine error N=2 cases ≤7 days since PB28 N=2 follow-up ≤7 days since PB28 N=0 samples not collected or out of PB28 window	Excluded N=25 baseline serostatus positive/NA N=316 single dose recipients N=4 vaccine error N=28 cases ≤7 days since PB28 N=21 follow-up ≤7 days since PB28 N=110 samples not collected or out of PB28 window	Excluded N=0 baseline serostatus positive/NA N=30 single dose recipients N=0 vaccine error N=0 cases ≤7 days since PB28 N=0 follow-up ≤7 days since PB28 N=2 samples not collected or out of PB28 window	Excluded N=2 baseline serostatus positive/NA N=50 single dose recipients N=0 vaccine error N=0 cases ≤7 days since PB28 N=0 follow-up ≤7 days since PB28 N=0 samples not collected or out of PB28 window	Excluded N=22 baseline serostatus positive/NA N=8 single dose recipients N=2 vaccine error N=8 cases ≤7 days since PB28 N=6 follow-up ≤7 days since PB28 N=14 samples not collected or out of PB28 window	Excluded N=29 baseline serostatus positive/NA N=5 single dose recipients N=1 vaccine error N=12 cases ≤7 days since PB28 N=5 follow-up ≤7 days since PB28 N=4 samples not collected or out of PB28 window
Eligible N=59 Samples processed N=1 cases N=27 non cases	Eligible N=88 Samples processed N=6 cases N=43 non cases	Eligible N=1354 Samples processed N=44 cases N=331 non cases	Eligible N=91 Samples processed N=3 cases N=75 non cases	Eligible N=1794 Samples processed N=96 cases N=602 non cases	Eligible N=28 Samples processed N=0 cases N=26 non cases	Eligible N=48 Samples processed N=1 cases N=45 non cases	Eligible N=453 Samples processed N=9 cases N=141 non cases	Eligible N=457 Samples processed N=11 cases N=117 non cases

Figure S2. Immune markers measured at day 28 post-second dose, in primary symptomatic, asymptomatic, non-primary cases, NAAT-positive cases and NAAT-negative non-cases

IgG: Immunoglobulin G; RBD: receptor binding domain.

Figure S3. Correlations between 1). top-left: Anti-SARS-CoV-2 Spike and RBD IgG, 2) topright: Anti-SARS-CoV-2 Spike IgG and pseudovirus neutralisation titre, 3) bottom-left: Anti-SARS-CoV-2 Spike IgG and live neutralisation titre, 4) bottom-right pseudovirus neutralisation titre and live neutralisation titre.

Ellipse shows the 95% confidence intervals for primary symptomatic cases, asymptomatic cases and negative controls assuming t-distribution. Pearson correlation coefficients shown as r values.

Figure S4A. Adjusted risk of asymptomatic SARS-CoV-2 infection as a function of immune markers measured 28 days post second dose.

Top left: Anti-Spike IgG 28 days post boost Top right: Anti-RBD IgG 28 days post boost Bottom left: pseudovirus neutralisation antibody titres 28 days post boost Bottom right: live neutralisation antibody titres 28 days post boost.

The red shaded areas represent the immune marker density distribution. Green lines show the relative risk of infection among vaccine arm compared to the control arm. Green shaded areas are 95% confidence intervals for the relative risk. The arrows point to the immune marker values at 20% and 50% relative risk, i.e., 80% and 50% vaccine efficacy.

Table S1. Anti-SARS-CoV-2 Spike and RBD IgG, pseudovirus neutralisation antibody titres and live neutralisation antibody titres (Median and IQR) by primary symptomatic, asymptomatic/unknown, non-primary cases, NAAT positive cases and negative controls

Immune marker	Outcome	No. participant	Median (IQR)
Anti-Spike IgG	Negative	1155	33945 (18450, 59260)
	Positive	163	30501 (16088, 49529)
	Primary	52	26144 (16147, 39996)
	Asymptomatic	91	31115 (16112, 54118)
	Non-primary	20	33896 (15976, 45307)
Anti-RBD IgG	Negative	1155	45693 (24009, 82432)
	Positive	163	40884 (20871, 62934)
	Primary	52	37276 (21560, 58033)
	Asymptomatic	91	40884 (20944, 74226)
	Non-primary	20	43673 (20474, 54332)
Pseudovirus neutralisation	Negative	020	150 (01 220)
titre	D M.	828	158 (81, 328)
	Positive	149	160 (85 <i>,</i> 304)
	Primary	47	135 (75, 240)
	Asymptomatic	86	172 (91, 338)
	Non-primary	16	162 (109, 260)
Live neutralisation titre	Negative	412	184 (101, 344)
	Positive	110	206 (124, 331)
	Primary	36	166 (112, 231)
	Asymptomatic	62	261 (129, 359)
	Non-primary	12	176 (138, 277)

The Oxford Vaccine Trial Group

Syed Adlou	Oxford Vaccine Group, Department of Paediatrics, University of Oxford, UK
Lauren Allen	National Infection Service, Public Health England, UK
Brian Angus	Jenner Institute, Nuffield Department of Medicine, University of Oxford, UK
Rachel Anslow	Oxford Vaccine Group, Department of Paediatrics, University of Oxford, UK
Marie-Claude Asselin	National Infection Service, Public Health England, UK
Natalie Baker	National Infection Service, Public Health England, UK
Philip Baker	Oxford Vaccine Group, Department of Paediatrics, University of Oxford, UK
Thomas Barlow	National Infection Service, Public Health England, UK
Louise Bates	Oxford Vaccine Group, Department of Paediatrics, University of Oxford, UK
Amy Beveridge	Oxford Vaccine Group, Department of Paediatrics, University of Oxford, UK
Kevin R Bewley	National Infection Service, Public Health England, UK
Phillip Brown	National Infection Service, Public Health England, UK
Emily Brunt	National Infection Service, Public Health England, UK
Karen R Buttigieg	National Infection Service, Public Health England, UK
Susana Camara	Oxford Vaccine Group, Department of Paediatrics, University of Oxford, UK
Sue Charlton	National Infection Service, Public Health England, UK
Emily Chiplin	National Infection Service, Public Health England, UK
Paola Cicconi	Jenner Institute, Nuffield Department of Medicine, University of Oxford, UK
Elizabeth A Clutterbuck	Oxford Vaccine Group, Department of Paediatrics, University of Oxford, UK
Andrea M. Collins	Department of Clinical Sciences, Liverpool School of Tropical Medicine and Liverpool University Hospitals NHS Foundation Trust, Liverpool, UK
Naomi S. Coombes	National Infection Service, Public Health England, UK
Sue Ann Costa Clemens	Oxford Vaccine Group, Department of Paediatrics, University of Oxford, UK and the Institute of Global Health, University of Siena, Italy
Melanie Davison	National Infection Service, Public Health England, UK
Tesfaye Demissie	Oxford Vaccine Group, Department of Paediatrics, University of Oxford, UK
Tanya Dinesh	Oxford Vaccine Group, Department of Paediatrics, University of Oxford, UK
Alexander D. Douglas	Jenner Institute, Nuffield Department of Medicine, University of Oxford, UK
Christopher J. A. Duncan	Department of Infection and Tropical Medicine, Newcastle upon Tyne Hospitals NHS Foundation Trust and the Translational and Clinical Research Institute, Immunity and Inflammation Theme, Newcastle University, UK
Katherine R. W. Emary	Oxford Vaccine Group, Department of Paediatrics, University of Oxford, UK
Katie J. Ewer	Jenner Institute, Nuffield Department of Medicine, University of Oxford, UK
Sally Felle	Oxford Vaccine Group, Department of Paediatrics, University of Oxford, UK
Daniela M Ferreira	Department of Clinical Sciences, Liverpool School of Tropical Medicine, UK
Adam Finn	School of Population Health Sciences, University of Bristol and University Hospitals Bristol and Weston NHS Foundation Trust, UK
Pedro M. Folegatti	Jenner Institute, Nuffield Department of Medicine, University of Oxford, UK
Ross Fothergill	National Infection Service, Public Health England, UK
Sara Fraser	National Infection Service, Public Health England, UK
Harriet Garlant	National Infection Service, Public Health England, UK
Laura Gatcombe	National Infection Service, Public Health England, UK
Kerry J. Godwin	National Infection Service, Public Health England, UK

Anna L Goodman	Department of Infectious Diseases, Guy's and St Thomas' NHS Foundation Trust, St Thomas' Hospital, London, UK and MRC Clinical Trials Unit at University College London, UK
Christopher A. Green	NIHR/Wellcome Trust Clinical Research Facility, University Hospitals Birmingham NHS Foundation Trust and Institute of Microbiology & Infection, University of Birmingham, UK
Bassam Hallis	National Infection Service, Public Health England, UK
Thomas C. Hart	Oxford Vaccine Group, Department of Paediatrics, University of Oxford, UK
Paul T. Heath	St George's Vaccine Institute, St George's, University of London, UK
Helen Hill	Department of Clinical Sciences, Liverpool School of Tropical Medicine, UK
Adrian V. S. Hill	Jenner Institute, Nuffield Department of Medicine, University of Oxford, UK
Daniel Jenkin	Jenner Institute, Nuffield Department of Medicine, University of Oxford, UK
Mwila Kasanyinga	Oxford Vaccine Group, Department of Paediatrics, University of Oxford, UK
Simon Kerridge	Oxford Vaccine Group, Department of Paediatrics, University of Oxford, UK
Chanice Knight	National Infection Service, Public Health England, UK
Stephanie Leung	National Infection Service, Public Health England, UK
Vincenzo Libri	NIHR UCLH Clinical Research Facility and NIHR UCLH Biomedical Research Centre, London, UK
Patrick J. Lillie	Hull University Teaching Hospitals NHS Trust and Hull York Medical School, UK
Spyridoula Marinou	Oxford Vaccine Group, Department of Paediatrics, University of Oxford, UK
Joanna McGlashan	National Infection Service, Public Health England, UK
Alastair C. McGregor	London North West University Healthcare NHS Trust and the Department of Medicine, Imperial College London, UK
Lorna McInroy	National Infection Service, Public Health England, UK
Angela M. Minassian	Jenner Institute, Nuffield Department of Medicine, University of Oxford, UK
Yama F Mujadidi	Oxford Vaccine Group, Department of Paediatrics, University of Oxford, UK
Elizabeth J. Penn	National Infection Service, Public Health England, UK
Katrina M. Pollock	NIHR Imperial Clinical Research Facility and NIHR Imperial Biomedical Research Centre, London, UK
Pamela C. Proud	National Infection Service, Public Health England, UK
Samuel Provstgaard-Morys	Oxford Vaccine Group, Department of Paediatrics, University of Oxford, UK
Durga Rajapaksa	National Infection Service, Public Health England, UK
Maheshi N Ramasamy	Oxford Vaccine Group, Department of Paediatrics, University of Oxford, UK
Katherine Sanders	Oxford Vaccine Group, Department of Paediatrics, University of Oxford, UK
Imam Shaik	National Infection Service, Public Health England, UK
Nisha Singh	Oxford Vaccine Group, Department of Paediatrics, University of Oxford, UK
Andrew Smith	College of Medical, Veterinary & Life Sciences, Glasgow Dental Hospital & School, University of Glasgow, UK
Matthew D. Snape	Oxford Vaccine Group, Department of Paediatrics, University of Oxford, UK
Rinn Song	Oxford Vaccine Group, Department of Paediatrics, University of Oxford, UK
Sonu Shrestha	Oxford Vaccine Group, Department of Paediatrics, University of Oxford, UK
Rebecca K. Sutherland	Clinical Infection Research Group, Regional Infectious Diseases Unit, NHS Lothian, Edinburgh, UK
Emma C. Thomson	MRC - University of Glasgow Centre for Virus Research & Department of Infectious Diseases, Queen Elizabeth University Hospital, Glasgow, UK
David P. J. Turner	University of Nottingham and Nottingham University Hospitals NHS Trust, UK
Alice Webb-Bridges	Oxford Vaccine Group, Department of Paediatrics, University of Oxford, UK
Christopher J Williams	Aneurin Bevan University Health Board, Newport, Wales

Acknowledgement	S
-----------------	---

Clinical Trials Research Governance Office, University of Oxford
Ronja Bahadori
Elaine Chick
Heather House
Claire Riddle
Data and Safety Monitoring Board (DSMB)
George Bouliotis
Steve Black
Elizabeth Bukusi
Cornelia Dekker
Robert Heyderman
Gregory Hussey
Paul Kaye
Bernhards Ogutu
Walter Orenstein
Sonia Ramos
Manish Sadarangani
Department of Paediatrics, University of Oxford
Georg A. Holländer
Endpoint Evaluation Committee
Jeremy Carr
Steve Chambers
Kim Davis
Simon Drysdale
Malick Gibani
Elizabeth Hammershaimb
Michael Harrington

Celina Jin
Seilesh Kadambari
Rama Kandasamy
Toby Maher
Jamilah Meghji
Claire Munro
David Pace
Rekha Rapaka
Robindra Basu Roy
Daniel Silman
Gemma Sinclair
Jing Wang
Jenner Institute, University of Oxford
Iona Tarbet
Nuffield Department of Medicine, University of Oxford
Richard Cornall
Richard Liwicki
Denis Murphy
Elizabeth Salter
Katherine Skinner
Philip Taylor
Oto Velicka
Oxford Research Services (Contracts)
Carly Banner
Sally Pelling-Deeves
Gary Priest
Oxford University Hospitals Trust
Bruno Holthof
The Oxford COVID-19 Vaccine Trial Team
Public Affairs Directorate and Divisional Communication Team
Alison Brindle

Alexander Buxton
James Colman
Chris McIntyre
Steve Pritchard

References:

1. Lubin JH, Colt JS, Camann D, et al. Epidemiologic evaluation of measurement data in the presence of detection limits. *Environmental health perspectives* 2004; **112**(17): 1691-6.

2. Chen H, Quandt SA, Grzywacz JG, Arcury TA. A Bayesian multiple imputation method for handling longitudinal pesticide data with values below the limit of detection. *Environmetrics* 2013; **24**(2): 132-42.

3. Brand J, van Buuren S, le Cessie S, van den Hout W. Combining multiple imputation and bootstrap in the analysis of cost-effectiveness trial data. *Statistics in medicine* 2019; **38**(2): 210-20.

4. R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing 2020.

5. Wood SN. Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models. *Journal of the Royal Statistical Society: Series B (Statistical Methodology)* 2011; **73**(1): 3-36.