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Abstract 

It is of great theoretical and application value to accurately forecast the spreading 

dynamics of COVID-19 epidemic. We first proposed and established a Bayesian model to 

predict the epidemic spreading behavior. In this model, the infection probability matrix is 

estimated according to the individual contact frequency in certain population group. This 

infection probability matrix is highly correlated with population geographic distribution, 

population age structure and so on. This model can effectively avoid the prediction 

malfunction by using the traditional ordinary differential equation methods such as SIR 

(susceptible, infectious and recovered) model and so on. Meanwhile, it would forecast the 

epidemic distribution and predict the epidemic hot spots geographically at different time. 

According to the results revealed by Bayesian model, the effect of population 

geographical distribution should be considered in the prediction of epidemic situation, and 

there is no simple derivation relationship between the threshold of group immunity and the 

virus reproduction numberR0. If we further consider the virus mutation effect and the 

antibody attenuation effect, with a large global population spatial distribution, it will be 
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difficult for us to eliminate Covid-19 in a short time even with vaccination endeavor. 

Covid-19 may exist in human society for a long time, and the epidemic caused by 

re-infection is characterized by a wild-geometric && low- probability distribution with no 

epidemic hotspots. 

Keywords: Bayesian model, COVID-19, Reproduction number, Mutation, Herd immunity 

threshold  

 

Introduction 

As of June 1, 2021, the COVID-19 epidemic has caused 170 million infections and more 

than 3.6 million deaths worldwide, becoming the largest public health crisis facing the 

world after World War II. It is of great academic and practical value to predict the trend of 

COVID-19 epidemic situation. At this cutting edge, it is necessary to answer several 

questions urgently: whether the infection in Covid-19 can be completely eliminated by 

adopting group immunization, and what is the relationship between the threshold of group 

immunization and virus reproduction constant R0
[1,2].  

However, the majority of our mathematical models if not all, are not be able to predict the 

epidemic trend well, although most of them have a good fitting result. A crucial reason 

behind this drawback, from our point of view, is the ignorance of the population 

geographic distribution. SIR model, which originated from epidemiological research, is a 

classic model to simulate infectious disease dynamics. It still occupies a central position in 

epidemiology, and the core lies in a set of ordinary differential equations. SIR model 

describes the relationship among three population groups under epidemic: susceptible, 
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infectious and recovered. Without considering the spatial distribution characteristics of 

population, it is difficult to accurately estimate the development of epidemic situation by 

using the traditional SIR model. The initial epidemic development predicted by SIR model 

is often too dramatic, close to exponential shape, and the daily infections will gradually 

reach its peak with the consumption of susceptible population before a diminishing phase 

follows eventually [3-6]. However, actual situation is beyond the expectations of any model. 

In order to better simulate infectious diseases, especially infections of Covid-19, we put 

forward a Bayesian model of virus infection for the first time. This model can take the 

information of population contact into account, so it can simulate the spreading dynamics 

more accurately. Not only that, this approach can integrate many features into the model, 

such as virus mutation factor, population age distribution, public prevention and control 

measures, etc., to further generate a more reliable prediction. This model can predict the 

epidemic development in real cases, and provide lots of valuable information for the 

development of the epidemic and the epidemiological tracking of infection cases. 

 

Methods  

1.1 The establishment of individual contact matrix within a population 

We have established a continuous Bayesian model of infection occurrence. Basic 

principles of this idea are briefly described below:  

It is assumed that there are N individuals in a population, and there are different 

contact probabilities among those individuals. The infection probability is positively 

correlated with contact probability. For the simplified model, the relation constant is 1 
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which means the infection probability is equal to contact probability. The contact 

probabilities with themselves are zero. In this way, an N*N matrix is established, 

which has the following characteristics: 

interaction��������,�	 	  0；                                                                                                      �1� 
interaction��������,
	 	  interaction�������
,�	；                                                                  �2� 

The accurate contact matrix can be obtained through tracking the individual contact 

probability in a real population group. For example, the position of each person's 

mobile phone can be recorded to obtain the population contact matrix within certain 

time phase. The contact matrix is temporal and dynamic which means it will change 

though time. However, it is difficult for us to obtain such real data at present. 

Therefore, our model determines the contact frequency according to the relative 

distance between individuals. Therefore, our contact matrix is a theoretical and fixed 

contact matrix. 

 

interaction_Matrix�i, j�  	  min�c1, c2/distance�i, j�^n�;                                                 �3� 
 

We assume that the contact probability between two different individuals is equal to 

the constant c2 divided by the nth power of the distance between them with a upper 

bound equal to c1. We can preliminarily determine c1, c2 and N according to the 

initial reproduction constant R0of virus. 

 

            R0 	 �

�
� ∑ ∑ interaction_Matrix�i, j��



�
� ;                                  (4) 

We further establish the Infection_Matrix with N*M elements, where N represents the 
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population of the studied group and M represents the total number of generations. 

 

Infection_Matrix�k, t�  	  P;                                                                                                �5� 
Equation(5) represents that the infection probability of individual k in the t-th infection 

generation is P. 

 

1.2 A simplified Bayesian model 

 

  P1 	  1 $ sus
����������	; 
  P2 	  ∑ infection��������,���	 � sus
����������	 � interaction_matrix�i, k��

��� ; 

  P 	 min�P1, P2� ;                                                                                                                     (6) 

In which infection��������,���	 represents the probability of infection of individual i in 

the previous generation, and sus
����������	 represents the susceptibility constant of 

individual k in the t-th infection generation, which is between 0 and 1; 

interaction_matrix�i, k�represents the contact probability between individual i and 

individual k. 

 

 

1.3 A Bayesian model considering complex factors 

sus
���������k� 	 1 $ & infection��������,�	 � mutation��������,�	;���

���
                                          �7� 

In which infection��������,�	  represents the attenuation effect caused by virus 

mutation and antibody attenuation, and represents the attenuation effect of individual 

k in the i-th generation. If we think that there is no antibody attenuation and virus 
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mutation effect, then infection��������,�	 = 1. 

 

          mutation��������,�	 	 (1 $ )*+,-./0����������1��� � �1 $ 23+)+,.*��������;              �8� 

In which t represents the current virus generation or the current time, and 

)*+,-./0���������� represents the attenuation constant of antibody with time (number 

of infected generations), because it represents the attenuation constant of a single 

generation, so it is a small number. Similarly, 23+)+,.*���� represents the variation 

constant of virus with time (number of infected generations), because it represents 

the variation constant during a single generation, so it is also a small number. 

Although the values of these two constants are small, the iteration effect of several 

generations will also cause a significant decrease in mutation��������,�	. We need to 

make a rough estimate of these two parameters. Assuming that the average infection 

cycle in Covid-19 is 7 days, according to literature and news reports [7], the vaccine 

protection caused by Indian mutant B.1.617.2 is about 1-88% = 0.12, and the Indian 

mutant occurs around the 50th infection cycle; The decline of vaccine protection 

caused by British mutant B.1.1.7 is about 1-93% =0.07, and the occurrence time of 

British mutant is about the 30th infection cycle, so it is preliminarily inferred that 

mutation _ rate = 0.002; According to the statistical data of re-infection after infection, 

it shows that for people under 65 years old, the average protection rate of preventing 

the second infection after infection within 50 infection cycles is 80%. We speculate 

that the protection rate after 50 infection cycles is much lower than 80%, and it is 

calculated by 70% [8]. Based on the mutation constants of viruses, we can 
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preliminarily infer the antibody attenuation constant )*+,-./0���������� = 0.005. 

 

Relationship between age and infection probability 

A more accurate mathematical model should also take the influence of population's 

immune variation into consideration. Our model mainly considers the influence of 

age-related immunity vibration on infection risk. According to the statistical results of 

infection distribution at different ages, the relationship between infection probability 

and age is further derived as equation(9). 

          f(age�k�1 	 61 $ 1
1 7 e����	


��

8
�

;                                                                                             �9� 

age�k� indicates the age of the k-th individual in the population. 

 

Dose effects on infection 

According to our research, the occurrence of infection is related to the initial number 

of virus invasions. Therefore, for people with low infection probability, the probability 

of becoming an infectious individual is less than the probability of producing 

antibodies, that is, the infected person does not necessarily have symptoms, or even 

positive reaction in nucleic acid test. Therefore, we added a correction function f(x) to 

express the relationship between the infection rate and the development of an 

individual into an infectious individual. 

 

tran
������������,�	 	 infection��������,�	 � 0.1�
�����������������	,�


�
	
;                    (10) 
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Therefore the final Bayesian model becomes: 

              P1 	  1 $ sus
����������	; 
P2 	  f�age�k�� � ∑ tran
������������,���	 � sus
����������	 � interaction_matrix�i, k��

��� ; 

             P 	 min�P1, P2� ;                                                    (11) 

 

The virus reproduction coefficient R0 becomes: 

          R0 	 �

�
� ∑ ∑ interaction��������,
	 � f(age�i�1 � tran
������������	

�



�
� ；                           (12) 

 

2 Results 

 

2.1 An illustration of simple Bayesian model  

 

The detailed description of the Bayesian model is explained in methods part. For the 

sake of better illustration, here we use a simple but concrete case to explain our 

model. Firstly, we study a simple Bayesian model without considering complicated 

factors. This model has the following assumptions  

1. The individual immunity to certain infectious diseases is homogeneous, and there 

is no individual variation;  

2. There is neither virus mutation nor the antibody attenuation effect with time; 

3. All infections will have the same transmission potential, that is, if an individual is 

infected, it will produce antibodies, and at the same time it is contagious; 

4. Individuals will recover after an infection cycle without death, that is, the overall 

population size will not change.  
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Taking this model as an example, we simply listed three individuals A, B, and C to 

study their infection possibility in the first few virus transmission cycles, assuming 

that the contact matrix between them is as follows: 

Interaction_matrix A B C 

A 0 0.8 0.5 

B 0.8 0 0.6 

C 0.5 0.6 0 

Table1：Interaction frequency matrix among three individuals 

According to this contact matrix, the initial virus reproduction coefficient R0 = 1/3 * 

(0+0.8+0.5+0.8+0+0.6+0.5+0.6) = 1.267. If A gets sick first, according to formula (6), 

the changes of the infection probability of A, B and C with time are shown in table2. 

 

 

 

 A B C 

1st 

generation 

1 0 0 

2nd 

generation 

0 0.8 0.5 
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3rd 

generation 

0 (1-0.8)*(0*0.8+0.8*0+0.5*0.6)  

=0.06 

(1-0.5)*(0*0.5+0.5*0+0.8*0.6) 

=0.24 

4thgenerati

on 

 

0 (1-0.8-0.06)*(0*0.8+0.06*0+0.24

*0.6) 

=0.02016 

(1-0.5-0.24)*(0*0.5+0.24*0+0.06

*0.6) 

=0.00936 

Nthgenerati

on 

 

……

… 

  

Table2：Infection probability of three individuals at different time point 

Our Bayesian model is a continuous model, that is, the infection of each individual in 

a specific period of time is treated as a probabilistic problem, rather than a simple 

infected or uninfected state which would be represented as a Boolean number. The 

number of infected patients in a population at a certain time point is the sum of the 

infection probabilities of each individual. When the population size scales up to 

certain level, this probability could better reflect the actual epidemic dynamic. 

 

 

2.2 The prediction capacity of Bayesian model is significantly better than that of SIR 

model 

 

We expand this model to 10,000 people. We randomly assign the coordinates of 

these 10,000 people to the square zone with X direction [0-250] and Y direction 
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[0-250]. Using formula (3), we can calculate the contact matrix of the population. 

When c1=0.8, c2=5 and n=4, according to formula (4), the initial virus reproduction 

number R0 = 2 can be calculated. We use different models to predict its epidemic 

curve, and the results are shown in Figure 1. 

 

Figure1：Epidemic trend predicted by three different model 

It can be seen from Figure 1 that the early rising trend of the infection curve predicted 

by SIR model is very steep, while the Bayesian model considering population contact 

is relatively mild. Our Bayesian models are divided into two types, one is the 

constraint model of population contact distance, that is, contact probability of all 

people is inversely proportional to the fourth power of the distance between them, 

that is, the curve represented by the red curve. The other is a model with 

discontinuous population contact frequency, that is, within a certain distance range, 

the contact frequency of all people is inversely proportional to the fourth power of the 

distance between them, and the contact frequency of individuals beyond this 

distance threshold is 0, which is indicated by blue dotted line. The individual contact 
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frequency of the real population may be between the two. It can be seen from the 

figure that the epidemic trend curve generated by Bayesian model with population 

diffusion constraint rises very slowly, and the epidemic growth of Bayesian model 

without population diffusion constraint is significantly milder than that of SIR infection 

model. The infection curve predicted by Bayesian model is closer to the real infection 

curve. The results predicted by SIR model may deviate greatly from the real situation. 

One important factor leading to this deviation is that this model does not 

comprehensively consider the time and space factors of virus infection, especially the 

influence of population contact matrix brought by population geographic distribution 

on the overall infection curve. To give a simple example, traditional infectious disease 

models often predict a very steep epidemic rising trend. On the other hand, using SIR 

model to force curve fitting often results in a very small number of susceptible people, 

which is unrealistic compared with the actual situation. The main reason for this 

phenomenon is that the traditional ordinary differential equation model presumes that 

infected people have infinite flow and diffusion ability. Thereafter in a very large 

population, when only a small number of people are infected, the change of R0 can 

almost be ignored, so the early epidemic prediction is often exponential. However, 

the actual situation is not the case. Even without any means of prevention and 

control, the growth of the epidemic will never be exponential, which is mainly due to 

the spatial effect of diffusion. When a person is infected with a virus, he will give 

priority to causing infection to nearby people instead of equally causing infection to 

people in random areas. This mode of transmission will lead to a significant decrease 
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in R0 value even when only a small number of people are infected. The spatial effect 

of this epidemic spread can be well reflected by our Bayesian model. As we will see 

later, the infection curve predicted by Bayesian model can reflect the complex and 

real epidemic fluctuation when multiple features such as population spatial 

distributions are considered. At the same time, our model can predict and track the 

hot spots of epidemic situation, as shown in video 1, and can effectively simulate the 

dynamic process of epidemic situation at different geographic and time scales. 

 

2.3 There is no simple derivation relationship between the virus reproduction 

numberR0 and the final herd immunity threshold, and it may require a higher 

population infection ratio to achieve the complete extinction of the epidemic through 

natural herd immunization. 

 

Figure2：Herd immunity threshold predicted by three different approaches 

As can be seen from Figure 2, based on different methods, the threshold of group 

immunity predicted by different R0 value is significantly different. The threshold of 

group immunity predicted by SIR model is the highest, while the value of group 
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immunity predicted by our Bayesian model is significantly higher than that predicted 

by R0 directly. For Covid-19, assuming its R0equal to 3, the threshold of herd 

immunity predicted by simple Bayesian model is above 95%, which is significantly 

different from the 66.6%(1-1/ R0) presumed by using R0 value. The correct prediction 

of group immunity threshold plays an important role in guiding the formulation of 

public policies such as vaccination. The herd immunity threshold predicted based on 

the simple Bayesian model ignores many factors, such as virus variation and 

individual immunity differences, so the predicted group immunity threshold is not 

necessarily accurate. However, a simple Bayesian model can reflect a problem, that 

is, the simple method of inferring group immunity threshold based on R0 value is 

inaccurate and unreliable. Although there is a significant positive correlation between 

virus reproduction coefficient R0 and group immunity threshold, the presumed 

relationship which represents as Threshold = 1- 1/ R0 is not valid. The threshold of 

herd immunity deduced by this assumption is often too low.  

We further studied the influence of vaccination rate on the final number of infections. 

We assumed that the vaccination was completed instantaneously, and the effect of 

vaccination on our model was equivalent to indirectly reducing population density. 

For example, assuming that the vaccine is 100% effective, a 70% vaccination rate is 

equivalent to 3,000 people randomly distributed in the original area instead of 10,000 

people. The relationship between the vaccination rate and the final number of 

infected people is shown in figure 3. 
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Figure3: Predicted infection probability at different vaccination coverage using a simple 

Bayesian model 

It can be seen from fig. 3 that for a virus with reproduction numberR0 = 3, on the 

premise of 100% vaccine effectiveness, there is a linear negative correlation 

between vaccination rate and reproduction numberR0 after vaccination. Yellow curve 

indicates the infection ratio of uninoculated people predicted by Bayesian model. The 

results indicate that 90% vaccination rate will cause 1.2% infection probability of the 

remaining 10% population; 80% vaccination rate will cause 7.2% infection probability 

in the remaining 20%; 70% will cause 22.8% infection probability in the remaining 30% 

and 60% will cause 40.9% infection probability in the remaining 40%. Since there is 

no available method in guiding the public to decide what vaccination coverage 

percentage is the best, the Bayesian model provides a mathematical but reasonable 

way in this optimization problem. 

 

2.4 A more realistic situation: a Bayesian model considering virus mutation, natural 

attenuation of antibodies, population geographic distribution, population age 
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structure, asymptomatic infections and many other features. 

 

For a realistic infection situation, we often need to consider more variables, such as 

the influence of virus mutation and antibody attenuation effects, the effects of 

population regional distribution, and the impact of population age structures on the 

epidemic development. At the same time, a very important aspect is that we must 

consider the dose effect on infection probability, that is, the relationship between the 

infectivity of patients and the initial amount of invading virus. A notable phenomenon 

in COVID-19 infection is the emergence of a large number of asymptomatic patients. 

Moreover, an interesting circumstance is that the proportion of serum prevalence is 

much higher than the reported number of infected people [9]. Experiments have 

confirmed that the severity of patients' symptoms is positively correlated with viral 

load in vivo [10,11]. Our model holds that different infections will possess different 

transmission potentials. The definition of ‘infection’ in our model is based on the 

existence of antibodies. For the same individual, when small amount of virus invades, 

its infectivity caused by infection will be reduced. A correction function (equation (10)) 

added to transform its infection possibility into the transmission potential after 

infected. We simulated the epidemic dynamics of a specific region with population 

distributed at four different cities. Most people in different cities have no direct contact 

opportunity, except a few of them. These few people become the links that connect 

the interactions in different regions. We assume that the mutation constant of virus is 

0.002, the attenuation constant of antibody is 0.005, the relationship between 
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infection occurrence and age follows equation (9), and the correction relationship 

between infectivity and contact probability follows equation (10). The specific 

parameters are provided in the supplementary materials, the results are shown in 

figure4. 

 

 

Figure4.A : Epidemic trend predicted by Bayesian model with the consideration of multiple 

factors 

 

 

Figure4.B：The predicted epidemic distribution at time point B using a multi-factors 

Bayesian model 
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Figure4.C：The predicted epidemic distribution at time point C using a multi-factors 

Bayesian model 

 

Figure4.D：The predicted epidemic distribution at time point D using a multi-factors 

Bayesian model 
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Figure4.E：The predicted epidemic distribution at time point E using a multi-factors 

Bayesian model 

 

Figure4.F：The predicted epidemic distribution at time point F using a multi-factors 

Bayesian model 
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Figure4.G：The predicted epidemic distribution at time point G using a multi-factors 

Bayesian model 

 

Figure4.H：The predicted epidemic distribution at time point H using a multi-factors 

Bayesian model 
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Figure4.I：The predicted epidemic distribution at time point I using a multi-factors Bayesian 

model 

 

 

 

Video 1: The forecasted epidemic geographic distribution using a multi-factors Bayesian 

model 

 

 

 

From Figure 4.A, we can see that although the public prevention polices could 

significantly affect the development of the epidemic situation, the population 

geographic distribution is also an important factor, or even a dominant factor in 

driving the trend of epidemic. Under a relatively stable public prevention strength, the 

spatial distribution of population will lead to the wave-like epidemic fluctuations and 

display multiple peak points. This trend has been fully reflected in countries and 
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regions suffering COVID-19 epidemic. Therefore, when we forecast epidemic 

development, we need to consider the spatial and geographical factors. The 

short-term decline does not necessarily represent the overall decline of the epidemic 

situation, but may be the signal of epidemic spreading from one region to another. 

From figure 4B to figure 4I, we can see the spatial migration of infection hotspots 

more clearly. For example, at time point B, the infected people mainly concentrated 

in city 1, while at time point C, the infection hotspot moved to city 2, and the epidemic 

situation in city 1 subsided to a certain extent. Another important function of Figure 

4.A is to evaluate the impact of virus mutation and antibody decay on the epidemic 

development. The function of virus mutation and antibody decay we used is a 

simplified function, which lacks sufficient data support, but it can roughly mimic the 

actual situation to a certain extent. From our modeling results, we must be prepared 

to coexist with Covid-19 for a long time, because there is a possibility, at least in 

theoretical level that the virus may not be completely eliminated by natural 

immunization or vaccination. Because of COVID-19's natural attributes, high 

mutation rate and the existence of antibody fading effect which means antibodies 

produced by human body are fading away through time, the future epidemic 

distribution may not have hotspots, but will be randomly distributed around the world 

with a relatively small probability, and Covid-19 will become a wild-distributed virus. 

Specifically, as shown in fig. 4G, at time point G when a complete herd immunization 

cycle has been realized, the epidemic may be re-occured for the second time in city 1. 

At that time, the epidemic situation is characterized by the lack of concentrated 
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hotspots, and a wild-distribution with small probability. As our whole human society, 

the complexity of its population and spatial distribution far exceeds the scale of our 

model which would provide more favorable breeding grounds for the evolution of 

viruses, so the probability of reinfection will greatly increase. The epidemic 

recurrence was already on its way even after high vaccination coverage. This has 

already been confirmed by the third epidemic wave in Britain starting from 

June,2021. 

At the same time, we can predict the threshold of group immunity in the real situation 

through parameter estimation. This threshold does not have simple correlation with 

R0and is closely related to population age structure and population contact matrix. 

For simulation described above, the calculated virus reproduction coefficient R0 is 

2.1175, which corresponds to the traditional group immunity threshold of 52.7%. 

However, the actual serum prevalence reached 66.2% after a natural herd 

immunization cycle (1-210 generations), among which 1.3% of infected people had a 

second infection. Similar phenomenon has been reported by a serum prevalence 

study of Iran, indicating at epidemic hotpots, the antibody positive rate has further 

exceeded the herd immunity threshold derived directly from R0. Specifically, 

Nazemipour and colleagues stated that 72·6% seroprevalence in Rasht city which 

did not follow the presumed threshold of herd immunity [17].  

Using the Bayesian model, we can estimate the proportion of the population needed 

to complete the first round of group immunization, and at the same time, we can 

calculate the serum prevalence at different age group. We also noticed another 
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interesting phenomenon. As shown by the purple dotted line in Figure 4, the average 

age of infection does not engage a significant alternation, which means that the 

infectivity of virus to different age groups will not change in the spatial diffusion 

process. The change of the average infection age during the epidemic may be 

caused by other factors, such as the change of exposure frequency caused by age 

factors or some intrinsic features at virus genome level. 

 

Discussion 

 

John von Neumann once famously said“With four parameters I can fit an elephant, 

and with five I can make him wiggle his trunk.” By this he meant that one should not 

be impressed when a complex model fits a data set well. With enough parameters, 

you can fit any data set. Compared with the traditional SIR method, the SIR method 

with increased parameters, including various SIRD (Susceptible, Infected, 

Recovered, Death) model, SEIRD (Susceptible, Exposed, Infected, Recovered, 

Death) model and so on, all can achieve good fitting results. Nevertheless, those 

models all fall into the trap of pure mathematical fitting. Using multi-parameters, one 

can produce better fitting results. But multiple parameters can also bring several 

critical problems: First, the solution of parameters is not unique. Second, due to the 

lack of strong physical mechanism, it does not have a good prediction effect, which 

has been confirmed in many early studies of COVID-19 epidemic [12-16]. None of 

these models can accurately predict the inflection turning point of the epidemic, let 
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alone the repeated fluctuations of the epidemic. Therefore, we should try to abandon 

the traditional idea of using parameter fitting to predict the epidemic situation, and 

develop a method that can integrate more specific, more realistic and more complex 

information into the model, which could bring more reliable and accurate prediction 

results.  

Based on this idea, we established a Bayesian model of virus infection for the first 

time. Our model can effectively consider the impact of the actual contact probability 

of population on the epidemic development. The population contact probability matrix 

can be roughly calculated according to the population spatial distribution. Besides 

that, we can also integrate in-vivo individual contact frequencies reflected in real 

situation into our model. Compared with SIR and other ordinary differential equation 

system models, Bayesian model can integrate more information, such as the contact 

frequency of different individuals, which is closely related to spatial location and 

individual relationship. Meanwhile, it can comprehensively consider the virus 

mutation effect, antibody attenuation effect, population age structure, etc. All of these 

advantages enable this model a more powerful prediction capacity, which can not 

only predict the epidemic dynamics through time, but also detect the epidemic 

hotspots distribution at different time. If we are able to access an authentic data for 

analysis, we can fit the model parameters of different regions more accurately. Using 

these parameters, we can effectively forecast the spatial and temporal trend of 

epidemic situation and predict the threshold of herd immunity. What we have to 

reiterate is that the herd immunity threshold does not have a simple relationship with 
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its R0. The actual herd immunity threshold might be significantly higher than the 

presumed one derived fromR0. This finding might have a significant influence on the 

future public decision which indicates a higher vaccination coverage need to be 

reached in order to meet the threshold of herd immunity. 

There are still many defects in our model. For example, the computational cost is 

proportional to the square of population size. Although our model has a great 

potential to stimulate with more realistic statistical data, we have not applied it to an 

in-vivo population contact situation. The future research mainly includes improving 

the algorithm efficiency, integrating in-vivo data to obtain more reliable parameters, 

and verifying the reliability of this method in the analysis of real cases. 

 

Supplementary materials 

Matlab codes can be accessed through the following link: 

https://github.com/zhaobinxu23/A-Continuous-Bayesian-Model-for-the-Simulation-of

-SARS-CoV-2-Epidemic 
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