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Supplemental Methods 

 

 

TOPMed Studies 

 

The TOPMed study population consisted of participants from 9 NHLBI cohorts: Atherosclerosis 

Risk in Communities Study (ARIC), Genetics of Cardiometabolic Health in the Amish Study 

(Amish), Mount Sinai BioMe Biobank (BioMe), Cleveland Family Study (CFS), Cardiovascular 

Health Study (CHS), Framingham Heart Study (FHS), Jackson Heart Study (JHS), Multi-Ethnic 

Study of Atherosclerosis (MESA) and Women’s Health Initiative (WHI). All participants 

provided written informed consent, and all participating studies obtained study approval from 

their local institutional review boards. Details pertaining to the local institutional review boards, 

ethical statements and institutional review board approval status are summarized in the table 

below.  

 

 

 

 

TOPMed 

Parent 

Study 

Principal 

Investigators 

TOPMed 

Accession 

Number 

Parent Study 

Consent 

Groups Ethics statement 

Review 

Status 

Amish 

Braxton D. 

Mitchell  phs000956 

Amish:HMB-

IRB-MDS 

All study protocols were approved by 

the institutional review board at the 

University of Maryland Baltimore. 

Informed consent was obtained from 

each study participant. Approved 

ARIC 

Eric 

Boerwinkle  phs001211 

ARIC:DS-

CVD-IRB/ 

ARIC:HMB-

IRB 

The ARIC study has been approved 

by the Institutional Review Boards 

(IRB) of all participating institutions, 

including the IRBs of the University 

of Minnesota, Johns Hopkins 

University, University of North 

Carolina, University of Mississippi 

Medical Center, and Wake Forest 

University. All participants gave 

written informed consent in each one 

of the study visits. Approved  

BioMe Ruth J.F. Loos  phs001644 

BioMe:HMB-

NPU 

The BioMe cohort was approved by 

the Institutional Review Board at the 

Icahn School of Medicine at Mount 

Sinai. All BioMe participants 

provided written, informed consent 

for genomic data sharing. Approved 



2 

 

CFS Susan Redline  phs000954 

CFS:DS-

HLBS-IRB-

NPU 

Cleveland Family Study was 

approved by the Institutional Review 

Board (IRB) of Case Western Reserve 

University and Mass General Brigham 

(formerly Partners HealthCare). 

Written informed consent was 

obtained from all participants. Approved  

CHS Bruce Psaty  phs001368 

CHS:DS-

CVD-MDS/ 

CHS:DS-

CVD-NPU-

MDS/ 

CHS:HMB-

MDS/ 

CHS:HMB-

NPU-MDS 

All CHS participants provided 

informed consent, and the study was 

approved by the Institutional Review 

Board [or ethics review committee] of 

University Washington. Approved 

FHS 

Vasan S. 

Ramachandran  phs000974 

FHS:HMB-

IRB-MDS/ 

FHS:HMB-

IRB-NPU-

MDS 

The Framingham Heart Study was 

approved by the Institutional Review 

Board of the Boston University 

Medical Center. All study participants 

provided written informed consent. Approved  

JHS Adolfo Correa  phs000964 

JHS:DS-

FDO-IRB/ 

JHS:DS-

FDO-IRB-

NPU/ 

JHS:HMB-

IRB/ 

JHS:HMB-

IRB-NPU 

The JHS study was approved by 

Jackson State University, Tougaloo 

College, and the University of 

Mississippi Medical Center IRBs, and 

all participants provided written 

informed consent. Approved  

MESA 

Jerome I 

Rotter  phs001416 

MESA:HMB/ 

MESA:HMB-

NPU 

All MESA participants provided 

written informed consent, and the 

study was approved by the 

Institutional Review Boards at The 

Lundquist Institute (formerly Los 

Angeles BioMedical Research 

Institute) at Harbor-UCLA Medical 

Center, University of Washington, 

Wake Forest School of Medicine, 

Northwestern University, University 

of Minnesota, Columbia University, 

and Johns Hopkins University. Approved 

WHI 

Charles 

Kooperberg  phs001237 

WHI:HMB-

IRB/ 

WHI:HMB-

IRB-NPU 

All WHI participants provided 

informed consent and the study was 

approved by the Institutional Review 

Board (IRB) of the Fred Hutchinson 

Cancer Research Center. Approved 
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QT Interval Measurement 

In the UKBB, QT intervals were obtained from resting 12-lead ECGs or 3-lead ECGs obtained 

15 seconds prior to exercise in individuals who underwent bicycle exercise testing. For every 

TOPMed substudy, QT intervals were extracted from resting 12-lead ECGs obtained closest to 

the time of DNA collection. Heart rate corrected QT intervals were calculated using the Bazett 

formula, defined as QTc = 
𝑄𝑇(𝑚𝑠)

√𝑅𝑅(𝑠)
 .    

 

 

Rare Variant Annotation in TOPMed 

 

WGS quality control was performed on TOPMed data included in Freeze 6. Details on 

sequencing methods, variant calling and initial sequencing data quality control have been 

previously described by the TOPMed Informatics Research Center.1 Briefly, WGS was 

performed at 30X sequencing depth, reads were aligned to human genome build GRCh38, 

genotype calling was performed jointly across studies, and followed by initial sample quality 

control. Additional local variant quality control was also performed for this analysis. Briefly, 

variants within low complexity regions, and variants with Hardy Weinberg Equilibrium p-value 

≤ 1x10-6, as calculated within each genetically defined ancestry, were removed. 

 

After sample and variant QC, we annotated variants with minor allele frequency (MAF) < 

0.01 using the Loss-Of-Function Transcript Effect Estimator (LOFTEE)2 and dbNSFP3 to 

identify high-confidence loss-of-function (LOF) variants in canonical transcripts. We further 

subset to variants within genes that comprise the Invitae LQTS clinical genetic testing panel: 

ANK2, CACNA1C, CALM1, CALM2, CALM3, CAV3, KCNE1, KCNE2, KCNH2, KCNJ2, 

KCNQ1, SCN5A and TRDN.4 LOF variants within SCN5A were excluded as they are 

mechanistically not expected to be associated with prolongation of the QT interval.  

 

We also identified carriers of pathogenic or likely pathogenic variants using the ClinVar 

database.5 ClinVar is a public archive of reports of human sequence variation and their 

relationships with phenotypes. We downloaded entries from 

https://ftp.ncbi.nlm.nih.gov/pub/clinvar/ on 11/28/2020, and subset to variants submitted by 

commercial genetic testing laboratories with most recent assertions after 2015. Entries in 

ClinVar classify variants as “Pathogenic”, “Likely Pathogenic”, “Uncertain Significance”, 

“Likely Benign” and “Benign” in accordance with the American College of Medical Genetics 

and Genomics and Association for Molecular Pathology guidelines.6 Variants with MAF < 0.01 

were annotated with the ClinVar dataset to identify pathogenic or likely pathogenic variants 

within the TOPMed dataset. Again, we subset to variants in canonical transcripts within the 

genes listed above.  

 

 

 

 

 

 

https://ftp.ncbi.nlm.nih.gov/pub/clinvar/
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Supplemental Results 

 

Supplemental Figure Legends 

 

Supplemental Figure 1 A. United Kingdom Biobank Flow Chart. B. TOPMed Flow Chart. AV: 

atrioventricular; WGS: whole genome sequencing.  

 

Supplemental Figure 2. Quantile-Quantile Plot for QTc Interval GWAS. 

 

Supplemental Figure 3. Association of QTc Polygenic Risk Score with QTc Interval in the 

TOPMed Cohort.  

 

Supplemental Figure 4. (A) Variation in the Predicted QTc Across Percentiles of the Polygenic 

Risk Score stratified by Putative Pathogenic Rare Variant Carrier Status in all long QT 

Syndrome genes Excluding Heterozygous Carriers of TRDN Rare Variants. (B) Multivariable 

Association of Putative Pathogenic Rare Variant Carrier Status Excluding Heterozygous Carriers 

of TRDN Rare Variants Across Tertiles of QTc Polygenic Risk Score. Low, intermediate and 

high PRS strata reflect first, second and third tertiles of the PRS in the study sample, 

respectively. 

 

Supplemental Figure 5. Multivariable Association of Putative Pathogenic Rare Variant Carrier 

Status Across Tertiles of QTc Polygenic Risk Score. (A) PRS Excluding Common Variants in 

NOS1AP and KCNE2; (B) PRS Excluding Common Variants within ± 1 MB of Long QT 

Syndrome Genes; (C) PRS Excluding Common Variants of Strong Effect Size (top 10% of 

common variants by effect size). Low, intermediate and high PRS strata reflect first, second and 

third tertiles of the PRS in the study sample, respectively. 

 

Supplemental Figure 6. Distribution of Putative Pathogenic Rare Variant Carriers in Long QT 

Syndrome Genes Across the Spectrum of QTc Polygenic Risk Score. Each point represents a 

carrier of a rare variant in the corresponding gene.  

 

Supplemental Figure 7. Variation in the Predicted QTc Across Percentiles of the Polygenic Risk 

Score stratified by Putative Pathogenic Rare Variant Carrier Status in European Ancestry (A) 

and non-European Ancestry (B) Sub-cohorts. 
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Supplemental Figure 4 
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Supplemental Figure 5 
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Supplemental Figure 6 
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Supplemental Figure 7 
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Supplemental Table 1. Summary Statistics of Genome-Wide Significant Loci in the QTc Interval GWAS 

Chr 

Position 

(hg19) RSID 

Nearest 

Gene Ref Alt MAF BETA 

p-

value 

Previously 

Reported 

1 6272137 rs709208 RNF207 A G 0.32 0.07 

1.11

E-16 

Yes-  

PMID 24952745 

1 41305072 rs55815755 KCNQ4 C A 0.02 -0.14 

5.46

E-09 

Yes-  

PMID 32527199 

1 162033890 rs12143842 NOS1AP C T 0.25 0.18 

9.49

E-98 

Yes-  

PMID 24952745 

1 169122617 rs17345156 NME7 C T 0.11 -0.10 

4.00

E-19 

Yes-  

PMID 29213071 

2 29232894 

2:29232894

_ 

GGTGTGT

GT_G TOGARAM2 

GGTG

TGTGT G 0.63 -0.04 

3.02

E-08 novel 

2 40719482 

rs20049388

3 SLC8A1 C T 0.07 -0.10 

2.10

E-11 

Yes-  

PMID 24952745 

2 179757948 rs5836663 TTN C CT 0.64 -0.07 

2.81

E-18 

Yes-  

PMID 24952745 

3 38687369 rs7373492 SCN5A T C 0.98 -0.21 

2.88

E-15 

Yes-  

PMID 24952745 

4 72115860 rs5859257 SLC4A4 T TA 0.86 -0.08 

2.41

E-12 

Yes-  

PMID 24952745 

5 137287666 

rs11637214

4 FAM13B G A 0.12 -0.07 

1.56

E-10 novel 

6 118789259 rs78757409 CEP85L C T 0.46 0.06 

1.65

E-14 

Yes-  

PMID 19305408, 

23166209 

7 150655624 rs758891 KCNH2 T C 0.34 0.07 

1.75

E-17 

Yes-  

PMID 24952745 

11 2484803 rs2074238 KCNQ1 T C 0.91 0.20 

4.29

E-56 

Yes-  

PMID 24952745 

15 93570723 rs13759 CHD2 T C 0.39 -0.04 

1.07

E-08 novel 

16 14392641 rs246181 MKL2 C T 0.37 0.05 

1.30

E-10 

Yes-  

PMID 24952745 

16 58578091 rs37039 CNOT1 C T 0.25 -0.09 

1.29

E-28 

Yes-  

PMID 24952745 

17 64306133 rs9909004 PRKCA C T 0.58 0.05 

4.27

E-10 

Yes-  

PMID 24952745 

17 68451507 rs11658767 KCNJ2 T C 0.21 -0.05 

4.46

E-09 

Yes-  

PMID 24952745 

19 7581244 

rs11339417

8 ZNF358 C A 0.61 0.04 

7.40

E-09 novel 

21 35821680 rs1805128 KCNE1 C T 0.01 0.29 

2.65

E-20 

Yes-  

PMID 24952745 
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Supplemental Table 2. Genome Wide Significant Novel Loci 

 rsID 

 2:29232894_ 

GGTGTGTGT_

G 

rs116372144 rs13759 rs113394178 

Genomic 

Coordinates 

(hg19) 

Chr2:29232894 Chr5:137287666 Chr15:93570723 Chr19:7581244 

Location Intronic Intronic 3’ UTR Intronic 

Closest Gene TOGARAM2 FAM13B CHD2 ZNF358 

EQTL Gene in 

Left Ventricle 

PPP1CB FAM13B, RP11-325L7.1, 

REEP2 

-- ZNF358 

Other Relevant 

Nearby Genes (+/- 

500kb from 

GWAS locus) 

-- MYOT, KLHL3 -- CAMSAP3, 

PNPLA6, 

 PCP2 

Cardiovascular 

Effect of Gene 

Knockout 

-- FAM13B knock-out in iPSC 

derived cardiomyocytes results 

in decreased expression of 

SCN2B and increased late 

sodium channel current density 

(bioRxiv 

doi: https://doi.org/10.1101/719

914). KLHL3 knockout mice 

develop 

pseudohypoaldosteronism type 

2 like physiology with 

associated hypertension, 

hyperkalemia and metabolic 

acidosis (PubMed 

ID:28052936).  

 

-- -- 

UTR: Untranslated region 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

https://doi.org/10.1101/719914
https://doi.org/10.1101/719914
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Supplemental Table 3. TOPMed Replication Results of Genome-Wide Significant Loci Identified in UKBB QTc 

Interval GWAS 

Chr 

UKBB 

Variant 

RSID 

Position 

(hg38) 

TOPMed 

Variant 

RSID Nearest Gene Ref Alt MAF BETA P 

2 

2:29232894_

 GGTGTGT

GT_G  29010028 

2:29232894_

 GGTGT_G* TOGARAM2    G   

GGTG

T 0.0004 -2.85 0.54 

5 rs116372144 137735355 rs17171584† KLHL3/FAM13B C T 0.08 -0.67 0.054 

15 rs13759  93027493 rs13759 CHD2  T C 0.34 -0.21 0.30 

19 rs113394178 7516358 rs113394178 ZNF358  C A 0.45 1.00 3.69x10-7 

* This variant in TOPMed represents an indel at the same genomic location as the UKBB variant, however the base-pair 

length of the insertion varies. †rs116372144 was not found in TOPMed, hence a proxy variant rs17171584 (LD=0.87 using 

1000G multiancestry data) is presented. The TOPMed study sample size was 26,976. 
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      Supplemental Table 4. Comparative Assessment of 30 Candidate PRS 

Linear Regression Model PRS tuning parameters 
Linear Regression 

Model Fit 

  LD measure (r2) P-value 

 Number 

of 

Variants  

R2 

Improvement 

in R2 over 

clinical model 

clinical model: QTc ~ age 

+ sex + beta blocker use + 

calcium channel blocker 

use + history of MI + 

history of HF + PCs 1-12 - -  -  0.083 - 

clinical model + PRS1 0.05 5x10-8 

                  

35  0.106 0.023 

clinical model + PRS2 0.05 5x10-6 

                  

56  0.103 0.020 

clinical model + PRS3 0.05 5x10-4 

                

296  0.098 0.015 

clinical model + PRS4 0.05 0.05 

           

53,057  0.089 0.006 

clinical model + PRS5 0.05 0.5 

         

246,907  0.089 0.006 

clinical model + PRS6 0.05 1 

         

338,479  0.089 0.006 

clinical model + PRS7 0.2 5x10-8 

                  

53  0.107 0.024 

clinical model + PRS8 0.2 5x10-6 

                  

88  0.103 0.019 

clinical model + PRS9 0.2 5x10-4 

                

357  0.103 0.020 

clinical model + PRS10 0.2 0.05 

           

68,585  0.093 0.010 

clinical model + PRS11 0.2 0.5 

         

410,869  0.091 0.008 

clinical model + PRS12 0.2 1 

         

601,719  0.091 0.008 

clinical model + PRS13 0.4 5x10-8 

                  

78  0.107 0.024 

clinical model + PRS14 0.4 5x10-6 

                

129  0.103 0.020 

clinical model + PRS15 0.4 5x10-4 

                

442  0.107 0.024 

clinical model + PRS16 0.4 0.05 

           

82,161  0.096 0.013 

clinical model + PRS17 0.4 0.5 

         

574,172  0.093 0.010 

clinical model + PRS18 0.4 1 

         

907,150  0.093 0.010 

clinical model + PRS19 0.6 5x10-8 

                

147  0.108 0.025 
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clinical model + PRS20 0.6 5x10-6 

                

192  0.103 0.020 

clinical model + PRS21 0.6 5x10-4 

                

565  0.110 0.027 

clinical model + PRS22 0.6 0.05 

         

289,266  0.098 0.015 

clinical model + PRS23 0.6 0.5 

         

734,462  0.094 0.011 

clinical model + PRS24 0.6 1 

      

1,237,946  0.094 0.011 

clinical model + PRS25 0.8 5x10-8 

                

338  0.101 0.018 

clinical model + PRS26 0.8 5x10-6 

                

528  0.098 0.015 

clinical model + PRS27 0.8 5x10-4 

             

1,450  0.102 0.019 

clinical model + PRS28 0.8 0.05 

         

232,648  0.095 0.012 

clinical model + PRS29 0.8 0.5 

      

1,873,276  0.092 0.009 

clinical model + PRS30 0.8 1 

      

3,334,992  0.092 0.009 

    HF: heart failure; MI: myocardial infarction; PRS: polygenic risk score.  
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Supplemental Table 5. Multivariable Association of Putative Pathogenic Rare Variants in Long QT 

Syndrome Genes with the QTc Interval  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Rare Variants Collapsed by Gene  QTc (ms)* P-value 

KCNQ1 (N=31) 30.0 (22.2 - 37.8) 6.0x10-14 

KCNH2 (N=7) 55.5 (39.2 - 71.9) 4.0x10-11 

SCN5A (N=20)† 9.2 (-1.0 - 19.4) 0.08 

KCNJ2 (N=1)‡ 78.7 (35.4 - 122.0) 4.0x10-4 

KCNE2 (N=4) 13.5 (-8.1 - 35.2) 0.22 

CACNA1C (N=2) 6.3 (-37.0 - 49.6) 0.76 

CAV3 (N=1) -1.5 (-44.8 - 41.8) 0.95 

TRDN (N=90)§ 0.8 (-3.8 - 5.4) 0.73 

CALM3 (N=1) 15.7 (-27.6 - 59.0) 0.48 

ANK2(N=3) 8.8 (-16.2 - 33.8) 0.49 

All genes (N=160) 10.9 (7.4 - 14.4) 1.1x10-9 

KCNQ1, KCNH2, SCN5A (N=58)  26.5 (20.7 - 32.3) 4.7x10-19 

All genes Excluding Heterozygous TRDN Rare 

Variant Carriers (N=72) 22.7 (17.5 - 27.9) 1.2 x 10-17 

* Models were adjusted for age, sex, beta blocker use, calcium channel blocker use and principal 

components 1-12 of ancestry. Non-carriers of rare variants in Long QT syndrome genes within 

the TOPMed cohort (N=26,816) constituted the reference group. † Only pathogenic/likely 

pathogenic variants were included for SCN5A. ‡ Only one carrier of a rare variant in KCNJ2 was 

present in the study sample, hence statistically significant associations should be cautiously 

interpreted. § Of 90 carriers of putative pathogenic rare variants in TRDN only 2 were compound 

heterozygous. No putative pathogenic rare variant carriers carried variants in more than one 

LQTS gene. 
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NHLBI TOPMed: Cardiovascular Health Study (CHS) 
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TOPMed Omics Support Acknowledgements 

TOPMed 

Accession 

Number 

TOPMed 

Project 

Parent 

Study 

TOPMed 

Phase 

Omics 

Center Omics Support 

Omics 

Type 

phs000956 Amish Amish 1 

Broad 

Genomics 3R01HL121007-01S1 WGS 

phs001211 AFGen 

ARIC 

AFGen 1 

Broad 

Genomics 3R01HL092577-06S1 WGS 

phs001211 VTE ARIC 2 Baylor 

3U54HG003273-12S2 

/ 

HHSN268201500015C WGS 

phs001644 AFGen 

BioMe 

AFGen 2.4 MGI 

3UM1HG008853-

01S2 WGS 

phs001644 BioMe BioMe 3 Baylor HHSN268201600033I WGS 

phs001644 BioMe BioMe 3 MGI HHSN268201600037I WGS 

phs000954 CFS CFS 1 NWGC 3R01HL098433-05S1 WGS 

phs000954 CFS CFS 3.5 NWGC HHSN268201600032I WGS 

phs001368 CHS CHS 3 Baylor HHSN268201600033I WGS 

phs001368 VTE CHS VTE 2 Baylor 

3U54HG003273-12S2 

/ 

HHSN268201500015C WGS 

phs000974 AFGen 

FHS 

AFGen 1 

Broad 

Genomics 3R01HL092577-06S1 WGS 

phs000974 FHS FHS 1 

Broad 

Genomics 3U54HG003067-12S2 WGS 

phs000964 JHS JHS 1 NWGC HHSN268201100037C WGS 

phs001416 AA_CAC 

MESA 

AA_CAC 2 

Broad 

Genomics HHSN268201500014C WGS 

phs001416 MESA MESA 2 

Broad 

Genomics 3U54HG003067-13S1 WGS 

phs001237 WHI WHI 2 

Broad 

Genomics HHSN268201500014C WGS 

ARIC: Atherosclerosis Risk in Communities, Amish: Genetics of Cardiometabolic Health in the Amish, 

Baylor: Baylor College of Medicine Human Genome Sequencing Center, BioMe: Mount Sinai BioMe 

Biobank, Broad Genomics: Broad Institute Genomics Platform, CFS: Cleveland Family Study, CHS: 

Cardiovascular Health Study, FHS: Framingham Heart Study, JHS: Jackson Heart Study, MESA: Multi-

Ethnic Study of Atherosclerosis, MGI: McDonnell Genome Institute, NWGC: Northwest Genomics Center, 

TOPMed: Transomics for Precision Medicine, WGS: Whole Genome Sequencing, WHI: Women’s Health 

Initiative 
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