Supplemental Material

Table of Contents

Supplemental Methods	1
Supplemental Results	4
Supplemental Figure Legends	
Supplemental Figure 1	5
Supplemental Figure 2	7
Supplemental Figure 3	
Supplemental Figure 4	9
Supplemental Figure 5	
Supplemental Figure 6	
Supplemental Figure 7	
Supplemental Table 1	
Supplemental Table 2	
Supplemental Table 3	
Supplemental Table 4	
Supplemental Table 5	
Supplemental Acknowledgements	19
References	22

Supplemental Methods

TOPMed Studies

The TOPMed study population consisted of participants from 9 NHLBI cohorts: Atherosclerosis Risk in Communities Study (ARIC), Genetics of Cardiometabolic Health in the Amish Study (Amish), Mount Sinai BioMe Biobank (BioMe), Cleveland Family Study (CFS), Cardiovascular Health Study (CHS), Framingham Heart Study (FHS), Jackson Heart Study (JHS), Multi-Ethnic Study of Atherosclerosis (MESA) and Women's Health Initiative (WHI). All participants provided written informed consent, and all participating studies obtained study approval from their local institutional review boards. Details pertaining to the local institutional review boards, ethical statements and institutional review board approval status are summarized in the table below.

TOPMed		TOPMed	Parent Study		
Parent	Principal	Accession	Consent		Review
Study	Investigators	Number	Groups	Ethics statement	Status
				All study protocols were approved by	
				the institutional review board at the	
				University of Maryland Baltimore.	
	Braxton D.		Amish:HMB-	Informed consent was obtained from	
Amish	Mitchell	phs000956	IRB-MDS	each study participant.	Approved
				The ARIC study has been approved	
				by the Institutional Review Boards	
				(IRB) of all participating institutions,	
				including the IRBs of the University	
				of Minnesota, Johns Hopkins	
				University, University of North	
				Carolina, University of Mississippi	
			ARIC:DS-	Medical Center, and Wake Forest	
			CVD-IRB/	University. All participants gave	
	Eric		ARIC:HMB-	written informed consent in each one	
ARIC	Boerwinkle	phs001211	IRB	of the study visits.	Approved
				The BioMe cohort was approved by	
				the Institutional Review Board at the	
				Icahn School of Medicine at Mount	
				Sinai. All BioMe participants	
			BioMe:HMB-	provided written, informed consent	
BioMe	Ruth J.F. Loos	phs001644	NPU	for genomic data sharing.	Approved

				Cleveland Family Study was	
				approved by the Institutional Review	
				Board (IRB) of Case Western Reserve	
				University and Mass General Brigham	
			CFS:DS-	(formerly Partners HealthCare).	
			HLBS-IRB-	Written informed consent was	
CFS	Susan Redline	phs000954	NPU	obtained from all participants.	Approved
			CHS:DS-	• •	••
			CVD-MDS/		
			CHS:DS-		
			CVD-NPU-		
			MDS/	All CHS participants provided	
			CHS:HMB-	informed consent, and the study was	
			MDS/	approved by the Institutional Review	
			CHS:HMB-	Board [or ethics review committee] of	
CHS	Bruce Psaty	phs001368	NPU-MDS	University Washington.	Approved
			FHS:HMB-	The Framingham Heart Study was	
			IRB-MDS/	approved by the Institutional Review	
			FHS:HMB-	Board of the Boston University	
	Vasan S.		IRB-NPU-	Medical Center. All study participants	
FHS	Ramachandran	phs000974	MDS	provided written informed consent.	Approved
			JHS:DS-		
			FDO-IRB/		
			JHS:DS-		
			FDO-IRB-	The JHS study was approved by	
			NPU/	Jackson State University, Tougaloo	
			JHS:HMB-	College, and the University of	
			IRB/	Mississippi Medical Center IRBs, and	
			JHS:HMB-	all participants provided written	
JHS	Adolfo Correa	phs000964	IRB-NPU	informed consent.	Approved
				All MESA participants provided	
				written informed consent, and the	
				study was approved by the	
				Institutional Review Boards at The	
				Lundquist Institute (formerly Los	
				Angeles BioMedical Research	
				Institute) at Harbor-UCLA Medical	
				Center, University of Washington,	
				Wake Forest School of Medicine,	
	. .		MESA:HMB/	Northwestern University, University	
	Jerome I	1 001416	MESA:HMB-	of Minnesota, Columbia University,	
MESA	Kotter	phs001416	NPU	and Johns Hopkins University.	Approved
				All WHI participants provided	
			WHI:HMB-	informed consent and the study was	
			IKB/	approved by the Institutional Review	
337111	Charles	1 001007	WHI:HMB-	Board (IKB) of the Fred Hutchinson	
WHI	Kooperberg	phs001237	IKR-NAN	Cancer Research Center.	Approved

QT Interval Measurement

In the UKBB, QT intervals were obtained from resting 12-lead ECGs or 3-lead ECGs obtained 15 seconds prior to exercise in individuals who underwent bicycle exercise testing. For every TOPMed substudy, QT intervals were extracted from resting 12-lead ECGs obtained closest to the time of DNA collection. Heart rate corrected QT intervals were calculated using the Bazett formula, defined as $QTc = \frac{QT(ms)}{\sqrt{RR(s)}}$.

Rare Variant Annotation in TOPMed

WGS quality control was performed on TOPMed data included in Freeze 6. Details on sequencing methods, variant calling and initial sequencing data quality control have been previously described by the TOPMed Informatics Research Center.¹ Briefly, WGS was performed at 30X sequencing depth, reads were aligned to human genome build GRCh38, genotype calling was performed jointly across studies, and followed by initial sample quality control. Additional local variant quality control was also performed for this analysis. Briefly, variants within low complexity regions, and variants with Hardy Weinberg Equilibrium p-value $\leq 1 \times 10^{-6}$, as calculated within each genetically defined ancestry, were removed.

After sample and variant QC, we annotated variants with minor allele frequency (MAF) < 0.01 using the Loss-Of-Function Transcript Effect Estimator (LOFTEE)² and dbNSFP³ to identify high-confidence loss-of-function (LOF) variants in canonical transcripts. We further subset to variants within genes that comprise the Invitae LQTS clinical genetic testing panel: *ANK2, CACNA1C, CALM1, CALM2, CALM3, CAV3, KCNE1, KCNE2, KCNH2, KCNJ2, KCNQ1, SCN5A* and *TRDN.*⁴ LOF variants within *SCN5A* were excluded as they are mechanistically not expected to be associated with prolongation of the QT interval.

We also identified carriers of pathogenic or likely pathogenic variants using the ClinVar database.⁵ ClinVar is a public archive of reports of human sequence variation and their relationships with phenotypes. We downloaded entries from <u>https://ftp.ncbi.nlm.nih.gov/pub/clinvar/</u> on 11/28/2020, and subset to variants submitted by commercial genetic testing laboratories with most recent assertions after 2015. Entries in ClinVar classify variants as "Pathogenic", "Likely Pathogenic", "Uncertain Significance", "Likely Benign" and "Benign" in accordance with the American College of Medical Genetics and Genomics and Association for Molecular Pathology guidelines.⁶ Variants with MAF < 0.01 were annotated with the ClinVar dataset to identify pathogenic or likely pathogenic variants within the TOPMed dataset. Again, we subset to variants in canonical transcripts within the genes listed above.

Supplemental Results

Supplemental Figure Legends

Supplemental Figure 1 A. United Kingdom Biobank Flow Chart. B. TOPMed Flow Chart. AV: atrioventricular; WGS: whole genome sequencing.

Supplemental Figure 2. Quantile-Quantile Plot for QTc Interval GWAS.

Supplemental Figure 3. Association of QTc Polygenic Risk Score with QTc Interval in the TOPMed Cohort.

Supplemental Figure 4. (A) Variation in the Predicted QTc Across Percentiles of the Polygenic Risk Score stratified by Putative Pathogenic Rare Variant Carrier Status in all long QT Syndrome genes Excluding Heterozygous Carriers of *TRDN* Rare Variants. (B) Multivariable Association of Putative Pathogenic Rare Variant Carrier Status Excluding Heterozygous Carriers of *TRDN* Rare Variants Across Tertiles of QTc Polygenic Risk Score. Low, intermediate and high PRS strata reflect first, second and third tertiles of the PRS in the study sample, respectively.

Supplemental Figure 5. Multivariable Association of Putative Pathogenic Rare Variant Carrier Status Across Tertiles of QTc Polygenic Risk Score. (A) PRS Excluding Common Variants in *NOS1AP* and *KCNE2*; (B) PRS Excluding Common Variants within ± 1 MB of Long QT Syndrome Genes; (C) PRS Excluding Common Variants of Strong Effect Size (top 10% of common variants by effect size). Low, intermediate and high PRS strata reflect first, second and third tertiles of the PRS in the study sample, respectively.

Supplemental Figure 6. Distribution of Putative Pathogenic Rare Variant Carriers in Long QT Syndrome Genes Across the Spectrum of QTc Polygenic Risk Score. Each point represents a carrier of a rare variant in the corresponding gene.

Supplemental Figure 7. Variation in the Predicted QTc Across Percentiles of the Polygenic Risk Score stratified by Putative Pathogenic Rare Variant Carrier Status in European Ancestry (A) and non-European Ancestry (B) Sub-cohorts.

Derivation Sub-cohort

A

Independent Validation Sub-cohort

в

Association of Putative Pathogenic Rare Variants in LQTS Genes Carrier Status with QTc Interval Across Tertiles of QTc PRS

в

С

Association of Putative Pathogenic Rare Variant in LQTS Genes Carrier Status with QTc Interval Across Tertiles of QTc PRS Excluding Common Variants in Known Genetic Modifiers

Association of Putative Pathogenic Rare Variant in LQTS Genes Carrier Status with QTc Interval Across Tertiles of QTc PRS Excluding Common Variants within 1MB of Long QT Genes

Association of Putative Pathogenic Rare Variant in LQTS Genes Carrier Status with QTc Interval Across Tertiles of QTc PRS Excluding Common Variants with Strong Effect Size

Distribution of Putative Pathogenic Rare Variant Carriers in LQTS Genes Across the Spectrum of QTc Polygenic Risk Score

12

Supp	Supplemental Table 1. Summary Statistics of Genome-Wide Significant Loci in the QTc Interval GWAS								
	Position		Nearest					р-	Previously
Chr	(hg19)	RSID	Gene	Ref	Alt	MAF	BETA	value	Reported
								1.11	Yes-
1	6272137	rs709208	RNF207	А	G	0.32	0.07	E-16	PMID 24952745
								5.46	Yes-
1	41305072	rs55815755	KCNQ4	С	Α	0.02	-0.14	E-09	PMID 32527199
								9.49	Yes-
1	162033890	rs12143842	NOS1AP	С	Т	0.25	0.18	E-98	PMID 24952745
								4.00	Yes-
1	169122617	rs17345156	NME7	С	Т	0.11	-0.10	E-19	PMID 29213071
		2:29232894							
				~~~~				• • •	
		GGTGTGT		GGTG	~	0.40	0.04	3.02	
2	29232894	<u>GT_G</u>	TOGARAM2	TGTGT	G	0.63	-0.04	E-08	novel
•	40710400	rs20049388		G	т	0.07	0.10	2.10	Yes-
2	40719482	3	SLC8A1	C	Т	0.07	-0.10	E-11	PMID 24952745
2	170757040	5026662		C	ст	0.64	0.07	2.81	Yes-
2	179757948	rs5836663	TIN	C	CT	0.64	-0.07	E-18	PMID 24952745
2	20 ( 072 ( 0	7072402		т	C	0.00	0.01	2.88	Yes-
3	3868/369	rs/3/3492	SCN5A	1	C	0.98	-0.21	E-15	PMID 24952745
4	70115970			T	ΤA	0.96	0.00	2.41 E 12	Yes-
4	/2115860	rs5859257	SLC4A4	1	IA	0.80	-0.08	E-12	PMID 24952745
5	127707666	rs1163/214	EAM12D	C	٨	0.12	0.07	1.50 E 10	noval
	13/28/000	4	FAMIJD	G	A	0.12	-0.07	E-10	Vac
								1.65	1 es- DMID 10205408
6	118780250	rs78757400	CEP851	C	т	0.46	0.06	$F_{-14}$	23166209
0	110/09239	1878737409	CEI 0JL	C	1	0.40	0.00	1 75	Ves_
7	150655624	rs758891	KCNH2	т	С	0 34	0.07	F-17	PMID 24952745
,	15005502+	13750071	Retuitz	1	C	0.54	0.07	<u>4 29</u>	Yes-
11	2484803	rs2074238	KCNO1	Т	С	0.91	0.20	<del>т.2</del> 7 Е-56	PMID 24952745
	2101003	15207 1250	neivgi	1	U	0.91	0.20	1 07	111111111111111111111111111111111111111
15	93570723	rs13759	CHD2	Т	С	0.39	-0.04	E-08	novel
- 10	20010120	1510707	01122	-	U	0.07	0.01	1.30	Yes-
16	14392641	rs246181	MKL2	С	Т	0.37	0.05	E-10	PMID 24952745
10	11072011	15210101		0	-	0.07	0.00	1.29	Yes-
16	58578091	rs37039	CNOT1	С	Т	0.25	-0.09	E-28	PMID 24952745
						0.20	0.07	4.27	Yes-
17	64306133	rs9909004	PRKCA	С	Т	0.58	0.05	E-10	PMID 24952745
-				-				4.46	Yes-
17	68451507	rs11658767	KCNJ2	Т	С	0.21	-0.05	E-09	PMID 24952745
		rs11339417			-			7.40	
19	7581244	8	ZNF358	С	А	0.61	0.04	E-09	novel
								2.65	Yes-
21	35821680	rs1805128	KCNE1	С	Т	0.01	0.29	E-20	PMID 24952745

Supplemental Table 2. Ge	nome Wide Significant Novel Loci
--------------------------	----------------------------------

	rsID							
	2:29232894_ GGTGTGTGTGT_ G	rs116372144	rs13759	rs113394178				
Genomic	Chr2:29232894	Chr5:137287666	Chr15:93570723	Chr19:7581244				
Coordinates								
(hg19)								
Location	Intronic	Intronic	3' UTR	Intronic				
Closest Gene	TOGARAM2	FAM13B	CHD2	ZNF358				
EQTL Gene in	PPP1CB	FAM13B, RP11-325L7.1,		ZNF358				
Left Ventricle		REEP2						
Other Relevant		MYOT, KLHL3		CAMSAP3,				
Nearby Genes (+/-				PNPLA6,				
500kb from				PCP2				
GWAS locus)								
Cardiovascular		FAM13B knock-out in iPSC						
Effect of Gene		derived cardiomyocytes results						
Knockout		in decreased expression of						
		SCN2B and increased late						
		sodium channel current density						
		(bioRxiv						
		doi: <u>https://doi.org/10.1101//19</u>						
		<u>914</u> ). <i>KLHL3</i> knockout mice						
		develop						
		pseudohypoaldosteronism type						
		2 like physiology with						
		associated hypertension,						
		nyperkalemia and metabolic						
		actuosis (Pudivied)						
		ID:28032930).						

UTR: Untranslated region

Supplemental Table 3. TOPMed Replication Results of Genome-Wide Significant Loci Identified in UKBB QTc Interval GWAS

Chr	UKBB Variant RSID	Position (hg38)	TOPMed Variant RSID	Nearest Gene	Ref	Alt	MAF	ВЕТА	Р
	2:29232894_								
	GGTGTGT		2:29232894_			GGTG			
2	GT_G	29010028	GGTGT_G*	TOGARAM2	G	Т	0.0004	-2.85	0.54
5	rs116372144	137735355	rs17171584 [†]	KLHL3/FAM13B	С	Т	0.08	-0.67	0.054
15	rs13759	93027493	rs13759	CHD2	Т	С	0.34	-0.21	0.30
19	rs113394178	7516358	rs113394178	ZNF358	С	A	0.45	1.00	3.69x10 ⁻⁷

* This variant in TOPMed represents an indel at the same genomic location as the UKBB variant, however the base-pair length of the insertion varies. [†]rs116372144 was not found in TOPMed, hence a proxy variant rs17171584 (LD=0.87 using 1000G multiancestry data) is presented. The TOPMed study sample size was 26,976.

Linear Regression Model	PRS tu	Linear Regression Model Fit			
	LD measure (r ² )	P-value	Number of Variants	R ²	Improvement in R ² over clinical model
clinical model: QTc ~ age + sex + beta blocker use + calcium channel blocker use + history of MI + history of HF + PCs 1-12	_	-	-	0.083	-
clinical model + PRS1	0.05	5x10 ⁻⁸	35	0.106	0.023
clinical model + PRS2	0.05	5x10 ⁻⁶	56	0.103	0.020
clinical model + PRS3	0.05	5x10 ⁻⁴	296	0.098	0.015
clinical model + PRS4	0.05	0.05	53,057	0.089	0.006
clinical model + PRS5	0.05	0.5	246,907	0.089	0.006
clinical model + PRS6	0.05	1	338,479	0.089	0.006
clinical model + PRS7	0.2	5x10 ⁻⁸	53	0.107	0.024
clinical model + PRS8	0.2	5x10 ⁻⁶	88	0.103	0.019
clinical model + PRS9	0.2	5x10 ⁻⁴	357	0.103	0.020
clinical model + PRS10	0.2	0.05	68,585	0.093	0.010
clinical model + PRS11	0.2	0.5	410,869	0.091	0.008
clinical model + PRS12	0.2	1	601,719	0.091	0.008
clinical model + PRS13	0.4	5x10 ⁻⁸	78	0.107	0.024
clinical model + PRS14	0.4	5x10 ⁻⁶	129	0.103	0.020
clinical model + PRS15	0.4	5x10 ⁻⁴	442	0.107	0.024
clinical model + PRS16	0.4	0.05	82,161	0.096	0.013
clinical model + PRS17	0.4	0.5	574,172	0.093	0.010
clinical model + PRS18	0.4	1	907,150	0.093	0.010
clinical model + PRS19	0.6	5x10 ⁻⁸	147	0.108	0.025

# Supplemental Table 4. Comparative Assessment of 30 Candidate PRS

1					1
clinical model + PRS20	0.6	5x10 ⁻⁶	192	0.103	0.020
clinical model + PRS21	0.6	5x10 ⁻⁴	565	0.110	0.027
clinical model + PRS22	0.6	0.05	289,266	0.098	0.015
clinical model + PRS23	0.6	0.5	734,462	0.094	0.011
clinical model + PRS24	0.6	1	1,237,946	0.094	0.011
clinical model + PRS25	0.8	5x10 ⁻⁸	338	0.101	0.018
clinical model + PRS26	0.8	5x10 ⁻⁶	528	0.098	0.015
clinical model $+$ PRS27	0.8	5x10 ⁻⁴	1 450	0.102	0.019
clinical model + PR S28	0.8	0.05	232 648	0.005	0.012
clinical model + PRS28	0.0	0.05	1 972 076	0.093	0.012
clinical model + PRS29	0.8	0.5	1,8/3,2/6	0.092	0.009
clinical model + PRS30	0.8	1	3,334,992	0.092	0.009

HF: heart failure; MI: myocardial infarction; PRS: polygenic risk score.

# Supplemental Table 5. Multivariable Association of Putative Pathogenic Rare Variants in Long QT Syndrome Genes with the QTc Interval

Rare Variants Collapsed by Gene	$\Delta QTc (ms)^*$	P-value
<i>KCNQ1</i> (N=31)	30.0 (22.2 - 37.8)	6.0x10 ⁻¹⁴
<i>KCNH2</i> (N=7)	55.5 (39.2 - 71.9)	4.0x10 ⁻¹¹
SCN5A (N=20) [†]	9.2 (-1.0 - 19.4)	0.08
<i>KCNJ2</i> (N=1) [‡]	78.7 (35.4 - 122.0)	4.0x10 ⁻⁴
KCNE2 (N=4)	13.5 (-8.1 - 35.2)	0.22
CACNA1C (N=2)	6.3 (-37.0 - 49.6)	0.76
<i>CAV3</i> (N=1)	-1.5 (-44.8 - 41.8)	0.95
$TRDN (N=90)^{\$}$	0.8 (-3.8 - 5.4)	0.73
CALM3 (N=1)	15.7 (-27.6 - 59.0)	0.48
ANK2(N=3)	8.8 (-16.2 - 33.8)	0.49
All genes (N=160)	10.9 (7.4 - 14.4)	1.1x10 ⁻⁹
KCNQ1, KCNH2, SCN5A (N=58)	26.5 (20.7 - 32.3)	4.7x10 ⁻¹⁹
All genes Excluding Heterozygous TRDN Rare		
Variant Carriers (N=72)	22.7 (17.5 - 27.9)	1.2 x 10 ⁻¹⁷

* Models were adjusted for age, sex, beta blocker use, calcium channel blocker use and principal components 1-12 of ancestry. Non-carriers of rare variants in Long QT syndrome genes within the TOPMed cohort (N=26,816) constituted the reference group. [†] Only pathogenic/likely pathogenic variants were included for *SCN5A*. [‡] Only one carrier of a rare variant in *KCNJ2* was present in the study sample, hence statistically significant associations should be cautiously interpreted. [§] Of 90 carriers of putative pathogenic rare variants in *TRDN* only 2 were compound heterozygous. No putative pathogenic rare variant carriers carried variants in more than one LQTS gene.

# Supplemental Acknowledgements

# NHLBI TOPMed: Genetics of Cardiometabolic Health in the Amish (Amish)

The TOPMed component of the Amish Research Program was supported by NIH grants R01 HL121007, U01 HL072515, and R01 AG18728.

# NHLBI TOPMed: Atherosclerosis Risk in Communities Study VTE cohort (ARIC)

The Atherosclerosis Risk in Communities study has been funded in whole or in part with Federal funds from the National Heart, Lung, and Blood Institute, National Institutes of Health, Department of Health and Human Services (contract numbers HHSN268201700001I, HHSN268201700002I, HHSN268201700003I, HHSN268201700004I and HHSN268201700005I). The authors thank the staff and participants of the ARIC study for their important contributions.

# NHLBI TOPMed: Mount Sinai BioMe Biobank (BioMe)

The Mount Sinai BioMe Biobank has been supported by The Andrea and Charles Bronfman Philanthropies and in part by Federal funds from the NHLBI and NHGRI (U01HG00638001; U01HG007417; X01HL134588). We thank all participants in the Mount Sinai Biobank. We also thank all our recruiters who have assisted and continue to assist in data collection and management and are grateful for the computational resources and staff expertise provided by Scientific Computing at the Icahn School of Medicine at Mount Sinai.

# NHLBI TOPMed: Cleveland Family Study - WGS Collaboration (CFS)

The Cleveland Family Study has been supported in part by National Institutes of Health grants [R01-HL046380, KL2-RR024990, R35-HL135818, and R01-HL113338].

# NHLBI TOPMed: Cardiovascular Health Study (CHS)

Cardiovascular Health Study: This research was supported by contracts HHSN268201200036C, HHSN268200800007C, HHSN268201800001C, N01HC55222, N01HC85079, N01HC85080, N01HC85081, N01HC85082, N01HC85083, N01HC85086, 75N92021D00006, and grants U01HL080295 and U01HL130114 from the National Heart, Lung, and Blood Institute (NHLBI), with additional contribution from the National Institute of Neurological Disorders and Stroke (NINDS). Additional support was provided by R01AG023629 from the National Institute on Aging (NIA). A full list of principal CHS investigators and institutions can be found at CHS-NHLBI.org. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

# NHLBI TOPMed: Framingham Heart Study (FHS)

The Framingham Heart Study (FHS) acknowledges the support of contracts NO1-HC-25195, HHSN268201500001I and 75N92019D00031 from the National Heart, Lung and Blood Institute and grant supplement R01 HL092577-06S1 for this research. We also acknowledge the dedication of the FHS study participants without whom this research would not be possible. Dr. Vasan is supported in part by the Evans Medical Foundation and the Jay and Louis Coffman Endowment from the Department of Medicine, Boston University School of Medicine.

# NHLBI TOPMed: Jackson Heart Study (JHS)

The Jackson Heart Study (JHS) is supported and conducted in collaboration with Jackson State University (HHSN268201800013I), Tougaloo College (HHSN268201800014I), the Mississippi State Department of Health (HHSN268201800015I) and the University of Mississippi Medical Center (HHSN268201800010I, HHSN268201800011I and HHSN268201800012I) contracts from the National Heart, Lung, and Blood Institute

(NHLBI) and the National Institute on Minority Health and Health Disparities (NIMHD). The authors also wish to thank the staffs and participants of the JHS.

# NHLBI TOPMed: Multi-Ethnic Study of Atherosclerosis (MESA)

Whole genome sequencing (WGS) for the Trans-Omics in Precision Medicine (TOPMed) program was supported by the National Heart, Lung and Blood Institute (NHLBI). WGS for "NHLBI TOPMed: Multi-Ethnic Study of Atherosclerosis (MESA)" (phs001416.v1.p1) was performed at the Broad Institute of MIT and Harvard (3U54HG003067-13S1). Centralized read mapping and genotype calling, along with variant quality metrics and filtering were provided by the TOPMed Informatics Research Center (3R01HL-117626-02S1, contract HHSN268201800002I). Phenotype harmonization, data management, sample-identity QC, and general study coordination, were provided by the TOPMed Data Coordinating Center (3R01HL-120393; U01HL-120393; contract HHSN2681800011). The MESA project is conducted and supported by the National Heart, Lung, and Blood Institute (NHLBI) in collaboration with MESA investigators. Support for MESA is provided by contracts 75N92020D00001, HHSN268201500003I, N01-HC-95159, 75N92020D00005, N01-HC-95160, 75N92020D00002, N01-HC-95161, 75N92020D00003, N01-HC-95162, 75N92020D00006, N01-HC-95163, 75N92020D00004, N01-HC-95164, 75N92020D00007, N01-HC-95165, N01-HC-95166, N01-HC-95167, N01-HC-95168, N01-HC-95169, UL1-TR-000040, UL1-TR-001079, and UL1-TR-001420. Also supported in part by the National Center for Advancing Translational Sciences, CTSI grant UL1TR001881, and the National Institute of Diabetes and Digestive and Kidney Disease Diabetes Research Center (DRC) grant DK063491 to the Southern California Diabetes Endocrinology Research Center.

# NHLBI TOPMed: Women's Health Initiative (WHI)

The WHI program is funded by the National Heart, Lung, and Blood Institute, National Institutes of Health, U.S. Department of Health and Human Services through contracts 75N92021D00001, 75N92021D00002, 75N92021D00003, 75N92021D00004, 75N92021D00005.

<b>TOPMed Omics S</b>	Support A	Acknowledg	gements
-----------------------	-----------	------------	---------

TOPMed						
Accession	TOPMed	Parent	TOPMed	Omics		Omics
Number	Project	Study	Phase	Center	Omics Support	Туре
				Broad		
phs000956	Amish	Amish	1	Genomics	3R01HL121007-01S1	WGS
		ARIC		Broad		
phs001211	AFGen	AFGen	1	Genomics	3R01HL092577-06S1	WGS
					3U54HG003273-12S2	
					/	
phs001211	VTE	ARIC	2	Baylor	HHSN268201500015C	WGS
		BioMe			3UM1HG008853-	
phs001644	AFGen	AFGen	2.4	MGI	01S2	WGS
phs001644	BioMe	BioMe	3	Baylor	HHSN268201600033I	WGS
phs001644	BioMe	BioMe	3	MGI	HHSN268201600037I	WGS
phs000954	CFS	CFS	1	NWGC	3R01HL098433-05S1	WGS
phs000954	CFS	CFS	3.5	NWGC	HHSN268201600032I	WGS
phs001368	CHS	CHS	3	Baylor	HHSN268201600033I	WGS
					3U54HG003273-12S2	
					/	
phs001368	VTE	CHS VTE	2	Baylor	HHSN268201500015C	WGS
		FHS		Broad		
phs000974	AFGen	AFGen	1	Genomics	3R01HL092577-06S1	WGS
				Broad		
phs000974	FHS	FHS	1	Genomics	3U54HG003067-12S2	WGS
phs000964	JHS	JHS	1	NWGC	HHSN268201100037C	WGS
		MESA		Broad		
phs001416	AA_CAC	AA_CAC	2	Genomics	HHSN268201500014C	WGS
				Broad		
phs001416	MESA	MESA	2	Genomics	3U54HG003067-13S1	WGS
				Broad		
phs001237	WHI	WHI	2	Genomics	HHSN268201500014C	WGS

ARIC: Atherosclerosis Risk in Communities, Amish: Genetics of Cardiometabolic Health in the Amish, Baylor: Baylor College of Medicine Human Genome Sequencing Center, BioMe: Mount Sinai BioMe Biobank, Broad Genomics: Broad Institute Genomics Platform, CFS: Cleveland Family Study, CHS: Cardiovascular Health Study, FHS: Framingham Heart Study, JHS: Jackson Heart Study, MESA: Multi-Ethnic Study of Atherosclerosis, MGI: McDonnell Genome Institute, NWGC: Northwest Genomics Center, TOPMed: Transomics for Precision Medicine, WGS: Whole Genome Sequencing, WHI: Women's Health Initiative

# References

- 1. ToPMed. Available from: https://www.nhlbiwgs.org/topmed-whole-genome-sequencing-methods-freeze-6
- 2. Karczewski KJ, Francioli LC, Tiao G, et al.: The mutational constraint spectrum quantified from variation in 141,456 humans. Nature 2020; 581:434–443.
- 3. Liu X, Wu C, Li C, Boerwinkle E: dbNSFP v3.0: A One-Stop Database of Functional Predictions and Annotations for Human Nonsynonymous and Splice-Site SNVs. Hum Mutat 2016; 37:235–241.
- 4. Invitae Long QT Syndrome Panel [Internet]. Available from: https://www.invitae.com/en/physician/tests/02211/
- 5. Landrum MJ, Lee JM, Benson M, et al.: ClinVar: public archive of interpretations of clinically relevant variants. Nucleic Acids Res 2016; 44:D862-868.
- 6. Richards S, Aziz N, Bale S, et al.: Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med 2015; 17:405–424.