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Abstract

Determining the etiology of |eft ventricular hypertrophy (LVH) can be challenging due to the
similarity in clinical presentation and cardiac morphological features of diverse causes of
disease. In particular, distinguishing individuals with hypertrophic cardiomyopathy (HCM) from
the much larger set of individuals with manifest or occult hypertension (HTN) is of major
importance for family screening and the prevention of sudden death. We hypothesized that deep
learning based joint interpretation of 12 lead electrocardiograms and echocardiogram videos
could augment physician interpretation. We chose not to train on proximate data labels such as
physician over-reads of ECGs or echocardiograms but instead took advantage of electronic
health record derived clinical blood pressure measurements and diagnostic consensus (often
including molecular testing) among physiciansin an HCM center of excellence. Using over
18,000 combined instances of e ectrocardiograms and echocardiograms from 2,728 patients, we
developed LV H-Fusion. On held-out test data, LV H-Fusion achieved an F1-score of 0.71in
predicting HCM, and 0.96 in predicting HTN. In head-to-head comparison with human readers
LVH-Fusion had higher sensitivity and specificity rates than its human counterparts. Finaly, we
use explainability techniques to investigate local and global features that positively and
negatively impact LV H-Fusion prediction estimates providing confirmation from unsupervised
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analysis the diagnostic power of lateral T wave inversion on the ECG and proximal septal
hypertrophy on the echocardiogram for HCM. In conclusion, these results show that deep
learning can provide effective physician augmentation in the face of acommon diagnostic

dilemmawith far reaching implications for the prevention of sudden cardiac death.

| ntroduction

Hypertrophic cardiomyopathy (HCM) isthe most common cardiac genetic disease with an
estimated prevalence in the general population of 1:500 to 1:200.* HCM is an autosomal
dominant mendelian disease that can be associated with significant morbidity in the form of heart
failure and sudden death.? Thus, identifying patients with HCM has significance well beyond the
individual, with many proband diagnoses leading to screening of several generations of afamily.
Diagnosis of HCM can be difficult due to the high prevalence of manifest hypertension in the
general population, present in up to 45% of US adults * (this before counting the occult disease).
Thus, acommon diagnostic dilemmafor clinicians when faced with LVH on the ECG or
echocardiogram is how to rule out HCM. In asmall study, the rates of misclassification of HCM
were as high as 30% percent with hypertension being the most common misdiagnosis*. Although
the American Heart Association provides guidelines for the diagnosis of hypertension and HCM
separately, distinguishing between them is atask that most physicians fed ill equipped to
perform (understandably as HCM is arare disease not commonly encountered even in general
cardiology practice). This provides an opportunity for physician augmentation through artificial

intelligence (Al).

New advancesin artificial intelligence have led to rapid expansion of medical deep learning
applications with an emphasis on medical specialties that hold a high degree of visual pattern
recognition tasks like radiology, pathology, ophthalmology, dermatology and most notably
cardiology.” Imaging and electrical phenotypes of hypertrophic cardiomyopathy ®’ are the first
line clinical tools.
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60 Interpretation of the ECG relies on direct visual assessment making it ideal for deep learning
61  approaches. Previous work has demonstrated that demographic and medical data can be learned
62 including detection of low gection fraction, something typically requiring echocardiography to
63  confirm ®**. Our prior work using video computation of echocardiograms has demonstrated

64 efficient detection of left ventricular hypertrophy and the identification of abroad range of

65 cardiovascular disease.'*"

66

67  Combining data sources as human diagnosticians do, has the potential to provide an artificial

68 inteligence (Al) algorithm with greater diagnostic power™. We focus here on the two most

69 frequent diagnostic modalitiesin cardiology. To date, no published work has explored the

70  benefits of amultimodal deep learning model using electrocardiogram and echocardiogram data,
71  athough there has been some exploration of combining separately trained diagnostic modelsin a
72 single pipeline™. We hypothesize that multimodal deep learning may provide added benefit in
73 distinguishing patterns that are not easily discernible from individual modalities. We present

74  LVH-fusion, thefirst model to jointly model electrical and ultrasound-based time series data of
75 theheart. We demonstrate its potential with application to the diagnosis of Ieft ventricular

76  hypertrophy.

77 Results

78  We developed amulti-modal deep learning framework, LV H-fusion, that takes as input time based

79  €ectrica and echocardiographic data of the heart. We applied this framework in a common clinical

80 chalenge: the determination of the etiology of left ventricular hypertrophy. Motivated by prior work on
81  deep learning applied to electrocardiogram signals and echocardiogram videos ***°, LV H-fusion jointly
82  models both electrocardiogram and echocardiogram data. It is trained not with proximate human derived
83  ECG and echocardiogram labels but rather via a gold standard diagnosis independently derived from the
84  Electronic Health Records (HTN) or through the consensus diagnosis of HCM within a center of

85 excdlence.

86  Inthisstudy, both single-modal and multimodal neural network models were examined (Figure 1). Four
87  different multimodal fusion architectures were explored, combining ECG and echocardiogram

88 information in different ways. For both late-average fusion and late-ranked fusion models, decision level
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89  fusion was used to combine the outputs of electrocardiogram and echocardiogram classifiers'’. In the late-
90 average fusion model, soft voting is performed by computing the average probability for each class from
91 theindividual ECG and echocardiogram classifiers and predicts the class with maximal average

92  probability. In the late-ranked fusion model, the probabilities for each class from the individual ECG and
93  echocardiogram classifiers are ranked and a prediction is determined from the highest ranked probability.
94  For thelate fusion models, both pre-trained and random, the learned feature representations from each

95  modality were concatenated together before the final classification layer. In this situation the fusion

96 model considers both inputs and during training and the loss is calculated jointly. We explored the

97  benefits of randomly initialized weights and pretrained weightsin the late fusion model. Lastly, the single
98 moda models provide a benchmark against which to compare multimodal models that jointly consider the

99  paired eectrocardiogram and echocardiogram data, demonstrating the benefit of a combined approach.
100 DataAcquisition and selection

101  With the approval of Stanford Institutional Review Board (IRB), we retrieved electrocardiograms and
102  echocardiograms from patients between 2006 and 2018 at Stanford Medicine (Table 1). The data was split
103 intotraining, vaidation, and test sets with no patient overlap between sets. Due to the fact that multiple
104  electrocardiograms and echocardiograms are present within the healthcare system record, we explored
105 various data selection scenarios to understand what selection methods are best suited for this specific task.
106  The quantitative comparison of all data selection used can be found in Supplementary Table S1. The final
107 mode wastrained using a patient’s first ECG and first echocardiogram in the system.

108 Model performance

109  Four multimodal fusion models were explored: late-average, late-ranked, pre-trained late fusion
110 and random late fusion (Figure 1). The performance metrics of each model is detailed in Table 2.
111  Thelate average model achieved the highest F1-score and specificity rates 0.711 (0.571 - 0.826)
112 and 0.952 (0.921 - 0.979) respectively on the held-out test set. We conducted experimentsto
113  study the performance of single-moda models trained on only ECG and echo to demonstrate the
114  benefit of multimodal models. The multimodal models outperform single-modal model F1-

115  scores, which increase from 0.63 to 0.71. Furthermore, the false-discovery rates are significantly
116  reduced from 0.45 to 0.3. To provide context for these results, we also trained the single-modal
117 modelsto predict left ventricular etiology using standard quantitative features from the

118  €eectrocardiogram. This baseline model achieved sensitivity rates of 0.51 for predicting HCM
119  whichisconsderably lower than LV H-Fusion (Supplementary Table S2). These results show
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120 that the proposed electrocardiogram signals model discover novel characteristics not accounted
121  for with the quantitative features. Lastly, to examine the discriminatory power of our

122  methodology, we performed a sensitivity analysis for predicting LVH etiology including the
123  additional classfication task of “normal.” In this context, LVH-fusion maintains high

124 discriminatory power in predicting LVH from normal ECG and echocardiogram videos,

125  suggesting that false positive rates of hypertension or hypertrophic cardiomyopathy would be
126  low if the model was extended to this use case (Supplementary Table S3 and $4).

127

128  Understanding model performance

129  In order to improve our understanding of how LV H-Fusion classifies eft ventricular etiology, we
130  implemented a series of ablation studies similar to Hughes et al. 2021*® to determine what

131 information models rely on to make predictions. For electrocardiogram single-modal models we
132  examined the impact of varying the number of leads from the standard 12 leads to 8 leads and
133  masking each lead to understand the impact each lead holds for prediction estimates. We find
134  that although no single lead harbors a statistically significant impact on the overall model

135 performance, masking out lead V3 and aVR had the highest negative impact on prediction

136  estimates, Figure 2. Next, since the standard 12 lead ECG contains 8 algebraically independent
137  leads, we considered the impact of masking multiple leads combinations. We observe an overall
138  reduction in classification metrics when masking multiple leads at a time with no significant
139 difference between masking the 4 dependent leads (111, aVL, aVF, avVR) and arandom

140  subselection of 4 leads, Supplementary Figure S2. These results suggest our model benefits from
141  the complete 12 lead input and classification metrics are negatively impacted with any

142  nonspecific reduction in leads.

143

144  For the echocardiogram single-modal model, we examined segmentation, restricting the

145 prediction agorithmto i) only the region around the left ventricle, ii) random single frames, and
146 iii) single end diastalic frames. Restricting the echocardiogram model to the area around the | eft
147  ventricle caused a decrease in accuracy, showing the model relies on information outside of that
148  region to make classifications. Thisisinteresting given the focus of clinicians on the left

149  ventriclewhen considering LVH, even despite the fact that hypertension could impact the left


https://doi.org/10.1101/2021.06.13.21258860

medRxiv preprint doi: https://doi.org/10.1101/2021.06.13.21258860; this version posted June 15, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.
All rights reserved. No reuse allowed without permission.

150 atrium by causing restriction and HCM affects all four chambers. Restricting the model’ s input
151 toasingleframe further decreases accuracy, demonstrating that motion information is important
152  indistinguishing between HCM and hypertension. Figure 2 details the performance of each

153  ablation experiment.

154

155 Modéd interpretations

156 Inorder to improve our understanding of how LV H-Fusion classifies left ventricular etiology, we
157 implemented SHAP GradientExplainer, a game theory approach to explain the output of a

158  machine learning algorithm®. Relating this method to the ECG model, this approach takes the
159 prediction of amode and estimates the gradient with respect to each individual timestep for

160 every lead from the input signal. For echocardiogram videos, an analogous methodology applies:
161 thegradient of the mode's prediction was calculated with respect to every pixel from the input
162  video. In each case, the calculated value is then compared to a provided background distribution,
163 thetraining data. The value of the calculated gradients for each timestep/pixe isthen assigned an
164  importance score such that highly impactful scores (denoted in red) hold positive impacts on

165 prediction estimates. Values with low importance scores negatively influence prediction

166  estimates (denoted in blue).

167

168 We emphasize samples of ECG and echocardiograms from the test partition to deduce regions
169 the model found most impactful to prediction estimates, Figure 3 and 4. In Figure 3, the ECG
170 interpretation results highlight an overall focus on V3 and T-wave inversion in leads V1-V6.

171 Boththe observed early R wave progression and T-wave inversion are indications of HCM.

172  Summarized local interpretations for each lead provides explanations of the overall impact each
173  lead has on prediction estimates. Additional examples of ECG interpretation tracings can be

174  found in the Supplement Figure S1. Comparably, the interpretation results of the echocardiogram
175 videos, Figure 4, clearly depicts asymmetric proximal septal thickness, a hallmark distinction of
176  HCM across all frames of the video. Next, to examine local summary interpretations, we

177  segmented the left ventricle on each frame for duration of avideo's length. Thisallowed usto
178 quantitatively compare the positive and negative impacts the estimated LV size had on overall
179  prediction estimates, Supplemental Figure S3.
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180

181 Tofurther examineif the regions of importanceidentified in distinct samples are globally similar
182 acrossall predictions, a summation or averaging across all local instances was performed. This
183  approach provides a highly compressed, global insight into the model's behavior. We considered
184  per lead contributions to predictionsin ECGs and left ventricular segmentation in

185  echocardiogram videos. Global summary results for ECG corroborates our results from the

186  ablation studies, lead V3 and aVR holds valuable information for model’ s prediction estimates,
187  Supplement Figure $4.

188  Comparison against physician interpretation

189  Wehad two expert readers review ECG tracings and echocardiogram videos and asked them to
190 makeadiagnosisof HTN or HCM. We selected 45 samples (40 HTN and 5 HCM) from the test
191  settocompare LVH-fusion. The LVH-fusion mode outperformed these expert cardiologists

192  (oneof whom has 20 years of experience in diagnosing HCM). LV H-fusion correctly classified 3
193  out of the5 ECG and echocardiogram HCM samples. Variability between cardiologists varied
194  greatly, with one cardiologist matching LV H-fusion sensitivity estimates but with areduction in
195  specificity, while cardiologist two failed to correctly classify any of the HCM ECG samples

196 provided.

197 Discussion

198 Inthisstudy, we report the first multimodal (ECG and echocardiogram based) deep learning

199 modd inclinical cardiology and useit to predict the etiology of left ventricular hypertrophy.

200 Combining complementary knowledge from multiple modalities can improve diagnostic

201 performancein clinical practice. The trained model demonstrates high discriminatory ability in
202  distinguishing hypertrophic cardiomyopathy from hypertension with an AUC of 0.91, AUPRC of
203  0.78. Furthermore, ablation studies provided independent support from unsupervised analysis for
204  clinicians focuson ECG lateral repolarization and echocardiographic proximal septal

205  hypertrophy for the diagnosis of HCM. Combining complementary information from multiple
206 modalitiesisintuitively appealing for improving the performance of learning-based approaches.
207  Our results can be directly applied in general medical and cardiology clinics where exposure to

208 rare conditions such as HCM limits confidence in human diagnostic prediction alone.
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209

210 Deep learning models specifically focused on single modalities in cardiology have shown
211  impressive results for arrhythmia detection, age, and other clinical actionable insights 8%

212  Previoudy Ko et al., focused on using convolutional neural networks (CNN) for ECG

213  interpretation with respect to HCM #. They showed high discriminatory power in classifying
214 HCM againgt a background population of left ventricular hypertrophy by ECG alone. However,
215  approximately 28-30% of HCM cases had concurrent hypertension, inhibiting a direct

216  comparison of possible distinction between HCM and hypertension. To date, deep learning

217  research addressing non-pulmonary hypertension detection using e ectrocardiogram or

218 echocardiogram was unknown. One previous approach successfully used both ECG and

219  echocardiogram dataindividually with a stepwise approach to diagnosis of cardiac

220  amyloidosis™, whereas here we focus on fusion method applications of multi-modal deep

221  learning of electrocardiograms and echocardiograms together.

222

223  Medical decision making is complex, often relying on a combination of physician's judgment,
224 experience, diagnostic and screening test results, and longitudinal follow-up. In the case of a
225  patient presenting with anything other than severe, grossly asymmetric LVH, suspicion for HCM
226  would be higher for patients who do not obviously have hypertension. However, occult

227  hypertension is common and challenging to rule out and with mild “gray zon€” hypertrophy, it is
228  not uncommon to make this assumption. Similarly, for patients who present with LVH and

229 manifest hypertension, the question is aways “is hypertension alone enough to explain this

230 degreeof LVH?" Given theimplications of missing a diagnosis of HCM—a mendelian disease
231  associated with heart failure and sudden death—most generalists do not feel confident ignoring
232  thepossibility of HCM. In these cases, aggressively treating hypertension and re-reviewing the
233  patient can help but challenges in follow up, adherence, and effectiveness of therapy make the
234  window of equipoise long. These are the clinical scenarios into which LVH-fusion will have the
235 most benefit. Yet, thisis merely thefirst application of the approach. A similar approach to the
236 identification of other causes of LVH such as Fabry disease or cardiac amyloidosis can be

237  applied using smilar “gold standard” diagnostic labels to those we use here. The future of deep
238 learning in medicine is a move beyond reproducing human derived label features to capitalizing
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239  on unsupervised machine learned features vs a gold standard diagnostic or prognostic label. This
240  will alow machine augmentation of the human led diagnostic journey.

241

242  In summary, we develop a deep learning model incorporating ECG and echocardiogram time
243  seriesdata and apply it to help identify hypertrophic cardiomyopathy patients from within the
244 much larger group of patients presenting with LVH due to hypertension or unknown causes. We
245  present various well known fusion methods of combining data streams from multiple modalities
246  and compare these comprehensively to single-modal models. Further studies should explore the
247  real-world application of physician augmentation approaches like LV H-fusion in medical

248  practice.

240 Methods

250 Dataacquisition and study population

251  Hypertrophic cardiomyopathy patients were selected for this study from the Hypertrophic

252  Cardiomyopathy clinics at the Stanford Center for Inherited Cardiovascular Disease.

253  Hypertension patients were selected from individuals that were found to be persistently

254  hypertensive (SBP >150) with at least 5 consecutive systolic blood pressure readings over 150.
255  Exclusion criteriaincluded any ECG clinical annotations of ventricular-pacing or left bundle
256  branch block. In addition, we excluded any data from both electrocardiograms and

257  echocardiograms datasets if the date acquired was after a documented myectomy procedure.
258

259  Weretrieved 15,761 electrocardiograms (ECGs) and 3,234 transthoracic echocardiograms from
260 2,728 uniqueindividuals at Stanford Health Care, Table 1. Standard 12 lead ECGs were divided
261 intotraining, validation, and test partitions based on a unique patient identification number to
262  ensurethat no patient overlap existed across data partitions. Echocardiogram videos from

263  Stanford Medicine were curated for apical 4-chamber view videos.

264  DataProcessing and selection

265  Electrocardiogram signals were filtered to remove any baseline wander and powerline
266 interference. Normalization of 12 lead ECGs was performed by lead over arandom subset of the


https://doi.org/10.1101/2021.06.13.21258860

medRxiv preprint doi: https://doi.org/10.1101/2021.06.13.21258860; this version posted June 15, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.
All rights reserved. No reuse allowed without permission.

267  study sample population, using mean and standard deviation. Echocardiogram videos were

268  processed in an identical method as Oyuang et al*®. Given multiple electrocardiograms and

269  echocardiograms per individual present within our dataset, we examined the effects of different
270  data selection methods on modd training and performance metrics. We selected three different

271  dataselection methods: 1) first clinical presentation for al data partitions, 2) all clinical

272  presentationsin the training partition with only first clinical presentation selected for the

273  validation and test partitions, and 3) al clinical presentations for all partitions. Extended details
274  of each selection method can be found in Supplemental Table 1.

275  Overview of model training framework

276  Training for the single-modal and multimodal neural network models were executed

277  independently.

278 Modesweretrained using atwo-stage grid search approach to find the optimal hyperparameters.
279 Intheinitial hyperparameter search, evaluation metrics from the validation set can be found in
280 the Supplementary Tables S5, S6. The hyperparameters that yielded the best performing models
281  were sdlected for additional training and hyperparameter search considering various loss

282  functions, loss weighting for minority class and minority class oversampling. Final models were
283  sdlected from the lowest validation loss.

284  Single-modal model training

285  For electrocardiogram single-modal model training, the following hyperparameters included:
286 model architecture: { VGG11, VGG13, VGG16, VGG19, densenet169, densenetl121,

287  densenet201, densenet161 resnetl8, resnet34, resnets0, resnet101, resnetl52, resnext50 32x4d,
288  resnext101 32x8d, wide resnet50 2 wide resnetl01 2}; batch size: {32, 64, 75} ; Optimizer:
289 {SGD, adam}, and Hz: {500, 250} . The first hyperparameter search involved training all

290 combinations of hyperparameters above for 100 epochs and saving results from the epoch with
291 thelowest loss. Furthermore, we explored a second hyperparameter search which explored class
292  weighted loss functions, oversampling minority class samples and setting final bias term to the
293  expected class ratios from top performing models from the initial hyperparameters search. We
294  examined expanding training to 150 epochs and considering both loss and auPRC results for
295  sdection of the final moded. The selected hyperparameters that resulted in best performance on

10
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296 thevalidation set were the following: resnet 34 model, oversampling minority class, adam optimizer,
297  batch size of 64, and sampling rate of 500.

298

299  For echocardiogram unimodal model training, the following hyperparameters included: Model
300 architecture: {r2plusld 18, mc3 18, r3d_18}, Number of frames: {96, 64, 32, 16, 8, 4, 1};
301 Period: {2, 4}; Pretrained weights: { True, False}. The first hyperparameter search involved
302 training all combinations of hyperparameters above for 100 epochs and saving results from the
303  epoch with the lowest loss. Furthermore, we explored a second hyperparameter search which
304 explored class weighted loss functions, oversampling minority class samples and setting final
305 hiasterm to the expected class ratios from top performing models from the initial

306 hyperparameters search. We examined expanding training to 300 epochs and considering both
307 lossand auPRC results for selection of the final model. The selected hyperparameters that

308 resulted in best performance on the validation set were the following: r2plusld 18 model,
309  pretrained weights, weighted minority class, adam optimizer, batch size of 20, and frames 16 with sampling
310  period of 4.

311  Multimodal model training

312  For multimodal training models, the el ectrocardiogram and echocardiogram data were paired
313  according to unique patient identifiers. Data selection for the earliest clinical encounter was

314  selected for al training, validation and test set partitions; this resulted in atotal of 1,414 training,
315 176 validation, and 168 internal test samples. The detailed characteristics of the dataset can be
316 foundin Table 1. We hypothesized that using the learned weights from the single-modal models
317  would benefit training so we explored both pre-trained late fusion and random late fusion

318 modes. All multimodal models were trained to 300 epochs and we considered both loss and
319 auPRC resultsfor selection of the final multimodal model. We implemented LV H-Fusion using
320 PyTorch on the Stanford University Research cluster, Sherlock. The selected hyperparameters
321 that resulted in best performance on the validation set were the following: r2plusld 18 model +
322  resnet 34, pretrained weights, weighted minority class, adam optimizer, batch size of 10, and
323  frames 16 with sampling period of 4.

11
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324  Comparison to feature based models

325  Standard reported features from Tracemaster electrocardiogram machines were extracted for
326  each ECG considered in this study. We used these features for input into a XGboost mode to
327 determineif afeature-based method would exceed the performance metrics of the unimodal
328  neural network models. Thelist of ECG features used were modeled from Kwon et al. 2020 *°,

329  Comparison with normal samples

330 Inorder to explore how our neural networks, perform on non-left ventricular hypertrophy

331 individuas, we sampled electrocardiograms with clinical annotations of sinus rhythm and

332  echocardiograms with anormal gection fraction greater than 45. Wetook the best performing
333 single-modal model and retrained them to include an additional non-LVH class; details of

334 sample size and performance metrics can be found in Supplementary Table 5 and Supplementary
335 Table6, respectively.

336  Ablation experiments
337  To further understand how the neural networks make their predictions, we explored various

338  ablation studies.
339  Weretrained the single-modal echo model with data ablated in the following ways:

340 1) asingle randomly selected frame of each echo, repeated for the length of the original
341 video to compare to the best performing unimodal model.

342 2) Theend diastolic frame from each echo, repeated for the length of the original video to
343 fairly compare to the best performing unimodal model. The end diastolic frame was
344 identified by a trained sonographer from EchoNet-dynamic™.

345 3) Using the estimated left ventricular segmentation from EchoNet-dynamic®®, we set all
346 pixels to zero except a segmented box around the left ventricle.

347  For electrocardiogram we retrained the single-modal models for the following experiments:

348 1) Using 8 of the 12 leads, to compare to the best performing unimodal model.
349 2) Masking out each lead independently to compare to the best performing single-modal
350 model and understand impacts each lead holds on performance.

351 Echocardiogram models were trained to 300 epochs and electrocardiogram models were trained
352  for 150 epochs.

12
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353  SHAP Interpretation experiments

354  SHAP GradientExplainer'® uses an extension of integrated gradient values and SHAP values,

355  which aims to attribute an importance value to each input feature by integrating the gradients of
356 all interpolations between aforeground sample (test samples) and a provided background

357 samples (training data). The importance scores sum up to approximately the difference between
358 the expected value of all background samples and the individual prediction estimate of interest.
359  We applied this method to both ECG and echocardiogram models; 1500 samples were used to
360 build the background distribution for the ECG model and 80 samples were used to build the

361  background distribution for the echocardiogram mode. In both cases, the full test set was used as

362 foreground samples.

363

364 Data and Code availability

365 All the code for LVH-Fusion will be available at https.//github.com/AshleyL ab/Ivh-fusion/ after
366 publication. The datathat support the findings of this study are available on request from the

367  corresponding author upon approval of data sharing committees of the respective institutions.
368
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426

427

428 FIGURES

429

430 Figurel. LVH-Fusion study design.

431 Two disease of interested are denoted, HCM and HTN, alongside data modality types used in
432  thisstudy. Single modal aswell as multimodal model architecture were explored. LVH-Fusionis
433 based on alate average fusion neural network, denoted in blue.
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439  Figure 2, Ablation studiesimpact on L VH-Fusion performance

440 Bootstrap 95% CI for performance metrics, F1-score and average precision score, for each model
441  trained on ablated input data. for each prediction metric is shown. (TOP row) Results from

442  ablating ECG input. (BOTTOM row) Results from ablating echocardiogram input. For each

443  ablation setting, a separate model was trained on that type of ablated data to quantify the

444  information content in the data.
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Figure 3, LVH-Fusion ECG interpretations.

SHAP explanations of one true positive, HCM sample (A). Red areas indicate timesteps that hold
a positive impact on prediction, while blue timesteps indicate a negative impact on prediction, no
color is neutral. (B) Selected regions of ECG leads denote timesteps of high estimated
importance, focusing on inverted T-waves and lead V3 R peaks. (C) Local explanations of the

cumulative SHAP values on prediction output across leads. Lead V3 overall contains the highest
values of SHAP values for this sample presented.
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460 Figure4, LVH-Fusion echocardiogram inter pretations.

461  SHAP explanations for two true positive samples, HCM (top row) and HTN (bottom row). Each
462  class has 3 frames selected with SHAP values overlaid. Red areas indicate pixels that hold a

463  positiveimpact on prediction, while blue pixels indicate a negative impact on prediction, no

464  color is neutral. We observe red areas of importance converging on the asymmetric septal wall in
465 the HCM example.
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470
471 TABLES
472
Table 1 Breakdown of data by partition
Label Partition Number of unique Number of Number of unique Number of
Echo patients Echos ECG patients ECGs
Train
256 596 662 4,281
Validate
Test
27 88 78 380
Train
1,469 1,976 1,535 8,348
Validate
HTN 186 270 191 1,127
Test
181 246 191 1,201
473
474
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475

476

Table 2: Model performance metrics

Models auROC auPRC Fl-score Sensitivity Specificity Precision NPV FPR FNR FDR
0914 (0.858- 0.781(0.642- 0.711(0.571- 0.727(0.560- 0.952(0.921- 0.696(0.526- 0.959(0.930- 0.048(0.021- 0.273(0.118- 0.304(0.148-
Late averaged fusion  0.961) 0.898) 0.826) 0.880) 0.979) 0.850) 0.986) 0.078) 0.438) 0.467) >
(§
0.917(0.866- 0.758(0.621- 0.480(0.353- 0.818(0.667- 0.760(0.701- 0.340(0.235- 0.965(0.935- 0.240(0.182- 0.182(0.050- 0.660 (0.552 - @
Late ranked fusion 0.960) 0.874) 0.591) 0.950) 0.818) 0.449) 0.991) 0.299) 0.333) 0.766) @
[9]
2
8
0.890 (0.832- 0.643(0.475- 0.556(0.409- 0.682(0.500- 0.884(0.838- 0.469(0.323- 0.949(0.915- 0.116(0.075- 0.318(0.156- 0.531(0.382- =
Late fusion random 0.941) 0.803) 0.681) 0.842) 0.925) 0.621) 0.978) 0.162) 0.500) 0.679) e
g
(1]
QD
0.891(0.829- 0.625(0.460- 0.452(0.333- 0.864(0.731- 0.705(0.642- 0.306(0.210- 0.972(0.943- 0.295(0.234- 0.136(0.033- 0.694 (0.596 - 53
Late fusion pretrained  0.943) 0.784) 0.556) 0.967) 0.767) 0.403) 1.000) 0.359) 0.269) 0.787) ?D
o
g
g
0.834(0.784- 0.686(0.590- 0.639(0.555- 0.676(0.580- 0.831(0.786- 0.605(0.512- 0.871(0.828- 0.169(0.123- 0.324(0.231- 0.395(0.304 - c
Single modal: ECG 0.880) 0.776) 0.712) 0.770) 0.877) 0.696) 0.912) 0.216) 0.418) 0.488) °
3
14
Single modal: 0.889(0.828- 0.719(0.588- 0.625(0.500- 0.741(0.591- 0.906 (0.870- 0.541(0.406- 0.959(0.932- 0.094 (0.060- 0.259 (0.125- 0.459 (0.324 - 8
Echocardiogram 0.942) 0.833) 0.735) 0.875) 0.940) 0.676) 0.982) 0.130) 0.407) 0.595)
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477  SUPPLEMENTAL TABLESAND FIGURES

478
479
Supplemental Table S1
Data Selection Label Number of unique Echo patients  Number of Echos  Number of unique ECG patients  Number of ECGs
First Encounters, train, val, and test HCM
314 314 811 811
HTN
1,836 1,836 1,917 1,917
First Encounter, val and test HCM
314 654 811 4,430
HTN
1,836 2,343 1,917 8,730
All Encounterstrain, val, andtest HCM
324 763 917 6,027
HTN
1,848 2,516 1,977 13,045
480
481
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482
Supplemental Table S2
Model Loss auPRC Optim Batch Data Selection

VGG11 0.502 0.591 adam 75 First Encounters, all

VGG13 0.448 0.672 adam 64 First Encounters, all

VGG16 0.493 0.559 adam 64 First Encounters, all

VGG19 0.501 0.559 adam 64 First Encounters, all

densenet121 0.395 0.738 adam 64 First Encounters, all

densenet161 0.449 0.639 adam 64 First Encounters, all

densenet169 041 0.722 adam 75 First Encounters, val and test only

densenet201 0.433 0.724 adam 64 First Encounters, al

resnet101 0.427 0.702 adam 75 First Encounters, all

resnet152 0.434 0.715 adam 64 First Encounters, all

resnet18 0.405 0.727 adam 64 First Encounters, all

resnet34 0.383 0.781 adam 64 First Encounters, all

resnet50 0.429 0.73 adam 75 First Encounters, all

resnext101_32x8d 0.405 0.741 adam 75 First Encounters, all

resnext50_32x4d 0.405 0.734 adam 64 First Encounters, all

wide resnetl01 2 0.426 0.69 adam 75 First Encounters, all

wide_resnet50_2 0.416 0.692 adam 64 First Encounters, all
483
484
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485
Supplemental Table S3
M odel loss auPRC  optim frames period File selection
mc3 0.134 0.893 adam 16 2 First Encounters, all
r2plusld  0.171 0.851 adam 16 4 First Encounters, all
r3d 0.152 0.879 adam 16 4 First Encounters, all
486
Supplemental Table S4
auROC  auPRC  Filscore Sensitivity Specificity PPV NPV FPR FNR FDR
Reduced features (11)
0.71 0.59 0.5 0.43 0.89 0.6 0.8 0.11 0.57 0.4
Large features (468)
0.84 0.73 0.59 0.47 0.95 0.78 0.82 0.05 0.53 0.22
487
488
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489
Supplemental Table S5
f1-score precision recall support
HTN
0.71 0.78 0.65 181
HCM
0.41 1.00 0.26 27
NORMAL EF
0.95 0.92 0.97 876
macro avg
0.69 0.90 0.63 1084
weighted avg
0.89 0.90 0.90 1084
490
491
492
493
Supplemental Table S6
f1-score precision recall support
HTN
0.39 0.35 0.44 178
HCM
0.36 0.26 0.57 68
SINUS
091 0.95 0.88 1789
macro avg
0.56 0.52 0.63 2035
weighted avg
0.85 0.87 0.83 2035
494
495
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502  Supplemental Figure S2, ECG ablation study of multiple lead masking
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508 Supplemental Figure $4, ECG SHAP global feature importance plot

509 Theglobal importance of each lead istaken to be the mean absolute value summation for each
510 lead over all the given samples. Hypertension (HTN) isin solid red, Hypertrophic

511 Cardiomyopathy (HCM) is denoted by stripes. Lead V3 isranks highest overall in global feature
512  importance.
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