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ABSTRACT

Mask-wearing has been a controversial measure to control the COVID-19 pandemic. While
masks are known to substantially reduce disease transmission in healthcare settings [1–3], stud-
ies in community settings report inconsistent results [4–6].

Investigating the inconsistency within epidemiological studies, we find that a commonly used
proxy, government mask mandates, does not correlate with large increases in mask-wearing in
our window of analysis. We thus analyse the effect of mask-wearing on transmission instead,
drawing on several datasets covering 92 regions on 6 continents, including the largest survey
of individual-level wearing behaviour (n=20 million) [7]. Using a hierarchical Bayesian model,
we estimate the effect of both mask-wearing and mask-mandates on transmission by linking
wearing levels (or mandates) to reported cases in each region, adjusting for mobility and non-
pharmaceutical interventions.

We assess the robustness of our results in 123 experiments spanning 22 sensitivity analyses.
Across these analyses, we find that an entire population wearing masks in public leads to a me-
dian reduction in the reproduction number 𝑅 of 25.8%, with 95% of the medians between 22.2%
and 30.9%. In our window of analysis, the median reduction in 𝑅 associated with the wearing
level observed in each region was 20.4% [2.0%, 23.3%]1. We do not find evidence that mandating
mask-wearing reduces transmission. Our results suggest thatmask-wearing is strongly affected
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by factors other than mandates.

We establish the effectiveness of mass mask-wearing, and highlight that wearing data, not man-
date data, are necessary to infer this effect.

INTRODUCTION

Face masks are one of the most prominent interventions against COVID-19, with very high uptake
in most countries [7]. However, as of June 2021, global mask-wearing has begun to decline, even in
countries with low vaccination rates (Figure 1). Given that only a minority of the global population
is projected to be vaccinated in 2021 [8]−and given novel variants of concern that are highly
transmissible and escape acquired immunity [9]−establishing the effectiveness of mask-wearing in
community settings is critical. We now review past work on the effectiveness of mask-wearing in
different settings and at different scales.

Effects of mask-wearing in healthcare settings
In the context of healthcare, N95 masks work well when worn properly by trained users−reducing
transmission of coronaviruses including SARS-CoV-2 by at least half [1, 2]. Cheng et al. (2021) [3]
find that ideal surgical masking of a non-infected person corresponds to a 65-75% reduction in their
risk of COVID-19.

Effects of mask-wearing in small-scale community settings
Clinical studies in community settings are summarised in four meta-analyses covering SARS,
COVID-19 and other respiratory infections [1, 4–6]. For fitted surgical masks, individual results
from the meta-analyses range from a 7% increase in infection risk to a 61% decrease in infection risk.
The meta-analytic mean decreases in infection risk vary from 4% to 15%, with large uncertainty.
One of the few RCTs on mask recommendations (not mandates) found a nonsignificant and low
effect [11].

Masks have at least two effects: preventing transmission to non-infected mask-wearers (‘wearer
protection’), and preventing infected wearers from infecting others (‘source control’). With the
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Fig. 1. Median mask-wearing across countries in the UMD / Facebook survey [7] in which the proportion of
people vaccinated as of 5th June 2021 was less than 40% (from [10]). Percentage is the proportion of people
who reported that, over the last week, they wore masks most or all of the time in public spaces.
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exception of [3], the studies listed above estimate individual wearer protection, rather than the
most policy-relevant quantity: the ecological effect of mass mask-wearing including all relevant
factors. These factors include source control with average mask quality [3], the nonlinear scaling
of group protection [3, 12], and risk compensation [2]. Additionally, clinical studies may not reflect
the actual distribution of protection; for instance, none of the studies detailed above include cloth
masks, one of the most common types [13, 14]. Finally, while mask-wearing is known to be strongly
mediated by cultural factors [15–17], most studies are conducted in a specific social context and
may have limited external validity.

In this study, we aim to infer the ecological effect of a large proportion of the population wearing
average masks, with average fit, in the average non-residential venue, averaging across many
cultures. We call this the mass mask-wearing effect. Our study is observational, and caution is
required when making causal interpretations (see Robustness).

Effects of mass mask-wearing, measured by mandate timing
Many studies use the timing of mask mandates as a proxy for sharp changes in the level of mass
mask-wearing. Studying 41 countries, Sharma et al. (2020) [18] infer an inconclusive mandate effect
on COVID-19 transmission centred around zero. Sharma et al. (2021) [19] is a regional study of
7 European countries [19] which finds an overall 7% to 17% (95% CI) reduction in transmission
associated with mandates. In a mixed study of mask recommendations, mask mandates, cultural
norms favouring masks, and self-reported wearing data, Leffler et al. (2020) [16] find a 26% decrease
in COVID-relatedmortality associated with their mixed proxy for mass mask-wearing. Other studies
analyse a single country: Lyu and Wehby (2020) [20] use natural experiments between US states
and find a 2% absolute decrease in case growth rate after three weeks. Mitze et al. (2020) [21] study
mandates in several regions of Germany and find a relative reduction in cases of 47%. Van Dyke et
al. (2020) [22] exploit natural experiments between Kansas counties mandating mask-wearing and
find a qualitative difference in mandating counties. In their study of US states, Chernozhukov et
al. (2021) [23] attribute a relative ∼10% reduction in case growth rate to mandates for public-facing
employees. Also studying US states, Maloney et al. (2020) [24] find no statistically significant change
in cases following mandate implementations.

Mandates are a poor proxy for wearing
Society-level studies of non-pharmaceutical interventions (NPIs) often use the timing of mask
mandates as a proxy for wearing uptake. If mandates do not correlate with large changes in mask-
wearing−for instance, due to voluntary wearing, noncompliance, or the correlation of mandate
timing with (prior) support for mask-wearing−using mandate data in lieu of wearing data will lead
to poor estimates of mask-wearing effectiveness.
Surprisingly, we find that national mandates may be a poor proxy for actual wearing. While

Betsch et al. (2020) [15] find a ∼40% increase in wearing after local mandates in Germany, no other
study finds a comparably large increase. In their study of US mandates, Rader et al. (2021) [25]
did not find a statistically significant relationship between mandates and subsequent wearing. In
their study of 4 US states, Adjodah et al. (2021) [26] find an average 23% post-mandate increase in
wearing. Maloney (2020) [27] finds a 13% post-mandate increase, in US states (in the proportion
‘frequently’ or ‘always’ wearing masks). We confirm the weak correlation between mandates and
subsequent wearing in 92 regions across 56 countries; see Results.

Effects of mass mask-wearing, measured by self-reports
Instead of using mask mandates as a proxy for wearing, we use a large (n=19.97 million) global
survey of mask-wearing [7]. (Our wearing covariate is also a proxy, because respondents self-report
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whether they have been wearing masks.) Two other studies take this approach: in their study of 24
countries, Aravindakshan et al. (2020) [28] use YouGov wearing data to infer an overall 3.9% to 10%
relative decrease in case growth rate, for a 0-100% increase in wearing. Rader et al. (2021) [25] study
US states using a novel SurveyMonkey wearing dataset to infer a ∼10% decrease in transmission
between the lowest and highest empirical quartiles of wearing (a 50-75% increase in wearing).
Our analysis goes further than past work in the quality of wearing data−100 times the sample

size, with random sampling and post-stratification−the geographical scope, the sophistication of
our infection model, the incorporation of the uncertainty in epidemiological parameters, and the
robustness of our results (123 sensitivity experiments).

RESULTS

The mandate-wearing correlation
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Fig. 2. Self-reported mask-wearing against mandate timing in all regions with a new national mask mandate,
May-Sep 2020. Dashed line is the date each mandate began being enforced.

Mask mandates are typically encoded as binary indicators that signal whether mask-wearing was
required in at least some shared spaces [16, 19, 29–31]. We draw mandate data from the OxCGRT
NPI database [32]. We estimate the effect of two mandate covariates and display their combined
effect throughout this manuscript. The first covariate represents whether masks were ‘required
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in some shared spaces, outside the home with other people present, or some situations when social
distancing [was] not possible’ (field H6 from OxCGRT, level 2 [32]). The second covariate has the
same conditions, but masking is required in all shared spaces (field H6 from OxCGRT, level 3
or higher). Wearing estimates are from the University of Maryland / Facebook COVID-19 World
Symptoms Survey [7, 33] and (for the US) the COVIDNearYou / SurveyMonkey dataset [25]. Our
covariate ‘percentage of region wearing masks’ is the weighted percentage of people who said
that, over the past 7 days, they wore masks in public most or all of time. The weights correct for
non-response bias and for demographic imbalance [33].

Figure 2 shows the average wearing trend before and after the implementation of mandates. Most
of the uptake in wearing occurs pre-mandate. In our window, the Spearman correlation coefficient
between mask-wearing and mandates is 𝜌 = 0.32, with p-value < 0.001. This is of medium strength
for a correlation between social factors [34], but inadequate if mandate data is to serve as a reliable
proxy of mask-wearing. This does not show that mandates do not cause mask-wearing, nor that
there were high levels of noncompliance; it instead shows that voluntary uptake in wearing was
more popular, and came earlier, than assumed in past work.
Our sources of wearing data begin after April 2020−that is, after the initial transition to mask-

wearing in some countries. Since it is possible that earlier mandates had persistent effects on
wearing, we investigate the correlation during the first wave using an earlier YouGov wearing
survey (see Appendix A). In regions with available data, most of the increase in mask-wearing
occurred before the earliest national government mandates, with 64% average wearing on the day
the mandate was enacted and 75% three weeks following the mandate. However, assessing the true
correlation with the available data is difficult−see Discussion for details.

Mandate and wearing effects on transmission
Using data from May to September 2020, we separately estimate the effects of mask mandates and
mask-wearing in 92 regions (Table 5) with a state-of-the-art Bayesian hierarchical model (Figure 5).
The model links wearing levels (or mandates) to the number of reported cases in each region via the
instantaneous reproduction number 𝑅𝑡 . Our model is similar to [29], but in addition to adjusting
for other NPIs, we also account for changes in mobility. We model many sources of uncertainty
through prior distributions: epidemiological properties of the virus, differences in transmission
between countries, the lag between an infection and the registration of a COVID-19 case, and the
effect of unobserved influences on 𝑅. To obtain wearing and mandate effect estimates, we run this
model twice, changing only the feature used to represent masks; the priors and functional form are
kept the same. Our model shares information across all countries to produce a statistically robust
estimate, and thus measures the international mass wearing and mandate effects.
Figure 3A shows the effects we infer for wearing and mandates in the form of percentage

reductions in 𝑅. We find that the difference between zero mask wearing and 100% self-reported
mask-wearing (most or all of the time) corresponds to a 24.6% [6%, 43%] reduction in transmission.
For mandates we see no reduction: 0.0% [−8.8%, 8.2%]. Amore comparable measure is the probability
of a positive reduction: for wearing this is 99%, while for mandates it is 46%. Together, these results
suggest that mask-wearing is associated with a notable reduction in SARS-CoV-2 transmission,
while analysis with mask mandate data yields no reduction.

Figure 3B shows the distribution of mask-wearing effects across the regions we study, using the
observed median wearing percentage in each region. In this window of analysis, we infer a median
reduction in transmission of 20.8% [2.7%, 23.2%].
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Fig. 3. (A) Posterior reduction in 𝑅 using wearing data (blue) and mandate data (green). Wearing posterior
represents the % reduction in 𝑅 when wearing increases from 0% to 100%. (B) Actualised reductions in
transmission due to mask-wearing. Each reduction is the posterior median effect given the observed median
level of wearing for each region, in this window. Dashed line = international median. (C) Estimates over 123
sensitivity experiments; each dot is the median under a different experimental condition. (‘Wearing’ denotes
the 0-100% effect.)

All code and data used are available via Github: https://github.com/g-leech/masks_v_mandates.

ROBUSTNESS

Results that are sensitive to alternative plausible modelling assumptions offer only weak evidence
and pose a risk of misinforming policy decisions. As such, we verify the robustness of our results
by performing 123 experiments across 22 sensitivity analyses (Table 1). Figure 3C shows how the
median effect of wearing or mandates changes as we vary epidemiological priors, delay distributions,
covariate effect priors, the model structure, and the data. Each point in Figure 3C is the median
effect of a different experimental condition. Our results are robust to these changes−95% of the
median reductions fall between 22.7% and 31.3%.
However, as this study is observational rather than experimental, caution is necessary when

making causal interpretations. Unobserved factors may influence 𝑅, and if their timing coincides
with the timing of mask-wearing and mandates, reductions in 𝑅 from unobserved factors may be
wrongly attributed to mask-wearing or mandates [35]−our observed factors will be confounded. For
instance, other protective behaviours may potentially confound our estimates [1, 15]. We investigate
the susceptibility of our results to such confounding in four sensitivity analyses. In the first three
(Figures 12, 14, 16), we assess how much estimates change when we exclude previously observed
factors: we exclude each NPI in turn, all NPIs at the same time, and the mobility covariate. The small
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difference between our adjusted and unadjusted estimates suggests that, unless the confounding
from unobserved factors greatly exceeds the confounding from our previously-observed factors
(that is, NPIs and mobility), our results are unlikely to be meaningfully affected by confounding
[36]. Lastly: over our window of analysis, mask-wearing increases while transmission decreases (in
many regions). Our final analysis aims to assess whether this correlation is a spurious contributor
to the substantial apparent wearing effect. We test this hypothesis by creating a fake wearing
variable for each region. Each variable has the same start and end wearing value as the true wearing
percentage and linearly interpolates between these values to capture the trend in wearing in that
region. We infer a small and uncertain effect for the fake wearing variable 7.6% [–20.2%, 30.0%]
(see Figure 15). This implies that the wearing effect we infer does not rely solely on the correlation
between transmission and the overall wearing trend in this period.

DISCUSSION

We find that mask-wearing is associated with a notable reduction in SARS-CoV-2 transmission.
Moreover, using data on mandates fails to infer any reduction in transmission. Our results suggest
that national (and US state-level) mandate data are insufficient to model the effect of mass mask-
wearing. Figure 2 illustrates several ways mandates can fail to correlate with wearing: South Korea’s
mandate came after voluntary wearing had already plateaued at 94%; conversely, in the Netherlands
and Switzerland, few people were wearing masks, even three weeks into the mandate period;
finally, in the Czech Republic, wearing eventually increased, but only long after the mandate was
implemented.

Against mandate data, not mandates
In our window, national mandates correspond to an average 8.3% increase in the number of people
who say that they are likely to wear masks most or all of the time in public spaces; however,
this may underestimate the effect of mandates on wearing. This could be the case if mandates
encourage people to wear masks in public all the time instead of most of the time, or if there is
large sub-national heterogeneity in mandate timing and wearing uptake.
Inferring mandate effects is also difficult with currently available data. We model the effect of

mandates as an instantaneous change in the reproduction number. This does not capture changes
in wearing behaviour following the announcement of a mandate but before its enforcement [21].
Nor does it account for gradual change in behaviour after the implementation of a mandate.

Heterogeneity
The variation in results discussed in the Introduction is in part due to not controlling for mask
properties and wearing behaviour. These include mask quality [37]; mask fit [37]; the venue of
wearing (e.g. in shops, schools, or public transport) [37]; mask reuse [38]; risk compensation [39];
and cultural norms [16, 37, 39]. More research into these factors is required to further reduce our
uncertainty about mask-wearing effects. We estimate the effect of mass mask-wearing, averaging
over mask properties and behaviour. Given that, in this window, most masks in use were the least
effective types (cloth or otherwise unrated masks) [1, 13, 14, 38, 40], the effectiveness of mass
wearing is likely stronger than we estimate. Finally, we report the average international effect
of mandates and do not rule out their effectiveness in particular contexts; for example, strong
correlations between mandates and wearing were observed in Ireland (Figure 2) and in Germany
(the April 2020 local mask mandates [15, 21]). Our results should be adjusted to local circumstances
by public health experts.
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Category Experiment type Description

Unobserved
factors

NPI leave-out, Figs. 12,13 Each observed NPI is excluded in turn, and
then all NPIs are.

Mobility leave-out, Fig. 14 Exclude mobility from our model.

Fake wearing covariate, Fig. 15
Use a synthetic covariate in place of
wearing that captures the wearing trend
in each region.

Mobility and wearing only,
Fig. 16 Exclude all NPIs from the model.

Epidemiological
priors

Starting 𝑅: mean of hyperprior
mean, Fig. 17

Mean of the prior over the mean of the
distribution of country-specific basic
reproduction numbers.

Starting 𝑅: scale of hyperprior
mean , Fig. 18

Scale of the prior over the mean of the
distribution of country-specific
basic reproduction.

Starting 𝑅: scale of prior scale,
Fig. 19

Scale of the prior over the noise on
country-specific basic
reproduction numbers.

Random walk noise scale,
Fig. 20

Scale of the prior over the size of
the random walk step.

Delay
distributions

Generation interval prior mean,
Fig. 21

Mean of the prior over the mean
generation interval.

Confirmation delay mean,
Fig. 22

Mean of the distribution of case
confirmation delays.

Confirmation delay dispersion,
Fig. 23

Dispersion of the distribution of case
confirmation delays.

Covariate
priors

NPI prior, Fig. 24 Prior over the NPI effects (not including
mask-wearing and mask mandates).

Wearing effect prior scale,
Fig. 25 Scale of the prior over the wearing effect.

Mandate effect prior scale,
Fig. 26 Scale of the prior over the mandate effect.

Mobility effect prior mean,
Fig. 27

Mean of the prior over the mobility
effect parameter.

Mobility effect prior scale,
Fig. 28

Scale of the prior over the mobility
effect parameter.

Model
structure

Wearing parameterisation,
Fig. 29

The functional form of the mask-wearing
effect on R.

Random walk period, Fig. 30 Number of days between random
walk steps.

Data

Region bootstrap
Figs 31, 32, 33

Sample 92 regions with replacement
from our set of 92.

Mandate leave-on, Fig. 34 A persistent mandate effect that lasts beyond
the point the mandate is lifted.

Mandate thresholds, Fig. 35 Remove the less stringent mask mandate
feature.

Window of analysis, Fig. 36 Shorter periods of analysis.

Table 1. Experiments in our sensitivity analysis
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Window of analysis
Our results are based on the period from May to September 2020. While we find similar results
for different (shorter) windows of analysis (Figure 36), mass wearing effectiveness will likely
differ with larger changes in circumstances. In particular, our period has features that may not
characterise other settings: most regions began with NPIs already active (besides mandates); public
behaviour had already changed following the formal and informal instructions of the first wave;
summer months are thought to have lower transmission [41, 42]; and a tiered regional approach
to containment was not yet implemented in most regions. However, a short window implicitly
holds many factors constant. This is useful for internal validity: when estimating a specific quantity
such as the effects of mask-wearing, a short window reduces the scope for distribution shift and
unobserved confounders.

Operationalising mask-wearing
Mask-wearing surveys are still a proxy for actual wearing behaviour, and social desirability bias
in survey responses may inflate wearing estimates [43]. In a Kenyan study, the disparity be-
tween self-reported wearing and observed wearing was 77% [44]−though this survey was not
anonymous, which may have lead to more over-reporting than anonymous surveys such as
COVIDNearYou−SurveyMonkey. If data sources over-estimate mask-wearing, then our estimate
for the effect of 100% of people wearing masks (most or all of the time) will actually correspond
to the effect of less than 100% of people wearing masks. Consequently, we would expect the true
effect of 100% of people mask-wearing to be larger than we estimate, in proportion to the amount
of over-reporting. Further, the operational definition of ‘mask-wearing’ used in the UMD survey is
not stringent: it can be applied both to a person who wears a cloth mask, only on public transport,
slightly more than half of the time; and to a person who always wears an N95 respirator when
outside their home [7]. This implies that there is scope for more and better mask-wearing, even in
regions reporting extremely high levels of wearing in our data.

Endogeneity of interventions
One concern for observational NPI studies is endogeneity: when cases are rising, people are more
likely to voluntarily mask and governments are more likely to mandate wearing [45]. However,
in our window, the correlation between new cases and mask-wearing percentage is low, 𝜌 = 0.05,
which limits the scope of this concern.

Conclusion
At a time where mask-wearing is decreasing and mask mandates are being lifted, we find that
mask-wearing is associated with a notable reduction in transmission, and that factors other than
mandates must have contributed to the worldwide uptake of mask-wearing in 2020. This presents
a difficulty for policy-makers: if wearing works but mandates are not strongly associated with
wearing, what other levers are available? Some options include free mask distribution, domestic
supply guarantees, fit training, mask quality guidelines, targeted mandates by venue, and openness
about the benefits of masks [2, 46].

METHODS

All data and code used can be downloaded via: https://github.com/g-leech/masks_v_mandates. The
preprocessing is derived from [29].
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Data
Our analysis is on the national (or US state) level, since this is the finest resolution available for all
countries in the OxCGRT NPI dataset. Table 2 summarises the modelling set, and Figure 4 shows
its component datasets.

Regions 92 (55 countries + 37 US states)
Period 1st May 2020 - 1st Sep 2020
Modelling data points 13,248 days across all regions
Mask-wearing data points 19.97m (UMD) + 558,670 (COVIDNearYou)
Data validation Manual correction of reporting errors;

filtering out non-epidemic regions;
validation against external sources

Table 2. Modelling data summary

The beginning of our window of analysis is determined by our datasets: the UMD project begins
reporting in late April 2020 [7]. We end on the 1st September 2020, at the beginning of the second
wave, a period in which national NPIs fragment into regional responses, making national analyses
less informative [19].

Daily national estimates of mask-wearing are derived from the University of Maryland (UMD) /
Facebook COVID-19World Symptoms Survey [7], which randomly samples from all active Facebook
users, and which post-stratifies to correct for nonresponse bias and demographic imbalance [33].
The mean number of individual responses per region-day is 1131. UMD does not cover the US, so
we supplement this dataset with the US data of [25], which in our window represents n=558,670
responses.
Daily confirmed COVID-19 cases are drawn from the Johns Hopkins CSSE COVID-19 Data

Repository, which collates official statistics from around the world [47].

Google 
Mobility

JHU
Cases

OxCGRT
NPIs

Rader
wearing

UMD
wearing

Fig. 4. The components of our modelling set. ‘Google’ [48]; ‘JHU’ [47]; ‘OxCGRT’ [32]; ‘UMD’ [7]; ‘Rader’
[25].

We use the Google COVID-19 Community Mobility Reports to index mobility changes in each
region [48].

See Appendix A for full data details, including preprocessing steps and country selection .

Model
We develop a hierarchical Bayesian model based on prior work [19, 29, 49] to infer the effectiveness
of mask wearing and mask mandates on COVID-19 transmission. We use the number of reported
cases in each country to infer the number of later-ascertained infections on each day. Given the
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dynamics of daily, later-ascertained infections in each region over time, we infer the instantaneous
reproduction number𝑅𝑡 . Finally, the covariate effects are estimated by relating the𝑅𝑡 to the observed
level of each covariate. Figure 5 shows the model in schematic form. The Bayesian approach allows
us to explicitly model sources of uncertainty, such as the values of epidemiological parameters,
which are known with uncertainty. We proceed by outlining the inputs of our model.

For each region 

Effect parameters 

For each day                           

                                                                                     
                                                            ORNPIs Mobility  Wearing Mandate

Basic 
reproduction

Case
confirmation 

delay

Generation
interval

Daily
reproduction

Weekly
random

walk

Covariates

Daily cases 

Daily infections 

Daily growth 

Fig. 5. Schematic of our model. Observed nodes in dark blue, latent nodes light blue. The target of our analysis
(bottom) is 𝛼𝑖 . On each day 𝑡 , region 𝑐’s reproduction number 𝑅𝑡 depends on: 1) the starting reproduction
number 𝑅∅,𝑐 , 2) the NPIs active in 𝑐 , 3) the mobility level, 4) either the wearing level or the mandate indicator,
and 5) a location-specific weekly random walk. The resulting 𝑅𝑡 estimate (in the form of a growth rate) is
used to compute the latent daily infections 𝑁𝑡 , given the distributions over the generation interval and the
previous infection count. Finally, the expected number of daily confirmed cases (𝑦𝑡 ) are computed using 𝑁𝑡

and the distribution over the delay until case confirmation.

Notation
We use 𝑐 to denote the country/region in question, and 𝑡 to index time. 𝑡 = 0 corresponds to May
1st, 2020. NPIs are indexed by 𝑖 .
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Inputs
• Non-pharmaceutical interventions (NPIs): 𝑥𝑖,𝑡,𝑐 ∈ {0, 1}. 𝑥𝑖,𝑡,𝑐 = 1 if NPI 𝑖 is active at
time 𝑡 in region 𝑐; otherwise, 𝑥𝑖,𝑡,𝑐 = 0.

• NPI reopenings: Across our regions, there are NPIs that were active at the start of our
period. We treat these NPIs, in the relevant regions, as ‘reopening’ NPIs. If NPI 𝑖 is active
in region 𝑐 at 𝑡 = 0 (i.e. we have 𝑥𝑖,0,𝑐 = 1), we subtract 1 from the feature to form 𝑥𝑖,𝑡,𝑐 .
Therefore, at the start of the window, 𝑥𝑖,𝑡,𝑐 = 0 and the effect of the NPI is absorbed into 𝑅𝜙,𝑐 .
When the NPI lifts, we would have 𝑥𝑖,𝑡,𝑐 = −1, reflecting that NPI lifting has the opposite
effect to NPI closing, which is denoted as 𝑥𝑖,𝑡,𝑐 = 1. As such, we can more easily set a prior
over 𝑅∅,𝑐 (see below).

𝑥𝑖,𝑡,𝑐 =

{
𝑥𝑖,𝑡,𝑐 − 1 if 𝑥𝑖,0,𝑐 = 1,
𝑥𝑖,𝑡,𝑐 otherwise

(1)

• Mask mandate: We have two mandate covariates: 𝑥ma1,𝑡,𝑐 and 𝑥ma2,𝑡,𝑐 . The first covariate,
𝑥ma1,𝑡,𝑐 , represents whether masks were ‘required in some or all shared spaces, outside the
home with other people present, or some situations when social distancing not possible’ (field
H6 from OxCGRT, level 2 [32]). The second covariate, 𝑥ma2,𝑡,𝑐 , has the same conditions, but
masking is required in all shared spaces (field H6 from OxCGRT, level 3 or higher). For each
mandate type, 𝑥ma,𝑡,𝑐 = 1 if a mask mandate corresponding to the description above is active
at time 𝑡 in region 𝑐; otherwise, 𝑥ma,𝑡,𝑐 = 0. 𝑥ma1,𝑡,𝑐 = 1 whenever 𝑥ma2,𝑡,𝑐 = 1, so the correct
interpretation of the effect associated with 𝑥ma2,𝑡,𝑐 is the additional effect of mandating masks
in all shared spaces, given that mask mandates were already required in some shared spaces.

• Mask wearing: The percentage of people in each region that self-report as likely to/always
wear masks in public,𝑤𝑡,𝑐 ∈ [0, 1].

• Mobility: Reduction in mobility relative to 2019 levels,𝑚𝑡,𝑐 ∈ [−∞, 1], represented as a mul-
tiplicative factor.𝑚𝑡,𝑐 = 1 represents a 100% decrease in mobility while𝑚𝑡,𝑐 = 0 represents
no change from 2019 level.

• Cases: New confirmed cases observed on day 𝑡 : 𝑦𝑡,𝑐 .

In the following sections, we introduce several variables without explicitly defining them. They
are defined in the section on Prior Distributions below.

Infection Model
The instantaneous reproduction number 𝑅𝑡,𝑐 is the expected number of infections that would arise
from each infection at time 𝑡 in region 𝑐 , all else equal. We model 𝑅𝑡 as a product of the several
terms: (i) the regional starting reproduction number 𝑅∅,𝑐 ; (ii) a product of our effect estimates for
that region-day for each of the reopening NPIs 𝑋𝑡,𝑐 , mask-wearing𝑊𝑡,𝑐 or mask mandates Ma 𝑡,𝑐
(mask-wearing is shown), and mobility𝑀 (𝑚𝑐,𝑡 )−; (iii) a weekly latent random walk per region 𝑧𝑡,𝑐 .

𝑅𝑡,𝑐 = 𝑅∅,𝑐 · 𝑋𝑡,𝑐 ·𝑊𝑡,𝑐 ·𝑀−
𝑡,𝑐 · exp(𝑧𝑡,𝑐 ).

We will now discuss each of these terms in turn:
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Latent reproduction number. The latent, unobserved reproduction number in region 𝑐 at
𝑡 = 0, assuming no mask-wearing and no active mask mandates, is represented by 𝑅∅,𝑐 .

NPIs.We assume that the introduction or lifting of an NPI leads to an instantaneous, multiplica-
tive change in transmission. Each NPI contributes exp(−𝛼𝑖 · 𝑥𝑖,𝑡,𝑐 ) to 𝑅𝑡,𝑐 . Note that this also works
for reopening NPIs−if the NPI effect (𝛼𝑖 ) is positive, a reopening (𝑥−𝑖,𝑡,𝑐 = −1) increases 𝑅:

𝑋𝑡,𝑐 = exp

(
−

𝐼∑
𝑖=1

𝛼𝑖 · 𝑥𝑖,𝑡,𝑐

)
.

Mask mandates. In the mandate model,𝑊𝑡,𝑐 is replaced with Ma 𝑡,𝑐 = exp
(
−𝛼ma1 𝑥ma1,𝑡,𝑐

)
·

exp
(
−𝛼ma2 𝑥ma2,𝑡,𝑐

)
.

Mask-wearing.𝑊𝑡,𝑐 = exp
(
−𝛼𝑤𝑤𝑡,𝑐

)
. We use the exponential form in our base model because

it is consistent with the form of the mandate effect on 𝑅. However, we test the sensitivity of our
results to two alternative mask-wearing parameterisations and find similar results (see Appendix C).

Mobility.We parameterise the Google mobility data as in [50]:

𝑀 (𝑚) = 2 exp(−𝛼𝑚𝑚)
1 + exp(−𝛼𝑚𝑚) .

At 2019 levels of mobility (𝑚 = 0), the multiplicative factor𝑀 (𝑚) = 1, leading to no effect on 𝑅𝑡 .
To set a principled prior for 𝑅∅,𝑐 , we zero-center the mobility by subtracting the initial level (see
the section on Prior Distributions):

𝑀 (𝑚𝑐,𝑡 )− = 𝑀 (𝑚𝑐,𝑡 ) −𝑀 (𝑚𝑐,0).

Random walk: The weekly random walk is computed as:

𝑧𝑡,𝑐 =


0 𝑡 ≤ 13
𝑧𝑡−1,𝑐 + 𝜀𝑓 (𝑡 ),𝑐 if 𝑡 mod 7 = 0
𝑧𝑡−1,𝑐 otherwise

where 𝑓 (𝑡) = ⌊(𝑡 − 14)/7⌋ and 𝜀 ∼ Normal(0, 𝜎RW). The random walk starts after 2 weeks to avoid
unidentifiability between 𝑅∅,𝑐 and the random walk terms at the beginning of the period.

Following [51], the resulting 𝑅𝑡 estimate is then transformed to daily growth using the generation
interval distribution, which describes the time between success infection events in a transmission
chain. 𝑁𝑡,𝑐 represents daily infections that are later ascertained, and we have 𝑁𝑡,𝑐 = 𝑔𝑡−1,𝑐 · 𝑁𝑡−1,𝑐
i.e., we multiply the infections on the previous day by the daily growth rate. Then, given an initial
(latent) infection count, we have:

𝛽GI =
𝜇GI

𝜎2
GI
, 𝛼GI =

𝜇2
GI

𝜎2
GI
,

𝑔𝑡,𝑐 = 𝛽GI

[
exp

(
𝑅𝑡,𝑐

𝛼GI

)
− 1

]
.

𝑁𝑡,𝑐 = 𝑁0,𝑐

𝑡∏
𝜏=1

(
1 + 𝑔𝜏,𝑐

)
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Observation Model
Infections at time 𝑡 are only observed as reported cases after a delay. Therefore, we convolve the
later-ascertained cases with a delay vector to produce𝑦𝑡,𝑐 , which is the expected number of reported
cases on day 𝑡 in region 𝑐 .

𝑦𝑡,𝑐 =

31∑
𝜏=0

𝑁𝑡−𝜏,𝑐 · T [𝜏] .

The forward-delay vector T (defined in Prior Distributions, below) defines the delay between the
two quantities. Finally, the observed number of reported cases, 𝑦𝑡,𝑐 , follows a Negative Binomial
distribution:

𝑦𝑡,𝑐 ∼ NegBin(𝜇 = 𝑦𝑡,𝑐 , 𝛼 = Ψ), (2)

where Ψ is the case-reporting overdispersion parameter (see below).

Prior Distributions
We place prior and hyperprior2 distributions over several parameters. Our Bayesian approach not
only captures uncertainty in unknown parameters, but allows our beliefs about certain parameters
to be adjusted if warranted by the data. We now detail the priors we use in this work.

• Region-specific 𝑅∅: 𝑅∅,𝑐 ∼ Normal(𝜇𝑅, 𝜎𝑅); .

• 𝑅∅ hyperpriors: The Epidemic Forecasting group [52] produces estimates for 𝑅𝑡,𝑐 using
methodology from [53]. The empirical mean and variability of these estimates across our
regions at the start of our period is 𝜇=1.07, 𝜎 =0.32. We use these estimates to initialise our
hyperpriors over the mean and variability of 𝑅∅,𝑐 :

𝜇𝑅 = TruncatedNormal(𝜇=1.07, 𝜎 =0.2, lower=0.1),
𝜎𝑅 = HalfNormal(𝜎 =0.4). The median of 𝜎𝑅 under this prior is 0.32.

• NPI effect: 𝛼𝑖 ∼ AsymmetricLaplace(𝑚=0, 𝜅=0.5, 𝜆=30), following [29].𝑚 is the location,
𝜅 is the asymmetry, and 𝜆 is the scale. This prior places 80% of its mass on positive NPI effects
(i.e. on reductions of 𝑅).

• Wearing effect: 𝛼𝑤 ∼ Normal(𝜇=0, 𝜎 =0.4). Unlike the NPIs above, the prior for wearing
has equal mass on positive and negative effects. This uninformative choice reflects past
uncertainty about the efficacy of mask-wearing.

• Mandate effect: 𝛼ma∼ Normal(𝜇=0, 𝜎 =0.08). The wearing prior reflects our prior beliefs
about the effect of going from 0-100% of people likely to wear masks. But in our window,
the range of𝑤𝑡,𝑐 averages only ∼20% across our regions. Accordingly, we choose a prior for
the effect of mandates that has 1/5th of the prior predictive effect as the wearing prior. In
our sensitivity analysis we modify the scale of this prior to match that of the wearing prior
(among other values), and find very similar results.

2A hyperprior is a prior distribution placed a parameter describing another prior distribution.
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• Mobility effect: 𝛼𝑚 ∼ Normal(𝜇 = 1.704, 𝜎 = 0.44). Mobility prior values are derived from
the ‘overall average mobility’ estimate in [50].
Note that each 𝛼 above is not a direct reduction in 𝑅; they are transformed into a reduction
via a specific functional form (see above).

• Initial infection counts: Initialised with the empirical median new confirmed cases of the
first day of our window, log𝑦0 = 5.46.

𝜁𝑐 ∼ Normal(𝜇=5.46, 𝜎 =5.46)
𝑁0,𝑐 = exp(𝜁𝑐 )

• Random walk noise scale, chosen as in [19]

𝜎𝑅𝑊 = HalfNormal(𝜇=0, 𝜎 =0.15) (3)
(4)

• Generation interval distribution [54, 55]:

𝜇GI ∼ Normal(𝜇=5.06, 𝜎 =0.33),
𝜎GI ∼ Normal(𝜇=2.11, 𝜎 =0.5)

• Time from infection to case confirmation T [29, 55–57]: The delay between infection
and case confirmation is distributed as

𝐷 ∼ NegBin(𝜇=10.92, 𝛼 =5.41)

We produce a forward-delay vector

T [𝑡] =
{

1
Z𝐶

𝐷 (𝑡) 𝑡 < 32
0 otherwise

,

withZ𝐶 =

31∑
𝑡 ′=0

𝐷 (𝑡 ′),

i.e., a negative binomial distribution, truncated at 31 days and normalised. Note that the
Negative Binomial 𝛼 parameter denotes the dispersion, not the variance, 𝜎2 = 𝜇 + 𝜇2

𝛼
.

• Observation noise dispersion, chosen as in [29]

Ψ ∼ HalfNormal(𝜇=0, 𝜎 =5). (5)
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SUPPLEMENTARY INFORMATION

A DATA
JHU CSSE cases database
We take daily confirmed case counts from the Johns Hopkins University Center for Systems Science
and Engineering COVID-19 Global Cases dataset, which collates official statistics from hundreds of
world regions.

Many countries fail to report case numbers over the weekend (or report weekly), which leads to
spurious periodicity. In addition, severe reporting errors (day-to-day spikes of 1000% or troughs
of less than 10% in countries with hundreds or thousands of daily cases) occur in 23 regions. We
manually mask these errors (Table 3), preventing the model from learning from those days.

The OxCGRT NPI database
We take NPI data from the Oxford COVID-19 Government Response Tracker, which collects data
at the national-level and US state-level [32]. From these we select the ‘containment’ policies, i.e.
direct attempts to reduce transmission.
Importantly, OxCGRT cannot be used for national modelling without imputation. OxCGRT

reports only one value per country-day, even if policies differ between regions. The dataset reports
the maximum stringency of each NPI, whether or not this is implemented in all regions. This leads
to the national stringency value being “hidden” behind the highest regional value, where any region
has stronger measures. As a result, when a policy is strengthened in only part of a country, we
impute the previous national value.
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Costa Rica 2020-09-20, 2020-09-21
Ethiopia 2020-06-30, 2020-07-01 to 2020-07-08

Guatemala 2020-07-18
Lebanon 2020-08-04, 2020-08-05

Libya 2020-08-23, 2020-08-24
Michigan 2020-08-21, 2020-08-22, 2020-08-29, 2020-08-30

United Kingdom 2020-07-01, 2020-07-02
Honduras 2020-05-20 to 2020-05-24, 2020-05-29, 2020-05-30

Netherlands 2020-08-11, 2020-08-12
Panama 2020-06-14, 2020-06-15

Singapore 2020-08-05
Serbia 2020-07-25, 2020-07-26

Alabama 2020-06-27, 2020-06-28
Arizona 2020-06-29

Colorado 2020-09-04, 2020-09-05
Delaware 2020-05-23, 2020-05-24

Minnesota 2020-07-04
New Mexico 2020-05-23, 2020-05-24

Oregon 2020-06-06 to 2020-06-08, 2020-06-13, 2020-06-14
South Carolina 2020-06-03 to 2020-06-07

Washington 2020-05-23, 2020-05-24
Wisconsin 2020-08-18, 2020-08-19

Iowa 2020-08-27

Table 3. Dates of reporting errors in the JHU case data

We process the NPI data as follows:
• We filter to rows with national coverage (that is, ‘Flag’ columns = 1).
• We threshold the ordinal values as in (4), creating a feature for the first mandatory level of
each policy and additional features for higher levels of school closing, workplace closing and
restrictions on gatherings. This yields 10 NPI features.

• When a policy is strengthened in only part of a country, we impute the previous national
value.

Original feature name Original scale Cutoff
C1_School closing Ordinal (0-3) 2,3
C2_Workplace closing Ordinal (0-3) 2,3
C3_Cancel public events Ordinal (0-2) Obsoleted
C4_Restrictions on gatherings Ordinal (0-4) 2, 3, 4
C6_Stay at home requirements Ordinal (0-3) 2
C7_Restrictions on internal movement Ordinal (0-2) 2
H6_Facial Coverings Ordinal (0-4) 2, 3
*_Flag Binary -

Table 4. OxCGRT NPI features and our threshold choices
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UMD / Facebook wearing dataset
We use the University of Maryland Centre for Geospatial Information Science—Facebook Research
survey as our main source of daily, self-reported wearing data [7, 33]. This is by far the largest-scale
survey of COVID mask-wearing (with 19.97 million individual responses in our window, or 1,500
individual responses per region-day). The survey uses stratified random sampling of all active
Facebook users to ensure demographic balance in each region, and also guarantees at most one
response per month per Facebook user.

An alternative survey, the Imperial College London—YouGov COVID-19 Behaviour Tracker [58]
is one hundred times smaller than UMD, uses nonrandom sampling, and has most days missing,
and is as such less suitable for modelling.

The COVIDNearYou / SurveyMonkey United States wearing dataset
The UMD dataset does not include US wearing data, while the respective CMU / Facebook US
survey [59] does not begin reporting until after our window of analysis. We supplement UMD with
data from Rader et al. [25].
The Rader data are individual survey responses on a reverse Likert scale, weighted to correct

for demographic imbalance in the sample. To convert this to the UMD scale, we take the mean of
the grocery shopping and workplace features, threshold at ≤ 2 (likely or very likely) and take the
percentage of rows in each state passing this threshold, and smooth over a 7 day window. This
results in a percentage-wearing feature which is within 1% of the Facebook US data [59] for the
period where the two datasets overlap.

Google Mobility Index
We use the Google COVID-19 CommunityMobility Reports to indexmobility changes in each region
[48]. We form a single feature by averaging the indoor public components (retail and recreation,
grocery and pharmacy, transit, and workplaces). We parameterise mobility similarly to Unwin et
al. [50].

Instantaneous reproduction number estimates
To validate our model estimates, and for the initialisation of 𝑅0, we use country 𝑅𝑡 estimates from
the Epidemic Forecasting group [52]. The estimates are calculated using a nonparametric approach
from [53]. US state-level estimates are taken from https://rt.live/.

Country selection
The OxCGRT dataset has 184 countries, or 235 counting US territories. 81 countries are missing
from the UMD wearing data, and are thus dropped when joining to OxCGRT. We manually drop 32
countries with frequent extreme periodicity in case reporting, 16 countries that have fewer than
5000 cumulative cases in our window, 10 countries not contained in the Google Mobility dataset,
and 4 countries that are missing more than 3 consecutive weeks of wearing data. Included countries
are shown in Table 5.

Mask-wearing and mask mandates in the first wave
The YouGov survey [58] begins in Jan 2020 for some locations, which enables us to check the
mandate-wearing relationship in the first wave, at the time of the earliest mandates. Figure 6
displays the estimates against mandate date (including some countries with multiple mandates).
The average reported level of mask-wearing in Jan 2020 was 32.7%. This increased to an average of
64.2% before the first national mandate implementations in March and April. There was an average
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Continent Region
Asia Bangladesh, India, Indonesia, Iraq, Israel, Japan,

Lebanon, Nepal, Philippines, Saudi Arabia,
South Korea, Singapore, United Arab Emirates

Europe Austria, Belarus, Croatia, Czech Republic,
Germany, Greece, Hungary, Ireland, Italy, Moldova,
Netherlands, Norway, Poland, Portugal, Romania,
Russia, Sweden, Turkey, Ukraine, Switzerland,
United Kingdom

Africa Egypt, Morocco, Libya, Kenya, Nigeria,
South Africa

South & Central Argentina, Bolivia, Brazil, Colombia, Costa Rica,
America Dominican Republic, El Salvador, Guatemala,

Honduras Mexico, Panama, Paraguay, Venezuela
North America Canada, Alaska, Alabama, Arkansas, Arizona,

California, Colorado, Delaware, Florida, Georgia,
Hawaii, Iowa, Illinois, Indiana, Massachusetts,
Maryland, Michigan, Minnesota, Missouri, Montana,
North Carolina, North Dakota, Nebraska, New Jersey
New Mexico, Nevada, New York, Ohio, Oklahoma,
Oregon, Pennsylvania, South Carolina, South Dakota,
Texas, Utah, Virginia, Washington, Wisconsin

Oceania Australia

Table 5. Regions included in the analysis, by continent

post-mandate increase in wearing of 11%, similar to in our modelling set (an 8.3% post-mandate
increase).

Mask recommendations
We follow past work in timing mandates with the beginning of the nominal legal enforcement
of wearing. Our source of NPI data [32] also contains an indicator for whether a non-mandatory
government recommendation to wear masks was in place. To see if this less stringent, but generally
earlier, policy has stronger correlations with subsequent mask-wearing, we repeat the exploratory
analysis from above. The correlation between wearing percentage and any form of recommendation
or mandate is weaker than before, Spearman’s 𝜌 = 0.235, 𝑝 < 0.001, compared to the mandate
correlation of 0.32.

B MODEL OUTPUTS

MCMC statistics
We use PyMC3’s implementation of Hamiltonian Monte Carlo with the No-U-Turn sampler (NUTS)
[60]. The following outputs result from running the default model with the wearing feature.

The Gelman-Rubin diagnostic 𝑅 tests for convergence of the sampler. When 𝑅 is close to 1 (i.e. <
1.01 [61]), the MCMC sampling algorithm is commonly considered to have converged [62]. Figure 7
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Fig. 6. YouGov wearing estimates over time, with mandates as dashed lines [58]. These countries are those
with both YouGov estimates and national mask mandates.

(left) therefore suggests that our MCMC sampler has converged, and that our posterior may be
used to draw valid inferences.
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Fig. 7. Gelman-Rubin 𝑅 score (left) and effective sample size (right).

We used 1000 tuning samples and 500 posterior samples for each of 4 chains, giving 6000 samples
in total. As shown in Figure 7 (right), the relative effective sample size exceeds 30% for the majority
of parameters, indicating low autocorrelation.

Prior-posterior plots
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Fig. 8. Priors vs posteriors for learned model parameters.

Figure 8 displays the priors and posteriors for parameters of our model. The posteriors are sharp
despite broad priors, which suggests that our data is informative about the parameters.

Posterior predictive distributions
Figure 9 displays predicted cases during and 3 weeks beyond our window of analysis. All 92 country
panels can be found on Github.

Posterior correlations
Figure 10 shows the posterior correlations between the attributed R reductions for each modelled
effect.
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Fig. 9. Predictive curves from selected regions. The last 20 data points are holdouts, unseen by the model.

We can use these correlations to diagnose excessively strong collinearity in our data; collinearity
wouldmanifest as strong posterior correlations [63]. However, almost all of the pairwise correlations
are −0.2 < 𝑟 < 0.1, which indicates that collinearity is manageable in our dataset. Notable negative
effect correlations exist between different levels of the same NPIs:

• Restrictions on gatherings < 100 people and Restrictions on gatherings < 1000 (-0.57);
• Restrictions on gatherings <10 and Restrictions on gatherings <100 (-0.23);
• School reopening (some schools) and School reopening (all schools) (-0.51);

All other pairwise covariate correlations have an absolute value less than 0.2.

Region panels
Figure 11 displays inferred 𝑅𝑡 against covariate values for selected countries. All 92 country panels
can be found on Github.
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Fig. 10. Posterior correlations between the covariate effects (reductions in R)
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Fig. 11. Summary plots of selected region covariates and 𝑅𝑡 estimates, summer 2020. Top-left: instantaneous
𝑅𝑡 from our model. Bottom-left: instantaneous 𝑅𝑡 estimates from EpidemicForecasting [52]. Bottom-right:
overall NPI stringency from OxCGRT [32]
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C SENSITIVITY ANALYSIS
Sensitivity analysis reveals the extent to which results depend on uncertain parameters and mod-
elling choices, and can diagnose model misspecification and excessive collinearity [63]. We vary
many of the components of our model and recompute the NPI effectiveness estimates. Overall,
we perform 22 sensitivity analyses with 123 experimental conditions. Table 1 summarises our
sensitivity analyses and their categories.
The effect sizes inferred for the other NPIs are smaller than in other work [19, 29, 49] because

they measure a different effect: in this window, most regions begin with interventions active, and
changes in NPI status are most often reopenings/lifting of bans. Such reopenings often result in an
increase in transmission that is smaller in magnitude than the decrease in transmission from the
initial policy implementation—for example, due to improved safety procedures [19].

C.1 Unobserved factors
Our data do not capture all of the government NPIs that were implemented, and we only measure
two forms of voluntary behaviour change: mask wearing and mobility. Unobserved factors may
influence 𝑅, and if their timing correlates with the timing of mask wearing or mandates, reductions
in 𝑅 from unobserved factors may be wrongly attributed to mask-wearing or mandates [35]—our
observed factors will be confounded. For instance, observational estimates like ours are potentially
confounded by the correlation between mask-wearing and other protective behaviours [1, 15]. We
investigate this phenomena by assessing howmuch effectiveness estimates change when previously
observed factors are excluded, following Sharma et al. [18].
Figures 12 and 13 show NPI effectiveness estimates when each observed NPI is excluded in

turn. Figure 14 shows the sensitivity of our effect estimates to excluding mobility from our model.
Reducing mobility has a large effect on 𝑅, so it is encouraging to see that our effects are robust to
excluding mobility from our model.

One objection to our methodology is that mask-wearing increases over our window of analysis
while transmission decreases in many regions. It is therefore possible that this correlation is a
spurious contributor to the substantial apparent wearing effect. We test this hypothesis by creating
a fake wearing variable for each region. Each variable has the same start and end wearing value as
the true wearing percentage and linearly interpolates between these values to capture the trend in
wearing in that region. We infer a small and uncertain effect for the fake wearing variable 7.6%
[–20.2%, 30.0%] (see Figure 15). This implies that the wearing effect we infer does not rely solely on
the wearing trend in this period. Figure 16 shows the sensitivity of our effect estimates to excluding
all NPIs from our wearing model.

C.2 Epidemiological priors
Figure 17 shows the sensitivity of our effect estimates to 𝜇, the mean of the prior over 𝜇 in
𝑅̃∅,𝑐 ∼ 𝑁 (𝜇, 𝜎2), where 𝜇 ∼ TruncatedNormal(0.1, 𝜇,𝜓 ). Recall that 𝑅̃∅,𝑐 is the reproduction number
at the start of the window of analysis, supposing mandates are not active and no one is wearing
masks. Figure 18 shows the sensitivity of our effect estimates to 𝜓 the scale of the prior over 𝜇
in 𝑅̃∅,𝑐 ∼ 𝑁 (𝜇, 𝜎2), where 𝜇 ∼ TruncatedNormal(0.1, 𝜇,𝜓 ). Figure 19 shows the sensitivity of our
effect estimates to 𝜔 , the scale of the prior over 𝜎 in 𝑅̃∅,𝑐 ∼ 𝑁 (𝜇, 𝜎2), where 𝜎 ∼ HalfNormal(𝜔).
Figure 20 shows the sensitivity of our effect estimates to the prior over the random walk noise
scale.
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C.3 Delay distributions
Figure 21 shows the sensitivity of the effect estimates to the mean of the distribution of the
generation interval. Figures 22 and 23 show the sensitivity of the effect estimates to the mean and
dispersion of the distribution that represents the delay between infection and case reporting.

C.4 Covariate priors
Figure 24 shows the sensitivity of our effect estimates to the prior over the NPI effects. Figure 25
shows the sensitivity of our effect estimates to the scale of the prior over the wearing effect.
Figure 26 shows the sensitivity of our effect estimates to the scale of the prior over the mandate
effect. Figure 27 shows the sensitivity of our effect estimates to the mean of the prior over the
mobility effect.

Figure 28 shows the sensitivity of our effect estimates to the scale of the prior over the mobility
effect.

C.5 Model structure
Figure 29 shows the sensitivity of our effect estimates to the parameterisation of the wearing effect.
The wearing parameterisations are defined as follows:

• Exponential (base model):𝑊 exp
𝑡,𝑐 = exp

(
−𝛼𝑤𝑤𝑡,𝑐

)
.

We use this form in our base model because it is consistent with the form of the mandate
effect on 𝑅.

• Linear :𝑊 L
𝑡,𝑐 = ReLu

(
1 − 𝛼𝑤𝑤𝑡,𝑐

)
,

where ReLU is the Rectified Linear Unit. The ReLU function preserves positive inputs and
maps negative inputs to zero. We include the linear form because it is the simplest way to
approximate wearing’s effect on transmission.

• Quadratic:𝑊 Q
𝑡,𝑐 = ReLu

(
1 − 𝛼𝑤,1𝑤𝑡,𝑐 − 𝛼𝑤,2𝑤

2
𝑡,𝑐

)
.

The quadratic form is based on a simple model: suppose two people interact, and there is a
fixed, independent probability that each of them wears a mask. Then the reduction in the
probability of transmission due to mask-wearing is quadratic in the probability that each
wears a mask. The two 𝛼 parameters correspond to source control and wearer-protection.

Figure 30 shows the sensitivity of our effect estimates to the period of the random walk. For a
period of N days the value of 𝑅𝑡,𝑐 may change without a change of covariates every N days.

C.6 Data permutations
Figures 31, 32 and 33 show the sensitivity of our effect estimates to bootstrapping our regions.
Bootstrapping assesses how much our effect estimates depend on the regions we included. For each
seed we sample 92 regions with replacement from our set of 92 regions. Each bootstrap contains
58/92 unique regions on average.
Figure 34 shows the sensitivity of our effect estimates to assuming a persistent mandate effect

that lasts beyond the point the mandate is lifted. Figure 35 shows the sensitivity of our effect
estimates when removing the less stringent mask mandate feature. Figure 36 shows the sensitivity
of our effect estimates to shorter periods of analysis. We see little variation in our effect estimates,
which implies that our results may generalise to other periods.
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Fig. 12. Sensitivity of our effect estimates to leaving out recorded interventions, simulating unobserved
confounding effects on transmission.
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Fig. 13. Round 2 (different NPIs left out): Sensitivity of our effect estimates to leaving out recorded interven-
tions, simulating unobserved confounding effects on transmission.
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Fig. 14. Sensitivity of effect estimates to excluding mobility from our model.
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Fig. 15. Effect estimates when wearing data is re-
placed by synthetic data that tracks the linear
change in wearing, in our window, for each region.
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Fig. 16. Sensitivity of effect estimates to excluding
all NPIs.
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Fig. 17. Sensitivity of effect estimates to 𝜇, the mean of the prior over 𝜇 in 𝑅̃∅,𝑐 ∼ 𝑁 (𝜇, 𝜎2), where 𝜇 ∼
TruncatedNormal(0.1, 𝜇,𝜓 ). (L): wearing, (R): mandates.
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Fig. 18. Sensitivity of our effect estimates to 𝜓 the scale of the prior over 𝜇 in 𝑅̃∅,𝑐 ∼ 𝑁 (𝜇, 𝜎2), where
𝜇 ∼ TruncatedNormal(0.1, 𝜇,𝜓 ).

 . CC-BY-ND 4.0 International licenseIt is made available under a 
granted medRxiv a license to display the preprint in perpetuity. 

 is the author/funder, who has(which was not certified by peer review)copyright holder for this preprint 
Thethis version posted June 18, 2021. ; https://doi.org/10.1101/2021.06.16.21258817doi: medRxiv preprint 

https://doi.org/10.1101/2021.06.16.21258817
http://creativecommons.org/licenses/by-nd/4.0/


Leech and Rogers-Smith, et al.

-25% 0% 25% 50% 75% 100%
Reduction in R

Mask-wearing

R∅, c Prior: variability scale (Wearing model)

0.3
0.5
Default (0.4)

-25% 0% 25% 50% 75% 100%
Reduction in R

Mask mandates

R∅, c Prior: variability scale (Mandates model)

0.3
0.5
Default (0.4)

Fig. 19. Sensitivity of our effect estimates to 𝜔 , the scale of the prior over 𝜎 in 𝑅̃∅,𝑐 ∼ 𝑁 (𝜇, 𝜎2), where
𝜎 ∼ HalfNormal(𝜔).
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Fig. 20. Sensitivity of our effect estimates to the noise scale of the weekly random walk.
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Fig. 21. Sensitivity of our effect estimates to the mean of the generation interval.
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Fig. 22. Sensitivity of our effect estimates to the mean of the delay from infection to case reporting.
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Fig. 23. Sensitivity of our effect estimates to the dispersion of the delay from infection to case reporting.
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Fig. 24. Sensitivity of our effect estimates to the prior over the NPI effects.
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Fig. 25. Sensitivity of our effect estimates to the scale
of the prior over the wearing effect.

-25% 0% 25% 50% 75% 100%
Reduction in R

Mask mandates

Mandate effect prior scale (Mandates model)

0.05
0.2
0.4
Default (0.08)

Fig. 26. Sensitivity of our effect estimates to the scale
of the prior
over the mandate effect.
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Fig. 27. Sensitivity of our effect estimates to the mean of the prior over the mobility effect.
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Fig. 28. Sensitivity of our effect estimates to the scale of the prior over the mobility effect.
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Fig. 29. Sensitivity of our effect estimates to the to the parameterisation of the wearing effect.
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Fig. 30. Sensitivity of our effect estimates to the period of the random walk.
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Fig. 31. Sensitivity of our effect estimates using random bootstrapped sets of regions. Seed 0-4.
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Fig. 32. Sensitivity of our effect estimates using random bootstrapped sets of regions. Seed 5-9.
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Fig. 33. Sensitivity of our effect estimates using random bootstrapped sets of regions. Seed 10-14.
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Fig. 34. Sensitivity of our effect estimates to assuming
a persistent
mandate effect that lasts beyond the point themandate
is lifted.
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Fig. 35. Sensitivity of our effect estimates when remov-
ing the less
stringent mask mandate feature.
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Fig. 36. Sensitivity of our effect estimates to the window of analysis.
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