
Supplemental Information

Table of contents

Table of contents 1

Methods 2
Hardware 2
Software 2
Training, tuning and predictions 2

Data splitting 2
Scalar data 4

Nested cross-validation 4
Bayesian hyperparameters optimization 4
Example 5

Images 7
Hyperparameters tuning upstream of the cross-validation 7
Cross-validation 11
Cross-validation example 11

Videos 12
Hyperparameters tuning upstream of the cross-validation 13

Time series 14
Hyperparameters tuning upstream of the cross-validation 14
Tuning of the seed using a cross-validation 16

Interpretability of the predictions 16
Scalar data-based predictors 16
Time series, image- and video-based predictors 17

Non-genetic correlates of accelerated aging 20
Imputation of the non-genetic X-variables 21
X-Wide Association Studies 22

Supplementary Figures 24

Supplementary Tables 36

Supplementary References 43



Methods

Hardware

We performed the computation for this project on Harvard Medical School’s compute cluster,

with access to both central processing units [CPUs] and general processing units [GPUs]

(Tesla-M40, Tesla-K80, Tesla-V100) via a Simple Linux Utility for Resource Management

[SLURM] scheduler.

Software

We coded the project in Python 1 and used the following libraries: NumPy 2,3, Pandas 4,

Matplotlib 5, Plotly 6, Python Imaging Library 7, SciPy 8–10, Scikit-learn 11, LightGBM 12, XGBoost

13, Hyperopt 14, TensorFlow 2 15, Keras 16, Keras-vis 17, iNNvestigate 18. We used Dash 19 to code

the website on which we shared the results. We set the seed for the os library, the numpy

library, the random library and the tensorflow library to zero.

Training, tuning and predictions

Data splitting

We split the 676,787 samples into ten data folds, while keeping all samples from the same

participant in the same fold. To ensure this, we split the 502,211 participants’ ids (referred to by

UKB as “eid”) into ten different buckets of the same size. To generate ten folds for each

2

https://paperpile.com/c/DtsYXI/VMbXd
https://paperpile.com/c/DtsYXI/Y3lWm+GZGam
https://paperpile.com/c/DtsYXI/oxAmw
https://paperpile.com/c/DtsYXI/lg78v
https://paperpile.com/c/DtsYXI/EIp5X
https://paperpile.com/c/DtsYXI/lxIXI
https://paperpile.com/c/DtsYXI/AgdcO+6dpFO+WYlde
https://paperpile.com/c/DtsYXI/qFaLt
https://paperpile.com/c/DtsYXI/7Z8qx
https://paperpile.com/c/DtsYXI/LPTEW
https://paperpile.com/c/DtsYXI/h900o
https://paperpile.com/c/DtsYXI/QEJaD
https://paperpile.com/c/DtsYXI/nTfji
https://paperpile.com/c/DtsYXI/y1VZi
https://paperpile.com/c/DtsYXI/dzJId
https://paperpile.com/c/DtsYXI/k1x9a


sub-dataset (e.g. ECGs), we took the intersection of the samples in each of the ten folds with

the samples for which the sub-dataset data was available. This method had however one

important loophole, which is that we could not guarantee that the folds for the sub-datasets

would be balanced. For example, resting ECG data was only recorded for 42,360 out of the

502,211 participants. Since the 502,211 participants are split into ten folds, a fold contains

approximately 50,221 participants. Although unlikely, we could therefore not guarantee that all

or most of the ECG samples would be attributed to the first data fold, leading to highly

unbalanced folds for the ECGs analysis. Unbalanced folds can lead to problems during the

cross-validation (see further below), as models trained on a smaller number of samples will tend

to generalize worse. One solution would have been to use a different split for each dataset, but

this would have generated problems when building the ensemble models fold by fold (see

Methods - Models ensembling). To mitigate this issue of unbalanced data folds, we developed

the following heuristic. We randomly split the 502,211 participants into ten folds, 1,000 times.

For each of these 1,000 splits, we computed for each sub-dataset the variance of the

percentages of samples in each fold. We then scored each of the 1,000 splits using the

maximum of the variance among the different sub-datasets. For example, if the ECG samples

were not evenly split for the ith split out of the 1,000 splits (e.g. fold 1: 55% of the samples,

every other fold: 5% of the samples), the variance of the sample proportions would be high,

which would yield a poor score for the ith split. Finally, we selected the split with the lowest

score as the final split for the main dataset, and for all the sub-datasets. This selected split had

a score of 5.8e-4, which means that the most unbalanced sub-dataset had a variance in its

sample size proportion between its ten folds of 5.8e-4.

3



Scalar data

Nested cross-validation

Cross-validation is a method to tune the regularization of models and prevent overfitting 20. For

the models inputting scalar data (Figure 1A in green), we tuned the hyperparameters and

generated a testing prediction for each sample using a nested 10x9-folds cross-validation. We

refer to the two nested cross-validations as the “outer” and the “inner” cross-validations. The

outer-cross validation is used to generate an unbiased testing prediction for each sample, as

opposed to a simple split of the data into a “training+validation” set on one hand, and a testing

set on the other hand, which would only generate a testing prediction for one tenth of the

dataset. The inner cross-validation is used to tune the hyperparameters more precisely,

leveraging the full inner cross-validation dataset as a validation set, as opposed to a simple data

split of the “training+validation” dataset into a training and a validation sets, which would only

use one data fold as the validation set to estimate the performance associated with a specific

combination of hyperparameters. The nested cross-validation is illustrated in Table S19.

Bayesian hyperparameters optimization

To tune the hyperparameters, we used the Tree-structured Parzen Estimator Approach 21 [TPE]

of the hyperopt python package 22. TPE is a sequential Bayesian hyperparameters optimization

method that iteratively suggests the next most promising hyperparameters combination as a

function of the hyperparameters combinations that have already been tested, by building a

probabilistic representation of the objective function. We set the number of iterations to 30. For

each model, 30 different hyperparameter combinations are iteratively tested before selecting the

best performing one. The hyperparameters names and their ranges defining the

4

https://paperpile.com/c/DtsYXI/RmTv7
https://paperpile.com/c/DtsYXI/cLNWM
https://paperpile.com/c/DtsYXI/IlJDV


hyperparameters space can be found in Table S39. It might be of interest to other researchers

that we initially tuned the hyperparameters using a random search 23 with the same number of

iterations, and we did not observe a significant improvement in the model’s performance after

implementing the Bayesian hyperparameters optimization.

Example

For the sake of clarity, let us walk through a concrete example, which is illustrated in Table S41.

Suppose we want to generate unbiased predictions for every sample in a dataset using an

elastic net. First, let us generate the testing prediction for the data fold F9, which is performed

by the first fold of the outer cross-validation (outer cross-validation fold 0). We select the data

fold F9 out of the ten data folds as the testing fold, and we select the remaining nine data folds

as “training+validation” folds for the inner cross-validation. We scale and center the target (age)

and the predictors using the mean and standard deviation values of the variables on the

“training+validation” dataset. We then enter the first inner-cross validation.

For the first inner cross-validation fold, we select the data fold F8 as the validation set, and the

remaining eight “training+validation” data folds as the training set. We re-scale and center age

and the predictors in the training and the validation sets using the mean and standard deviation

values of the training set. We train the model on the eight training data folds with the first

hyperparameters combination sampled by the TPE algorithm (one value for alpha and one

value for l1_ratio) and generate validation predictions on the validation fold (data fold F8), which

we unscale. This completes the first of the nine inner cross-validation folds (Inner CV fold 0). We

then permute the nine inner data folds. We scale the age and the predictors using the mean and

standard deviation computed on the new training set. Then we train the model with the same

5

https://docs.google.com/document/d/16MIja2f1sPfh3E_NlAhGjnA0Bocjji1xG2NpQ9POlD4/edit#sta_hyperparameters_space
https://paperpile.com/c/DtsYXI/S3kA1
https://docs.google.com/document/d/16MIja2f1sPfh3E_NlAhGjnA0Bocjji1xG2NpQ9POlD4/edit#sta_nestedCV


first combination of hyperparameters on eight data folds, leaving aside the data fold F9 (still

being used as the testing set for the outer cross-validation) and the data fold F7 (now being

used as the validation set for the inner cross-validation). We then use the new trained model to

generate validation predictions on the data fold F7, which we unscale. This completes the

second of the nine inner-cross validation folds (Inner CV fold 1). We then reiterate these inner

permutation and training processes seven more times, until every data fold in the nine

“training+validation” data folds is used as the validation set once. At this point, we concatenate

the validation predictions from these nine validation folds to obtain the overall validation

predictions associated with the first hyperparameters combination, and compute the associated

performance metric (e.g. RMSE). This completes the inner-cross validation for the first

hyperparameters combination.

We then perform the same 9-folds inner cross-validation, this time with the second

hyperparameters combination suggested by the TPE algorithm. We iterate this process 28 more

times, until 30 different hyperparameters combinations have iteratively been tested. Next, we

select the hyperparameter combination that yielded the best validation performance (e.g.

minimum RMSE), and we retrain a model on the whole nine “training+validation” data folds (all

data folds except for data fold #1), using this best performing hyperparameters combination.

This completes the first inner cross-validation.

We then use the model to generate unbiased predictions on the unseen testing set (data fold

F9) and record these predictions. By anticipation for the ensembling algorithm (see Methods -

Models ensembling) we also need to compute validation predictions on the data fold F8. We do

this by training a model on all the data folds aside from the validation fold (data fold F8) and the

6



testing fold (data fold F9), with the selected hyperparameters combination. We then use this

trained model to compute predictions on the validation fold (data fold F8) and record these

predictions, after unscaling them. This completes the first of the ten outer cross-validation folds

(outer cross-validation 0).

We then complete the second outer cross-validation fold (outer cross-validation 1), this time

using the data fold F8 as the testing dataset, to obtain unbiased testing predictions on this data

fold, as well as validation predictions on the data fold F7. We reiterate the process eight more

times to obtain the testing and validation predictions on the remaining data folds. We then

concatenate the testing predictions from the ten data folds to obtain our final testing predictions

for the model. Similarly, we concatenate the validation predictions from the ten data folds to

obtain our final testing predictions for the model, which will later be used during ensemble

models building and model selection (see Methods - Models ensembling).

The final validation and testing predictions for each data fold are therefore not necessarily

associated with the same hyperparameters combination. It is also important to notice that we

performed a single outer cross-validation, but that we performed a separate inner-cross

validation for each outer cross-validation fold (hence the word “nested”), for a total of ten inner

cross-validations per outer cross-validation fold.

Images

Hyperparameters tuning upstream of the cross-validation

The hyperparameters we tuned were the number of added fully connected dense layers, the

number of nodes in these layers, their activation function, the optimizer, the initial learning rate,

the weight decay, the dropout rate, the data augmentation amplitude and the batch size.

7



Repeatedly tuning the values of the hyperparameters for different deep neural networks

architectures and on the different cross-validation folds would have been prohibitively time and

resource consuming. Instead, we sequentially explored how each hyperparameter was affecting

the training and validation performances for a single architecture (InceptionV3) on a single cross

validation fold (fold #0, see Methods - Training, tuning and predictions - Images -

Cross-validation for the detailed description of the cross-validation) on a subset of the images

datasets (raw sagittal brain images, eye fundus images, long axis carotid ultrasound images,

four-chamber view heart MRI images, raw liver MRI images and coronal spine images). We then

extrapolated the hyperparameter values to the other architectures, datasets and cross-validation

folds. The hyperparameters combinations tested during the tuning can be found in Table S20.

First, we maximized the batch size for each architecture. The maximum number of images per

batch depends on the memory of the GPU and the size of the architecture, which itself depends

on the dimensions of the image. We used a batch size of 32 for InceptionV3 and 8 for

InceptionResNetV2.

Then, we tested the learning rates, including 1e-6, 1e-5, 1e-4, 1e-3, 1e-2 and 1e-1. We

observed that learning rates larger than 1e-4 prevented the model from converging for some

runs. Second, we did not observe significant differences between the results obtained with

learning rates smaller than 1e-4. We therefore set the initial learning rate to be 1e-4 for all

models to shorten the time to convergence while ensuring that the learning rate was small

enough to allow convergence and the finding of a local minima for the loss function.

8



Then we tested three different optimizers to perform the gradient descent: Adam 24, Adadelta 25

and RMSprop 26. We did not observe any significant differences between the optimizers, so we

set the optimizer to be Adam.

We then added different numbers of fully connected layers between the base CNN and side

CNN’s concatenated outputs and the final activation layer. We set the number of nodes to be

1,024 in the first added layer and then decreased the number of nodes by a factor of two for

each successive layer. For example, if we added three fully connected layers, the number of

nodes was 1024, 512 and 256. We added zero, one and five layers. We did not observe

significant differences in the performance of the different architectures, so we set the number of

fully connected layers to one.

We then tested powers of two from 16 to 2,048 as the number of nodes in this single layer. We

did not observe significant differences between these architectures, so we set the number of

nodes to be 1,024 to keep the number close to the initial number of nodes in the imported CNN

architectures, as these were initially used to perform classification between 1,000 categories.

We tested two different activation functions for the activation functions of the fully connected

layers we added in the side neural network and before the final linear layer. We did not observe

any significant differences between the rectified linear units [ReLU] 27 and the scaled

exponential linear units [SELU] 28 as activation functions, so we used the more common ReLU.

We then tested different levels of data augmentation. We introduced a hyperparameter that we

called “data augmentation factor”. The data augmentation factor modulates the amount of

9

https://paperpile.com/c/DtsYXI/5cU7V
https://paperpile.com/c/DtsYXI/3awLk
https://paperpile.com/c/DtsYXI/6ZnVy
https://paperpile.com/c/DtsYXI/LCQWf
https://paperpile.com/c/DtsYXI/AjCBn


variation introduced by the data augmentation, while preserving the ratio between the different

transformations. For example, a data augmentation factor of one is equivalent to the default

data augmentation (see Preprocessing - Data augmentation - Images), but a data augmentation

factor of two will double the ranges of the possible values sampled and the expected values for

the vertical shift, the horizontal shift, the rotation and the zoom on the original images. We

tested the following values for the data augmentation factor: 0, 0.1, 0.5, 1, 1.5 and 2. We found

that different values for the data augmentation factor hyperparameter yielded similar results, as

long as the data augmentation factor was not zero. We therefore set the data augmentation

factor to be one when training the final models.

We then tuned the dropout rate for the fully connected layers we added. We tested the following

values: 0, 0.1, 0.25, 0.3, 0.5, 0.75, 0.9 and 0.95. We observed that a dropout rate of 0.95 led to

underfitting and that smaller values reduced overfitting on the training set but without improving

the validation performance. As a consequence, we used a dropout rate of 0.5.

Finally, we tuned the weight decay. We tested the following values: 0, 0.1, 0.2, 0.3, 0.4, 0.5, 1, 5,

10 and 100. For the larger datasets, we found that weight decay values as low as 0.4 could lead

to underfitting. We found that lower weight decay values reduced overfitting on the training set

without significantly improving the validation performance. We set the weight decay to 0.1.

Altogether, we found that hyperparameter tuning had little effect on the validation performance

as long as extreme hyperparameters values were not selected.

10



Cross-validation

Training deep convolutional neural networks on images and videos is too time and resource

consuming to perform a nested cross-validation. Therefore, we tuned the hyperparameters

during the preliminary analysis, as described above. After hyperparameters tuning, we

performed a simple outer cross-validation to obtain a testing prediction for each sample of the

datasets, but we replaced the inner cross-validation with a simple split between the training fold

and the validation fold (Table S21). Although the hyperparameters were already tuned, a

validation set was still required for two reasons: (1) to perform early stopping 29, a form of

regularization. (2) to generate a set of validation predictions that are necessary for efficient

ensemble building (see Methods - Models ensembling) and model selection. During the

cross-validation, we scaled and centered the target variable (chronological age) as well as the

side predictors (sex and ethnicity) around zero with a standard deviation of one, using the

training summary statistics. Scaling the target and the input helps prevent the issues of

exploding and vanishing gradients 30,31.

Cross-validation example

For the sake of clarity, let us walk through an example. Let us say that we want to generate

unbiased predictions for every sample in a dataset using a CNN. First, we select the data fold

#0 as the validation set, the data fold #1 as the testing set, and the remaining data folds (#2-9)

as the training set. Then we scale and center the target (age), and the side predictors (sex and

ethnicity) using the training mean and standard deviation: for each of the variables, we subtract

the training mean to the variable on both the training, the validation and the testing set, and we

divide it by the training standard deviation. We then train the model on the training set until

convergence and select the architecture’s parameters (also known as “weights”) associated with

11

https://paperpile.com/c/DtsYXI/XgmC8
https://paperpile.com/c/DtsYXI/4bqT6+Yla2P


the epoch that yielded the lowest validation RMSE. We then use the optimal weights to generate

validation predictions for the data fold #0 and testing predictions on the data fold #1. Finally, we

unscale the validation and testing predictions by multiplying them by the initial age training

standard deviation before adding the initial age training mean to them. This completes the first

cross-validation fold.

We then reiterate the process, this time using the data fold #1 as the validation set, the data fold

#2 as the testing set, and the remaining data folds (#0 and #3-9) as the training set. We use the

optimized weights to generate the validation predictions on the data fold #2, and the testing

predictions on the data fold #3. We unscale the validation and testing predictions. This

completes the second cross-validation fold. We reiterate the process eight more times to

complete the cross-validation. We then concatenate the validation predictions from the ten data

folds to obtain the final validation predictions, and the testing predictions from the ten data folds

to obtain the final testing predictions.

Videos

We used a similar pipeline for the videos as we did for the images. First, we tuned the

architecture and the hyperparameters upstream of the cross-validation, during the preliminary

analysis. After setting the hyperparameters, we used the same cross-validation pipeline as for

the images-based models to perform early stopping and to generate a testing prediction for

every sample.

12



Hyperparameters tuning upstream of the cross-validation

Because training three-dimensional convolutional architectures to convergence requires

computational times as long as one week, tuning the hyperparameters using a grid search or a

random search would have been prohibitively time consuming. Instead, we sequentially tuned

the hyperparameters using the data fold #0 as the validation set and the data folds #2-9 as the

training set. We trained the models on the three-chamber view of the heart videos and

extrapolated the hyperparameters obtained to other cross-validation folds and views of the

heart.

First, we tuned the architecture of the convolutional block. We set as hyperparameter the

number of filters in the last (fourth) convolutional layer. We tested 512, 758 and 1,024 filters, and

we automatically set the number of filters in the penultimate (third) layer to be half that number.

We found 1,024 to be the optimal number of filters. We also tested doubling the third

convolutional layer. The two convolutions are stacked without using a max pooling operation,

similarly to the original C3D 32 architecture. We set the number of filters for these two

convolutional layers to be 128, which is twice the number of filters in the previous convolutional

layer, and we set the number of filters in the fourth layer as a hyperparameter: 256, 512 and

1,024. We found that the double convolutional layer did not perform the single convolutional

layer, so we conserved the latter architecture.

Then, we tuned the architecture of the dense block. We first set the number of dense layers to

two, with the last layer being the final prediction layer with a single node. We set the number of

nodes in the first dense layer as a hyperparameter and tested the following values: 512, 758

13

https://paperpile.com/c/DtsYXI/JCycv


and 1,024. We found 1,024 to be the optimal number of nodes. We then tested adding a third

fully connected layer between the first and the final dense layer with either 512, 768 or 1,024

nodes. We found that 512 was the optimal number of nodes, but that the three dense layers

architecture underperformed compared to the two dense layers, so we conserved the latter.

Finally, we tuned the regularization hyperparameters. We tested dropout after the first

convolutional layer with the following dropout rates: 0.2, 0.3 and 0.5. We found that a dropout

rate of 0.2 was optimal and improved the generalization of the model. We then tested weight

decay on this same layer with the following L2 regularizations: 1e-4, 1e-3, 1e-2. We found that

the optimal value was 1e-3 but that using weight decay led to the model underperforming, so

our final model does not use weight decay. Finally, we tuned the data augmentation parameter.

We randomly rotated the images in the spatial plane to prevent overfitting, sampling the rotation

angle from the uniform distribution [-angle, +angle]. We tested three different angle values: three

degrees, five degrees and seven degrees. We found the optimal value to be three degrees.

Time series

We tuned the time series models in two steps. (1) We tuned the hyperparameters using a single

cross-validation fold. (2) We tuned the seed and performed early stopping (patience=40) using a

simple cross-validation, to generate a testing sample size for every sample. These two steps are

described in detail below.

Hyperparameters tuning upstream of the cross-validation

The hyperparameters we tuned were the number of convolutional layers in the architecture, the

number of nodes in the dropout rate and the strength of the kernel and the bias regularizations.

14



The tuned the hyperparameters using a single cross-validation fold. Specifically, we used the

data fold #0 as validation set and the data folds #2-9 as training set. We used the same pipeline

as for the images and the videos, with two differences. (1) Because the training of models built

on time series was significantly faster than the training of models built on images or videos, we

used a grid search to tune the hyperparameters rather than tune them sequentially. (2) We

scaled the input differently. For the models built on the ECGs and on the raw acceleration data

across the full week, we did not scale the data because we adapted architectures from

publications in which the input has not been scaled. The models built on PWA, features

extracted from acceleration data and three-dimensional walking data, we normalized every

sample separately by dividing each lead by the absolute value of its maximal value for the

sample. We then used this maximum value as a scalar predictor which we refer to in this paper

as “scaling factor”.

We tested architectures with one to ten convolutional layers for the convolutional block. The

default number of filters for each convolutional layer doubled with every layer, starting from 16

and capped at 1,024. For example, the default number of filters for a nine layers deep

convolutional block would be 16, 32, 64, 128, 256, 512, 1,024, 1,024 and 1,024. To allow the

architecture to increase its breadth without increasing its depth, we introduced another

hyperparameter which we called the “filters factor”, with a value of either one, two or four. The

number of filters in each convolutional layer was the default number of filters multiplied by the

filters factor value. For example, the number of filters for a three-layer deep convolutional block

with a filter factor of four would be 64, 128 and 256, instead of 16, 32 and 64. For the dropout

rate, we defined the hyperparameter space as eleven values uniformly spread between 0 and

50%, included. For the kernel and the bias regularizers, we defined the hyperparameter space

15



as the absence of regularization (0) and every negative power of 10 between three (10e-3) and

six (10e-6), included. We used the hyperparameters values selected on this first cross-validation

fold for the nine remaining cross-validation folds. The hyperparameters values selected can be

found in Table S46.

Tuning of the seed using a cross-validation

We observed that the hyperparameters values selected on the first cross-validation fold did not

always perform as well for the other cross-validation folds. Similarly, we observed that similar

hyperparameter values combinations could lead to significantly different performances on the

first cross-validation fold. We hypothesized that these differences could be partly driven by

different random initializations of the weights of the neural network, which led to convergence to

different local minima. To mitigate this effect, we tuned the Keras seed independently for each of

the ten cross-validation folds. We tested every integer between zero and nine, included, and

selected the seed that yielded the best model in terms of performance on the validation set.

The cross-validation also served to generate a testing prediction on every sample and to

perform early stopping, as described under the pipeline for images.

Interpretability of the predictions

Scalar data-based predictors

For elastic nets, we interpreted the models using the values of the regression coefficients. Large

absolute values for these coefficients means they played an important role when generating the

predictions. For gradient boosted machines we used the feature importances, which are based

16

https://docs.google.com/document/d/16MIja2f1sPfh3E_NlAhGjnA0Bocjji1xG2NpQ9POlD4/edit#sta_hyperparameters_TS


on the number of times a tree selected each of the variables. Variables with high feature

importances were selected more often and are therefore likely to play a key role in predicting

chronological age. For neural networks, we estimated the importance of each feature by

permuting it randomly between samples before computing the performance of the model. The

score of each feature is the difference between the R-Squared value before and after the

random permutations. Features whose random permutation leads to a large decrease in the

model’s performance are estimated to be important predictors of chronological age.

We estimated the concordance between the three different algorithms by computing the

Pearson and the Spearman correlations between their feature importances.

Time series, image- and video-based predictors

To interpret the CNNs built on time series, images and videos, we used saliency maps 33. For

time series and images, we coded the saliency maps using the keract python library. For videos,

we generated a saliency map for each time frame using the iNNvestigate python library 18. For

each input sample, a saliency map uses the gradient of the final prediction with respect to each

individual input pixel to estimate whether changing the value of this pixel would affect the

prediction. Pixels for which the gradient is close to zero are not important, whereas pixels with a

large gradient are estimated to be important. For videos, we computed both a saliency map for

each time frame, which we stored as a .gif file, and an average saliency map over all time

frames.

For images, we built a second attention map using a custom version of the Gradient-weighted

Class Activation Mapping [Grad-CAM] algorithm 34 adapted to regression rather than multi-class

17

https://paperpile.com/c/DtsYXI/CAdRq
https://paperpile.com/c/DtsYXI/dzJId
https://paperpile.com/c/DtsYXI/3hXKL


classification: Gradient-weighted Regression Activation Mapping [Grad-RAM]. The intuition

behind Grad-CAM maps is that they are similar to saliency maps 34, but instead of computing

the gradient with respect to the input image, they compute it with respect to the activation of the

last convolutional layer. As convolutional layers maintain the spatial organization of the input

image, Grad-CAM can still identify which region of the image is driving the predictions. Because

Grad-CAM does not have to backpropagate the gradient all the way back to the input image, it

is considered a less noisy alternative to the saliency maps. In the same way that saliency maps

need to combine the attention maps generated in the different input channels (e.g. RGB) into a

single activation map, Grad-CAM must combine the attention maps generated on the different

filters of the last convolutional layer. For example, the last convolutional layer for

InceptionResNetV2 has 1,792 filters. Grad-CAM combines these 1,792 attention maps into a

single attention map using a linear combination. In the initial Class Activation Mapping [CAM]

algorithm 35, generating CAM activation maps required to retrain the model after modifying the

architecture and replacing all the fully connected layers after the final convolutional layer with a

global max pooling operation, which converted each filter into a scalar feature. The intuition

behind this substitution was that each filter could be interpreted as detecting a specific feature,

and global max pooling yielded a scalar that could be interpreted as the presence (high value)

or absence (low value) of the feature anywhere on the image. The scalar values were then

linearly combined and activated using the softmax function to yield the probabilities of belonging

to different classes. To obtain the activation map for a specific class, the filters of the last

convolution layer were linearly combined using the weights connecting the scalar features

obtained after the max pooling operation to the final prediction score for that class. CAM was

later improved to become Grad-CAM 34. Grad-CAM saves the need for modifying the

architecture of the model and retraining it by approximating the linear regression weight for each

18

https://paperpile.com/c/DtsYXI/3hXKL
https://paperpile.com/c/DtsYXI/KlVdJ
https://paperpile.com/c/DtsYXI/3hXKL


final convolutional filter by the mean activation gradient over the pixels of the filter. The intuition

behind this approximation is that a filter’s pixel is important if changing its value affects the final

prediction, so a high average gradient over the pixels of the filter justifies that this filter should

be given a higher weight when merging all the filters into a single attention map. To adapt

Grad-CAM to our regression task we (1) computed the derivatives of the chronological age

prediction rather than a class’ prediction and (2) removed the ReLU activation applied to the

weighted sum of the last convolutional filters, which we replaced by an absolute value. The

rationale is that for (Grad-)CAM maps, we only want to highlight the regions of the picture which

are associated with a high probability for the class. In contrast, for (Grad-)RAM we care as much

about the regions of the input image that can strongly increase the chronological age prediction

as about the regions that can strongly decrease it. Because the filters in the last convolutional

layer are the result of the processing of the input image by several convolutional layers with

possibly negative weights, the sign of the last convolutional layer’s pixels and regression

weights cannot be linked to either accelerated aging or decelerated aging, only to the magnitude

of the shift that would affect the prediction if each region of the input image was modified.

Regression Activation Mapping (RAM) was mentioned as a possible extension of CAM in the

original CAM publication 35 and has been used to interpret models CNNs built on retinal images

36 and cortical surfaces 37, but we are to our knowledge the first to describe the generalization of

Grad-CAM to a regression task. One notable difference between our implementation and Wang

and Yang.’s implementation 36 is that we are taking the absolute value of the final attention map,

as mentioned above. We found that not taking the absolute value led to misleading attention

maps for participants with high chronological age predictions. The attention map highlights

important areas with negative values, which are therefore depicted in blue, a color otherwise

associated with unimportant regions in traditional CAMs. Inversely, regions on the input image

19

https://paperpile.com/c/DtsYXI/KlVdJ
https://paperpile.com/c/DtsYXI/uScmQ
https://paperpile.com/c/DtsYXI/XxdCO
https://paperpile.com/c/DtsYXI/uScmQ


for which the attention map has a slight positive value are spuriously considered to be the most

important and are highlighted in red. We therefore advise that RAM or Grad-RAM be

implemented using an absolute value. We coded Grad-RAM using the get_activations and

get_gradients_of_activations functions of the keract python library.

It is important to understand that unlike the feature importances described under “Scalar

data-based predictors”, which describe the model itself, attention maps are sample specific. In

other words, they can be used to explain which features drove the predictions for a specific

inputted sample but cannot provide an explanation for the way the model is performing

predictions in general.

For each aging sub-subdimension, we generated the attention maps for the best performing

CNN architecture. We selected representative samples for which we computed the different

attention maps. We computed attention maps for the two sexes (female and male), for three age

ranges (ten youngest ages, ten middle ages and ten oldest ages of the chronological age

distribution) and for three aging rates (accelerated agers, normal agers, decelerated agers). For

each intersection of the three categories listed above, we selected the ten most representative

samples (e.g. the ten most accelerated agers among young males). The figures in this paper

only present the first, most representative of these ten samples. The complete set of samples

can be found on the website.

Non-genetic correlates of accelerated aging

Unlike DNA, biomarkers, phenotypes, diseases, family history, environmental variables and

socioeconomics can change over life. As a consequence, we compared each biomarker,

20



phenotype and environmental variable with the accelerated aging of the participant at the time

the exposure was measured and we used the “Samples predictions”, as opposed to the

“Participants predictions” that we used for the identification of genetic correlates (see Methods -

Models ensembling - Generating average predictions for each participant).

Imputation of the non-genetic X-variables

Most X-variables were not collected on all four instances. Additionally, no X-variables were

collected at the same time as the accelerometer data was collected. To identify the non-genetic

correlates of accelerated aging, we had to impute the values of the X-variables for the ages of

the participants for which they were not available. We considered two imputation methods,

which we refer to as the “cross-sectional” and the “longitudinal” imputations.

For the cross-sectional imputation, we computed a linear regression for each X variable as a

function of age, adjusting for sex. We then used the slope of the linear regression to extrapolate

the value of the XWAS variable at different ages.

For the longitudinal imputation, we first selected, for each X variable, all the participants that had

at least two measures taken for this X variable. We then performed a linear regression for each

participant. We then averaged the slope of the linear regressions over all the participants of the

same sex. Finally, we used this slope to extrapolate the value of the XWAS variable at different

ages for all participants depending on their sex, in the same way we did it for the cross-sectional

imputation.

21



It is important to notice that for both the cross-sectional imputation and the longitudinal

imputation, data can only be imputed when the XWAS variable has been measured at least

once for the participant. This raw measure is then used to extrapolate which value the X

variable was likely taking a couple years earlier and/or later.

The advantage of the cross-sectional imputation is larger sample sizes. The advantage of the

longitudinal method is that it corrects for generational effects. For example, old people have

shorter legs than young people on average 38. This is not because human legs shrink as we

grow older. Instead, people who are old today already had shorter legs when they were young.

If the cross-sectional regression is used to impute the length of the participants on instances

where it was not measured, it will spuriously assign smaller values to the older samples. In

contrast, the longitudinal regression learns the regression coefficient by comparing each

participant to themselves as they age and will therefore not capture the generational effect.

When used to predict the participants legs’ length, it will impute constant values over time. To

evaluate which of the two imputation methods should be preferred, we used them to predict

X-variables for which we knew the actual values and computed the R-Squared values

associated with the predictions. We found that, even with sample sizes as small as 200

samples, longitudinal imputation outperformed cross-sectional imputation. We therefore used

longitudinal imputation.

X-Wide Association Studies

First, we tested for associations in an univariate context by computing the partial correlation

between each X-variable and heart aging dimensions. To compute the partial correlation

between an X-variable and an aging, we followed a three steps process. (1) We ran a linear

22

https://paperpile.com/c/DtsYXI/6knzP


regression on each of the two variables, using age, sex and ethnicity as predictors. (2) We

computed the residuals for the two variables. (3) We computed the correlation between the two

residuals and the associated p-value if their intersection had a sample size of at least ten

samples. We used a threshold for significance of 0.05 and corrected the p-values for multiple

testing using the Bonferroni correction. We plotted the results using a volcano plot. We refer to

this pipeline as an X-Wide Association study [XWAS].

23



Supplementary Figures

Figure S1: Demographics of the UK Biobank cohort

24



Figure S2: Attention maps for heart MRI videos - time frames

25



Figure S3: Attention maps for heart MRI images (raw images)

26



Figure S4: Attention maps for heart MRI images (contrasted images)

27

https://docs.google.com/document/d/1WHck9jjuzOgTMXcOaRIXMkz4XUhP4TNsZscbqF-JM-4/edit#sfigu_attentionmaps_heartMRI_raw


Figure S5: Attention map example for ECG time series

The participant is a correctly predicted 65-70-year-old male. The signal displayed is the first lead

of the ECG. Red data points represent time steps for which a higher value would increase the

chronological age prediction, and blue data points represent time steps for which a higher value

would decrease the chronological age prediction.

28



Figure S6: Genome Wide Association Study results for accelerated heart general aging

Figure S7: Genome Wide Association Study results for accelerated heart electrical aging

29



Figure S8: R2 score over the 50 time frames for the image-based InceptionResNetV2

model

The InceptionResNetV2 was trained on the first frame of the 3 chambers view video. The

dashed lines represent the optimal score obtained on the first frame.

Figure S9: Raw 12-leads ECG sample

The participant is a 55-60-year-old male participant

30



Figure S10: Decomposition of a raw ECG signal into four components

The first component is the “level” (the mean value), the second is the “trend” (the linear bias

over time), the third is the “seasonality” (the periodical component of the signal) and the fourth is

the “noise” (the allegedly random remaining variation).

31



Figure S11: Example of a corrupted ECG recording

Based on the database the heart rate should be 201, which is not matching the time series.

32



Figure S12: Sample preprocessed heart MRI images

The participant is a 60-65-year-old male.

33



Figure S13: Architecture of the convolutional neural network trained on ECG records -

Summary figure

34



Figure S14: Architecture of the convolutional neural network trained on ECG records -

Detailed figure

35



Supplementary Tables

Table S1: List of biomarkers by subcategories for the Biomarkers Wide Association

Study

See supplementary data

Table S2: Biomarkers associated with accelerated heart aging

See supplementary data

Table S3: Biomarkers associated with decelerated heart aging

See supplementary data

Table S4: List of clinical phenotypes by subcategories for the Clinical Phenotypes Wide

Association Study

See supplementary data

Table S5: Clinical phenotypes associated with accelerated heart aging

See supplementary data

Table S6: Clinical phenotypes associated with decelerated heart aging

See supplementary data

Table S7: List of diseases by subcategories for the Diseases Wide Association Study

36



See supplementary data

Table S8: Diseases associated with accelerated heart aging

See supplementary data

Table S9: Diseases associated with decelerated heart aging

See supplementary data

Table S10: List of family history variables by subcategories for the Family History

Phenotypes Wide Association Study

See supplementary data

Table S11: List of environmental variables by subcategories for the Environmental Wide

Association Study

See supplementary data

Table S12: Environmental variables associated with accelerated heart aging

See supplementary data

Table S13: Environmental variables associated with decelerated heart aging

See supplementary data

Table S14: List of socioeconomic variables by subcategories for the Socioeconomics

Wide Association Study

37



See supplementary data

Table S15: Socioeconomic variables associated with accelerated heart aging

See supplementary data

Table S16: Socioeconomic variables associated with decelerated heart aging

See supplementary data

Table S17: Hyperparameter space for scalar features-based models Bayesian

optimization

Algorithm Hyperparameter Scale Low High

Elastic
net

alpha loguniform -10 0

l1_ratio uniform 0 1

Gradient
Boosted
Machine

num_leaves quniform 5 45

min_child_samples quniform 100 500

min_child_weight loguniform -5 4

subsample uniform 0.2 0.8

colsample uniform 0.4 0.6

reg_alpha loguniform -2 2

reg_lambda loguniform -2 2

n_estimators quniform 150 450

Neural
network

learning_rate_init loguniform -5 -1

apha loguniform -6 3

Table S18: Architecture of the three-dimensional convolutional neural network trained on

heart MRI videos

Layer type
Kernel size Stride size

Elements
Time Space Time Space

Conv 3D 3 (3, 3) 1 (1, 1) 16

38



Max Pooling 1 (2, 2) 1 (2, 2) NA

Conv 3D 3 (3, 3) 1 (1, 1) 64

Max Pooling 1 (5,5) 1 (2, 2) NA

Conv 3D 5 (5,5) 1 (1, 1) 512

Max Pooling 5 (5,5) 1 (2, 2) NA

Conv 3D 5 (7,7) 1 (1, 1) 1024

Max Pooling 1 (5,5) 1 (2,2) NA

Batch Norm NA

Fully
Connected

NA 1024 NA NA 1024

Dropout NA

Fully
Connected

NA 1 NA NA 1

Table S19: Nested Cross-Validation pipeline

39



40



Table S20: Hyperparameters tuning upstream of the cross-validation for images-based

models

See supplementary data

Table S21: Outer Cross-Validation with inner split pipeline

The values displayed are validation RMSE values. Lower values are associated with better

hyperparameter tuning. When two values are displayed (value1/value2), the second value

corresponds to the training RMSE. The architecture used was InceptionV3, with an initial

learning rate of 0.001. The model was trained on the data folds 2-9, and validated on the data

fold #0. The data fold #1 was set aside as the testing set and was not used.

Dat
a

Fold

N=
10
0

Outer
CV

folds 0

Outer
CV

folds 1

Outer
CV

folds 2

Outer
CV

folds 3

Outer
CV

folds 4

Outer
CV

folds 5

Outer
CV

folds 6

Outer
CV

folds 7

Outer
CV

folds 8

Outer
CV

folds 9

F0
N=
10

Train Train Train Train Train Train Train Train
Validati

on
Test

F1
N=
10

Train Train Train Train Train Train Train
Validati

on
Test Train

F2
N=
10

Train Train Train Train Train Train
Validati

on
Test Train Train

F3
N=
10

Train Train Train Train Train
Validati

on
Test Train Train Train

F4
N=
10

Train Train Train Train
Validati

on
Test Train Train Train Train

F5
N=
10

Train Train Train
Validati

on
Test Train Train Train Train Train

F6
N=
10

Train Train
Validati

on
Test Train Train Train Train Train Train

F7
N=
10

Train
Validati

on
Test Train Train Train Train Train Train Train

F8 N= Validati Test Train Train Train Train Train Train Train Train

41



10 on

F9
N=
10

Test Train Train Train Train Train Train Train Train
Validati

on

42



Supplementary References

1. Van Rossum, G. & Drake, F. L. The Python Language Reference Manual. (Network Theory

Limited, 2011).

2. Oliphant, T. E. A guide to NumPy. vol. 1 (Trelgol Publishing USA, 2006).

3. Walt, S. van der, van der Walt, S., Chris Colbert, S. & Varoquaux, G. The NumPy Array: A

Structure for Efficient Numerical Computation. Computing in Science & Engineering vol. 13

22–30 (2011).

4. McKinney, W. & Others. Data structures for statistical computing in python. in Proceedings

of the 9th Python in Science Conference vol. 445 51–56 (Austin, TX, 2010).

5. Hunter, J. D. Matplotlib: A 2D Graphics Environment. Comput. Sci. Eng. 9, 90–95 (2007).

6. Inc, P. T. Collaborative data science. Montreal: Plotly Technologies Inc Montral (2015).

7. Clark, A. Pillow Python Imaging Library. Pillow—Pillow (PIL Fork) 5. 4. 1 documentation

(2018).

8. Virtanen, P. et al. SciPy 1.0: fundamental algorithms for scientific computing in Python.

Nature Methods vol. 17 261–272 (2020).

9. Oliphant, T. E. Python for Scientific Computing. Computing in Science Engineering 9,

10–20 (2007).

10. Millman, K. J., Jarrod Millman, K. & Aivazis, M. Python for Scientists and Engineers.

Computing in Science & Engineering vol. 13 9–12 (2011).

11. Pedregosa, F. et al. Scikit-learn: Machine learning in Python. the Journal of machine

Learning research 12, 2825–2830 (2011).

43

http://paperpile.com/b/DtsYXI/VMbXd
http://paperpile.com/b/DtsYXI/VMbXd
http://paperpile.com/b/DtsYXI/Y3lWm
http://paperpile.com/b/DtsYXI/GZGam
http://paperpile.com/b/DtsYXI/GZGam
http://paperpile.com/b/DtsYXI/GZGam
http://paperpile.com/b/DtsYXI/oxAmw
http://paperpile.com/b/DtsYXI/oxAmw
http://paperpile.com/b/DtsYXI/lg78v
http://paperpile.com/b/DtsYXI/EIp5X
http://paperpile.com/b/DtsYXI/lxIXI
http://paperpile.com/b/DtsYXI/lxIXI
http://paperpile.com/b/DtsYXI/AgdcO
http://paperpile.com/b/DtsYXI/AgdcO
http://paperpile.com/b/DtsYXI/6dpFO
http://paperpile.com/b/DtsYXI/6dpFO
http://paperpile.com/b/DtsYXI/WYlde
http://paperpile.com/b/DtsYXI/WYlde
http://paperpile.com/b/DtsYXI/qFaLt
http://paperpile.com/b/DtsYXI/qFaLt


12. Ke, G. et al. LightGBM: A Highly Efficient Gradient Boosting Decision Tree. in Advances in

Neural Information Processing Systems 30 (eds. Guyon, I. et al.) 3146–3154 (Curran

Associates, Inc., 2017).

13. Chen, T. & Guestrin, C. XGBoost: A Scalable Tree Boosting System. in Proceedings of the

22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining

785–794 (Association for Computing Machinery, 2016).

14. Bergstra, J., Yamins, D. & Cox, D. D. Hyperopt: A python library for optimizing the

hyperparameters of machine learning algorithms. in Proceedings of the 12th Python in

science conference vol. 13 20 (Citeseer, 2013).

15. Abadi, M. et al. TensorFlow: Large-scale machine learning on heterogeneous systems.

(2015).

16. Chollet, F. & Others. keras. (2015).

17. Kotikalapudi, R. & Others. keras-vis. 2017. URL https://github. com/raghakot/keras-vis

(2019).

18. Alber, M. et al. iNNvestigate neural networks. J. Mach. Learn. Res. 20, 1–8 (2019).

19. Hossain, S., Calloway, C., Lippa, D., Niederhut, D. & Shupe, D. Visualization of

Bioinformatics Data with Dash Bio. in Proceedings of the 18th Python in Science

Conference 126–133 (2019).

20. Kohavi, R. & Others. A study of cross-validation and bootstrap for accuracy estimation and

model selection. in Ijcai vol. 14 1137–1145 (Montreal, Canada, 1995).

21. Bergstra, J. S., Bardenet, R., Bengio, Y. & Kégl, B. Algorithms for Hyper-Parameter

Optimization. in Advances in Neural Information Processing Systems 24 (eds.

Shawe-Taylor, J., Zemel, R. S., Bartlett, P. L., Pereira, F. & Weinberger, K. Q.) 2546–2554

(Curran Associates, Inc., 2011).

44

http://paperpile.com/b/DtsYXI/7Z8qx
http://paperpile.com/b/DtsYXI/7Z8qx
http://paperpile.com/b/DtsYXI/7Z8qx
http://paperpile.com/b/DtsYXI/LPTEW
http://paperpile.com/b/DtsYXI/LPTEW
http://paperpile.com/b/DtsYXI/LPTEW
http://paperpile.com/b/DtsYXI/h900o
http://paperpile.com/b/DtsYXI/h900o
http://paperpile.com/b/DtsYXI/h900o
http://paperpile.com/b/DtsYXI/QEJaD
http://paperpile.com/b/DtsYXI/QEJaD
http://paperpile.com/b/DtsYXI/nTfji
http://paperpile.com/b/DtsYXI/y1VZi
http://paperpile.com/b/DtsYXI/y1VZi
http://paperpile.com/b/DtsYXI/dzJId
http://paperpile.com/b/DtsYXI/k1x9a
http://paperpile.com/b/DtsYXI/k1x9a
http://paperpile.com/b/DtsYXI/k1x9a
http://paperpile.com/b/DtsYXI/RmTv7
http://paperpile.com/b/DtsYXI/RmTv7
http://paperpile.com/b/DtsYXI/cLNWM
http://paperpile.com/b/DtsYXI/cLNWM
http://paperpile.com/b/DtsYXI/cLNWM
http://paperpile.com/b/DtsYXI/cLNWM


22. Bergstra, J., Yamins, D. & Cox, D. Making a Science of Model Search: Hyperparameter

Optimization in Hundreds of Dimensions for Vision Architectures. in (eds. Dasgupta, S. &

McAllester, D.) vol. 28 115–123 (PMLR, 2013).

23. Bergstra, J. & Bengio, Y. Random search for hyper-parameter optimization. J. Mach. Learn.

Res. 13, 281–305 (2012).

24. Kingma, D. P. & Ba, J. Adam: A Method for Stochastic Optimization. arXiv [cs.LG] (2014).

25. Zeiler, M. D. ADADELTA: An Adaptive Learning Rate Method. arXiv [cs.LG] (2012).

26. Hinton, G. Slide 29 of Lecture 6, Geoffrey Hinton coursera’s class.

http://www.cs.toronto.edu

http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf.

27. Nair, V. & Hinton, G. E. Rectified Linear Units Improve Restricted Boltzmann Machines.

(2010).

28. Klambauer, G., Unterthiner, T., Mayr, A. & Hochreiter, S. Self-Normalizing Neural Networks.

in Advances in Neural Information Processing Systems 30 (eds. Guyon, I. et al.) 971–980

(Curran Associates, Inc., 2017).

29. Prechelt, L. Early Stopping - But When? in Neural Networks: Tricks of the Trade (eds. Orr,

G. B. & Müller, K.-R.) 55–69 (Springer Berlin Heidelberg, 1998).

30. Hochreiter, S. Untersuchungen zu dynamischen neuronalen Netzen. Diploma, Technische

Universität München 91, (1991).

31. Hochreiter, S., Bengio, Y., Frasconi, P., Schmidhuber, J. & Others. Gradient flow in

recurrent nets: the difficulty of learning long-term dependencies. (2001).

32. Tran, D., Bourdev, L., Fergus, R., Torresani, L. & Paluri, M. Learning spatiotemporal

features with 3d convolutional networks. in Proceedings of the IEEE international

conference on computer vision 4489–4497 (2015).

45

http://paperpile.com/b/DtsYXI/IlJDV
http://paperpile.com/b/DtsYXI/IlJDV
http://paperpile.com/b/DtsYXI/IlJDV
http://paperpile.com/b/DtsYXI/S3kA1
http://paperpile.com/b/DtsYXI/S3kA1
http://paperpile.com/b/DtsYXI/5cU7V
http://paperpile.com/b/DtsYXI/3awLk
http://paperpile.com/b/DtsYXI/6ZnVy
http://paperpile.com/b/DtsYXI/6ZnVy
http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf
http://paperpile.com/b/DtsYXI/6ZnVy
http://paperpile.com/b/DtsYXI/LCQWf
http://paperpile.com/b/DtsYXI/LCQWf
http://paperpile.com/b/DtsYXI/AjCBn
http://paperpile.com/b/DtsYXI/AjCBn
http://paperpile.com/b/DtsYXI/AjCBn
http://paperpile.com/b/DtsYXI/XgmC8
http://paperpile.com/b/DtsYXI/XgmC8
http://paperpile.com/b/DtsYXI/4bqT6
http://paperpile.com/b/DtsYXI/4bqT6
http://paperpile.com/b/DtsYXI/Yla2P
http://paperpile.com/b/DtsYXI/Yla2P
http://paperpile.com/b/DtsYXI/JCycv
http://paperpile.com/b/DtsYXI/JCycv
http://paperpile.com/b/DtsYXI/JCycv


33. Alqaraawi, A., Schuessler, M., Weiß, P., Costanza, E. & Berthouze, N. Evaluating saliency

map explanations for convolutional neural networks: a user study. in Proceedings of the

25th International Conference on Intelligent User Interfaces 275–285 (Association for

Computing Machinery, 2020).

34. Selvaraju, R. R. et al. Grad-cam: Visual explanations from deep networks via

gradient-based localization. in Proceedings of the IEEE international conference on

computer vision 618–626 (2017).

35. Zhou, B., Khosla, A., Lapedriza, A., Oliva, A. & Torralba, A. Learning deep features for

discriminative localization. in Proceedings of the IEEE conference on computer vision and

pattern recognition 2921–2929 (2016).

36. Wang, Z. & Yang, J. Diabetic Retinopathy Detection via Deep Convolutional Networks for

Discriminative Localization and Visual Explanation. arXiv [cs.CV] (2017).

37. Duffy, B. A. et al. Regression activation mapping on the cortical surface using graph

convolutional networks. (2019).

38. Le Goallec, A. & Patel, C. J. Age-dependent co-dependency structure of biomarkers in the

general population of the United States. Aging 11, 1404–1426 (2019).

46

http://paperpile.com/b/DtsYXI/CAdRq
http://paperpile.com/b/DtsYXI/CAdRq
http://paperpile.com/b/DtsYXI/CAdRq
http://paperpile.com/b/DtsYXI/CAdRq
http://paperpile.com/b/DtsYXI/3hXKL
http://paperpile.com/b/DtsYXI/3hXKL
http://paperpile.com/b/DtsYXI/3hXKL
http://paperpile.com/b/DtsYXI/KlVdJ
http://paperpile.com/b/DtsYXI/KlVdJ
http://paperpile.com/b/DtsYXI/KlVdJ
http://paperpile.com/b/DtsYXI/uScmQ
http://paperpile.com/b/DtsYXI/uScmQ
http://paperpile.com/b/DtsYXI/XxdCO
http://paperpile.com/b/DtsYXI/XxdCO
http://paperpile.com/b/DtsYXI/6knzP
http://paperpile.com/b/DtsYXI/6knzP

