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Abstract 14 

Determining the etiology of left ventricular hypertrophy (LVH) can be challenging due to the 15 

similarity in clinical presentation and cardiac morphological features of diverse causes of 16 

disease. In particular, distinguishing individuals with hypertrophic cardiomyopathy (HCM) from 17 

the much larger set of individuals with manifest or occult hypertension (HTN) is of major 18 

importance for family screening and the prevention of sudden death. We hypothesized that deep 19 

learning based joint interpretation of 12 lead electrocardiograms and echocardiogram videos 20 

could augment physician interpretation. We chose not to train on proximate data labels such as 21 

physician over-reads of ECGs or echocardiograms but instead took advantage of electronic 22 

health record derived clinical blood pressure measurements and diagnostic consensus (often 23 

including molecular testing) among physicians in an HCM center of excellence.  Using over 24 

18,000 combined instances of electrocardiograms and echocardiograms from 2,728 patients, we 25 

developed LVH-Fusion. On held-out test data, LVH-Fusion achieved an F1-score of 0.71 in 26 

predicting HCM, and 0.96 in predicting HTN. In head-to-head comparison with human readers 27 

LVH-Fusion had higher sensitivity and specificity rates than its human counterparts. Finally, we 28 

use explainability techniques to investigate local and global features that positively and 29 

negatively impact LVH-Fusion prediction estimates providing confirmation from unsupervised 30 
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analysis the diagnostic power of lateral T wave inversion on the ECG and proximal septal 31 

hypertrophy on the echocardiogram for HCM. In conclusion, these results show that deep 32 

learning can provide effective physician augmentation in the face of a common diagnostic 33 

dilemma with far reaching implications for the prevention of sudden cardiac death.  34 

 35 

Introduction 36 

 37 

Hypertrophic cardiomyopathy (HCM) is the most common cardiac genetic disease with an 38 

estimated prevalence in the general population of 1:500 to 1:200.1 HCM is an autosomal 39 

dominant mendelian disease that can be associated with significant morbidity in the form of heart 40 

failure and sudden death.2 Thus, identifying patients with HCM has significance well beyond the 41 

individual, with many proband diagnoses leading to screening of several generations of a family. 42 

Diagnosis of HCM can be difficult due to the high prevalence of manifest hypertension in the 43 

general population, present in up to 45% of US adults 3 (this before counting the occult disease). 44 

Thus, a common diagnostic dilemma for clinicians when faced with LVH on the ECG or 45 

echocardiogram is how to rule out HCM. In a small study, the rates of misclassification of HCM 46 

were as high as 30% percent with hypertension being the most common misdiagnosis 4. Although 47 

the American Heart Association provides guidelines for the diagnosis of hypertension and HCM 48 

separately, distinguishing between them is a task that most physicians feel ill equipped to 49 

perform (understandably as HCM is a rare disease not commonly encountered even in general 50 

cardiology practice). This provides an opportunity for physician augmentation through artificial 51 

intelligence (AI). 52 

 53 

New advances in artificial intelligence have led to rapid expansion of medical deep learning 54 

applications with an emphasis on medical specialties that hold a high degree of visual pattern 55 

recognition tasks like radiology, pathology, ophthalmology, dermatology and most notably 56 

cardiology.5 Imaging and electrical phenotypes of hypertrophic cardiomyopathy 6,7 are the first 57 

line clinical tools. 58 

 59 
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Interpretation of the ECG relies on direct visual assessment making it ideal for deep learning 60 

approaches. Previous work has demonstrated that demographic and medical data can be learned 61 

including detection of low ejection fraction, something typically requiring echocardiography to 62 

confirm 8–11. Our prior work using video computation of echocardiograms has demonstrated 63 

efficient detection of left ventricular hypertrophy and the identification of a broad range of 64 

cardiovascular disease.12,13  65 

 66 

Combining data sources as human diagnosticians do, has the potential to provide an artificial 67 

intelligence (AI) algorithm with greater diagnostic power14.  We focus here on the two most 68 

frequent diagnostic modalities in cardiology. To date, no published work has explored the 69 

benefits of a multimodal deep learning model using electrocardiogram and echocardiogram data, 70 

although there has been some exploration of combining separately trained diagnostic models in a 71 

single pipeline15. We hypothesize that multimodal deep learning may provide added benefit in 72 

distinguishing patterns that are not easily discernible from individual modalities. We present 73 

LVH-fusion, the first model to jointly model electrical and ultrasound-based time series data of 74 

the heart. We demonstrate its potential with application to the diagnosis of left ventricular 75 

hypertrophy. 76 

Results 77 

We developed a multi-modal deep learning framework, LVH-fusion, that takes as input time based 78 

electrical and echocardiographic data of the heart. We applied this framework in a common clinical 79 

challenge: the determination of the etiology of left ventricular hypertrophy. Motivated by prior work on 80 

deep learning applied to electrocardiogram signals and echocardiogram videos 9,13,16, LVH-fusion jointly 81 

models both electrocardiogram and echocardiogram data. It is trained not with proximate human derived 82 

ECG and echocardiogram labels but rather via a gold standard diagnosis independently derived from the 83 

Electronic Health Records (HTN) or through the consensus diagnosis of HCM within a center of 84 

excellence.  85 

In this study, both single-modal and multimodal neural network models were examined (Figure 1).  Four 86 

different multimodal fusion architectures were explored, combining ECG and echocardiogram 87 

information in different ways. For both late-average fusion and late-ranked fusion models, decision level 88 
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fusion was used to combine the outputs of electrocardiogram and echocardiogram classifiers17. In the late-89 

average fusion model, soft voting is performed by computing the average probability for each class from 90 

the individual ECG and echocardiogram classifiers and predicts the class with maximal average 91 

probability. In the late-ranked fusion model, the probabilities for each class from the individual ECG and 92 

echocardiogram classifiers are ranked and a prediction is determined from the highest ranked probability. 93 

For the late fusion models, both pre-trained and random, the learned feature representations from each 94 

modality were concatenated together before the final classification layer. In this situation the fusion 95 

model considers both inputs and during training and the loss is calculated jointly. We explored the 96 

benefits of randomly initialized weights and pretrained weights in the late fusion model. Lastly, the single 97 

modal models provide a benchmark against which to compare multimodal models that jointly consider the 98 

paired electrocardiogram and echocardiogram data, demonstrating the benefit of a combined approach. 99 

Data Acquisition and selection 100 

With the approval of Stanford Institutional Review Board (IRB), we retrieved electrocardiograms and 101 

echocardiograms from patients between 2006 and 2018 at Stanford Medicine (Table 1). The data was split 102 

into training, validation, and test sets with no patient overlap between sets. Due to the fact that multiple 103 

electrocardiograms and echocardiograms are present within the healthcare system record, we explored 104 

various data selection scenarios to understand what selection methods are best suited for this specific task. 105 

The quantitative comparison of all data selection used can be found in Supplementary Table S1. The final 106 

model was trained using a patient’s first ECG and first echocardiogram in the system. 107 

Model performance 108 

Four multimodal fusion models were explored: late-average, late-ranked, pre-trained late fusion 109 

and random late fusion (Figure 1). The performance metrics of each model is detailed in Table 2.  110 

The late average model achieved the highest F1-score and specificity rates 0.711 (0.571 - 0.826) 111 

and 0.952 (0.921 - 0.979) respectively on the held-out test set. We conducted experiments to 112 

study the performance of single-modal models trained on only ECG and echo to demonstrate the 113 

benefit of multimodal models. The multimodal models outperform single-modal model F1-114 

scores, which increase from 0.63 to 0.71. Furthermore, the false-discovery rates are significantly 115 

reduced from 0.45 to 0.3. To provide context for these results, we also trained the single-modal 116 

models to predict left ventricular etiology using standard quantitative features from the 117 

electrocardiogram. This baseline model achieved sensitivity rates of 0.51 for predicting HCM 118 

which is considerably lower than LVH-Fusion (Supplementary Table S2). These results show 119 
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that the proposed electrocardiogram signals model discover novel characteristics not accounted 120 

for with the quantitative features. Lastly, to examine the discriminatory power of our 121 

methodology, we performed a sensitivity analysis for predicting LVH etiology including the 122 

additional classification task of “normal.” In this context, LVH-fusion maintains high 123 

discriminatory power in predicting LVH from normal ECG and echocardiogram videos, 124 

suggesting that false positive rates of hypertension or hypertrophic cardiomyopathy would be 125 

low if the model was extended to this use case (Supplementary Table S3 and S4). 126 

 127 

Understanding model performance  128 

In order to improve our understanding of how LVH-Fusion classifies left ventricular etiology, we 129 

implemented a series of ablation studies similar to Hughes et al. 202118 to determine what 130 

information models rely on to make predictions. For electrocardiogram single-modal models we 131 

examined the impact of varying the number of leads from the standard 12 leads to 8 leads and 132 

masking each lead to understand the impact each lead holds for prediction estimates. We find 133 

that although no single lead harbors a statistically significant impact on the overall model 134 

performance, masking out lead V3 and aVR had the highest negative impact on prediction 135 

estimates, Figure 2. Next, since the standard 12 lead ECG contains 8 algebraically independent 136 

leads, we considered the impact of masking multiple leads combinations. We observe an overall 137 

reduction in classification metrics when masking multiple leads at a time with no significant 138 

difference between masking the 4 dependent leads (III, aVL,  aVF,  aVR) and a random 139 

subselection of 4 leads, Supplementary Figure S2. These results suggest our model benefits from 140 

the complete 12 lead input and classification metrics are negatively impacted with any 141 

nonspecific reduction in leads.  142 

 143 

For the echocardiogram single-modal model, we examined segmentation, restricting the 144 

prediction algorithm to i) only the region around the left ventricle, ii) random single frames, and 145 

iii) single end diastolic frames. Restricting the echocardiogram model to the area around the left 146 

ventricle caused a decrease in accuracy, showing the model relies on information outside of that 147 

region to make classifications. This is interesting given the focus of clinicians on the left 148 

ventricle when considering LVH, even despite the fact that hypertension could impact the left 149 
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atrium by causing restriction and HCM affects all four chambers.  Restricting the model’s input 150 

to a single frame further decreases accuracy, demonstrating that motion information is important 151 

in distinguishing between HCM and hypertension. Figure 2 details the performance of each 152 

ablation experiment.  153 

 154 

Model interpretations  155 

In order to improve our understanding of how LVH-Fusion classifies left ventricular etiology, we 156 

implemented SHAP GradientExplainer, a game theory approach to explain the output of a 157 

machine learning algorithm19. Relating this method to the ECG model, this approach takes the 158 

prediction of a model and estimates the gradient with respect to each individual timestep for 159 

every lead from the input signal. For echocardiogram videos, an analogous methodology applies: 160 

the gradient of the model's prediction was calculated with respect to every pixel from the input 161 

video. In each case, the calculated value is then compared to a provided background distribution, 162 

the training data. The value of the calculated gradients for each timestep/pixel is then assigned an 163 

importance score such that highly impactful scores (denoted in red) hold positive impacts on 164 

prediction estimates. Values with low importance scores negatively influence prediction 165 

estimates (denoted in blue).  166 

 167 

We emphasize samples of ECG and echocardiograms from the test partition to deduce regions 168 

the model found most impactful to prediction estimates, Figure 3 and 4. In Figure 3, the ECG 169 

interpretation results highlight an overall focus on V3 and T-wave inversion in leads V1-V6. 170 

Both the observed early R wave progression and T-wave inversion are indications of HCM.  171 

Summarized local interpretations for each lead provides explanations of the overall impact each 172 

lead has on prediction estimates. Additional examples of ECG interpretation tracings can be 173 

found in the Supplement Figure S1. Comparably, the interpretation results of the echocardiogram 174 

videos, Figure 4, clearly depicts asymmetric proximal septal thickness, a hallmark distinction of 175 

HCM across all frames of the video. Next, to examine local summary interpretations, we 176 

segmented the left ventricle on each frame for duration of a video's length. This allowed us to 177 

quantitatively compare the positive and negative impacts the estimated LV size had on overall 178 

prediction estimates, Supplemental Figure S3. 179 
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 180 

To further examine if the regions of importance identified in distinct samples are globally similar 181 

across all predictions, a summation or averaging across all local instances was performed. This 182 

approach provides a highly compressed, global insight into the model's behavior. We considered 183 

per lead contributions to predictions in ECGs and left ventricular segmentation in 184 

echocardiogram videos. Global summary results for ECG corroborates our results from the 185 

ablation studies, lead V3 and aVR holds valuable information for model’s prediction estimates, 186 

Supplement Figure S4.  187 

Comparison against physician interpretation  188 

We had two expert readers review ECG tracings and echocardiogram videos and asked them to 189 

make a diagnosis of HTN or HCM. We selected 45 samples (40 HTN and 5 HCM) from the test 190 

set to compare LVH-fusion. The LVH-fusion model outperformed these expert cardiologists 191 

(one of whom has 20 years of experience in diagnosing HCM). LVH-fusion correctly classified 3 192 

out of the 5 ECG and echocardiogram HCM samples. Variability between cardiologists varied 193 

greatly, with one cardiologist matching LVH-fusion sensitivity estimates but with a reduction in 194 

specificity, while cardiologist two failed to correctly classify any of the HCM ECG samples 195 

provided.  196 

Discussion 197 

In this study, we report the first multimodal (ECG and echocardiogram based) deep learning 198 

model in clinical cardiology and use it to predict the etiology of left ventricular hypertrophy. 199 

Combining complementary knowledge from multiple modalities can improve diagnostic 200 

performance in clinical practice. The trained model demonstrates high discriminatory ability in 201 

distinguishing hypertrophic cardiomyopathy from hypertension with an AUC of 0.91, AUPRC of 202 

0.78. Furthermore, ablation studies provided independent support from unsupervised analysis for 203 

clinicians’ focus on ECG lateral repolarization and echocardiographic proximal septal 204 

hypertrophy for the diagnosis of HCM. Combining complementary information from multiple 205 

modalities is intuitively appealing for improving the performance of learning-based approaches. 206 

Our results can be directly applied in general medical and cardiology clinics where exposure to 207 

rare conditions such as HCM limits confidence in human diagnostic prediction alone.  208 
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 209 

Deep learning models specifically focused on single modalities in cardiology have shown 210 

impressive results for arrhythmia detection, age, and other clinical actionable insights 8,10,16. 211 

Previously Ko et al., focused on using convolutional neural networks (CNN) for ECG 212 

interpretation with respect to HCM 22. They showed high discriminatory power in classifying 213 

HCM against a background population of left ventricular hypertrophy by ECG alone. However, 214 

approximately 28-30% of HCM cases had concurrent hypertension, inhibiting a direct 215 

comparison of possible distinction between HCM and hypertension. To date, deep learning 216 

research addressing non-pulmonary hypertension detection using electrocardiogram or 217 

echocardiogram was unknown. One previous approach successfully used both ECG and 218 

echocardiogram data individually with a stepwise approach to diagnosis of cardiac 219 

amyloidosis15, whereas here we focus on fusion method applications of multi-modal deep 220 

learning of electrocardiograms and echocardiograms together.   221 

 222 

Medical decision making is complex, often relying on a combination of physician's judgment, 223 

experience, diagnostic and screening test results, and longitudinal follow-up. In the case of a 224 

patient presenting with anything other than severe, grossly asymmetric LVH, suspicion for HCM 225 

would be higher for patients who do not obviously have hypertension. However, occult 226 

hypertension is common and challenging to rule out and with mild “gray zone” hypertrophy, it is 227 

not uncommon to make this assumption. Similarly, for patients who present with LVH and 228 

manifest hypertension, the question is always “is hypertension alone enough to explain this 229 

degree of LVH?” Given the implications of missing a diagnosis of HCM—a mendelian disease 230 

associated with heart failure and sudden death—most generalists do not feel confident ignoring 231 

the possibility of HCM. In these cases, aggressively treating hypertension and re-reviewing the 232 

patient can help but challenges in follow up, adherence, and effectiveness of therapy make the 233 

window of equipoise long. These are the clinical scenarios into which LVH-fusion will have the 234 

most benefit. Yet, this is merely the first application of the approach. A similar approach to the 235 

identification of other causes of LVH such as Fabry disease or cardiac amyloidosis can be 236 

applied using similar “gold standard” diagnostic labels to those we use here. The future of deep 237 

learning in medicine is a move beyond reproducing human derived label features to capitalizing 238 
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on unsupervised machine learned features vs a gold standard diagnostic or prognostic label. This 239 

will allow machine augmentation of the human led diagnostic journey.   240 

 241 

In summary, we develop a deep learning model incorporating ECG and echocardiogram time 242 

series data and apply it to help identify hypertrophic cardiomyopathy patients from within the 243 

much larger group of patients presenting with LVH due to hypertension or unknown causes. We 244 

present various well known fusion methods of combining data streams from multiple modalities 245 

and compare these comprehensively to single-modal models. Further studies should explore the 246 

real-world application of physician augmentation approaches like LVH-fusion in medical 247 

practice.  248 

Methods 249 

Data acquisition and study population 250 

Hypertrophic cardiomyopathy patients were selected for this study from the Hypertrophic 251 

Cardiomyopathy clinics at the Stanford Center for Inherited Cardiovascular Disease. 252 

Hypertension patients were selected from individuals that were found to be persistently 253 

hypertensive (SBP >150) with at least 5 consecutive systolic blood pressure readings over 150. 254 

Exclusion criteria included any ECG clinical annotations of ventricular-pacing or left bundle 255 

branch block. In addition, we excluded any data from both electrocardiograms and 256 

echocardiograms datasets if the date acquired was after a documented myectomy procedure.   257 

 258 

We retrieved 15,761 electrocardiograms (ECGs) and 3,234 transthoracic echocardiograms from 259 

2,728 unique individuals at Stanford Health Care, Table 1. Standard 12 lead ECGs were divided 260 

into training, validation, and test partitions based on a unique patient identification number to 261 

ensure that no patient overlap existed across data partitions. Echocardiogram videos from 262 

Stanford Medicine were curated for apical 4-chamber view videos.  263 

Data Processing and selection 264 

Electrocardiogram signals were filtered to remove any baseline wander and powerline 265 

interference. Normalization of 12 lead ECGs was performed by lead over a random subset of the 266 
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study sample population, using mean and standard deviation. Echocardiogram videos were 267 

processed in an identical method as Oyuang et al13. Given multiple electrocardiograms and 268 

echocardiograms per individual present within our dataset, we examined the effects of different 269 

data selection methods on model training and performance metrics. We selected three different 270 

data selection methods: 1) first clinical presentation for all data partitions, 2) all clinical 271 

presentations in the training partition with only first clinical presentation selected for the 272 

validation and test partitions, and 3) all clinical presentations for all partitions. Extended details 273 

of each selection method can be found in Supplemental Table 1.  274 

Overview of model training framework 275 

Training for the single-modal and multimodal neural network models were executed 276 

independently.  277 

Models were trained using a two-stage grid search approach to find the optimal hyperparameters. 278 

In the initial hyperparameter search, evaluation metrics from the validation set can be found in 279 

the Supplementary Tables S5, S6. The hyperparameters that yielded the best performing models 280 

were selected for additional training and hyperparameter search considering various loss 281 

functions, loss weighting for minority class and minority class oversampling. Final models were 282 

selected from the lowest validation loss.  283 

Single-modal model training 284 

For electrocardiogram single-modal model training, the following hyperparameters included: 285 

model architecture: {VGG11, VGG13, VGG16, VGG19, densenet169, densenet121, 286 

densenet201, densenet161 resnet18, resnet34, resnet50, resnet101, resnet152, resnext50_32x4d, 287 

resnext101_32x8d, wide_resnet50_2 wide_resnet101_2}; batch size: {32, 64, 75}; Optimizer: 288 

{SGD, adam}, and Hz: {500, 250}. The first hyperparameter search involved training all 289 

combinations of hyperparameters above for 100 epochs and saving results from the epoch with 290 

the lowest loss. Furthermore, we explored a second hyperparameter search which explored class 291 

weighted loss functions, oversampling minority class samples and setting final bias term to the 292 

expected class ratios from top performing models from the initial hyperparameters search. We 293 

examined expanding training to 150 epochs and considering both loss and auPRC results for 294 

selection of the final model. The selected hyperparameters that resulted in best performance on 295 
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the validation set were the following: resnet 34 model, oversampling minority class, adam optimizer, 296 

batch size of 64, and sampling rate of 500. 297 

 298 

For echocardiogram unimodal model training, the following hyperparameters included: Model 299 

architecture: {r2plus1d_18, mc3_18, r3d_18}, Number of frames: {96, 64, 32, 16, 8, 4, 1}; 300 

Period: {2, 4}; Pretrained weights: {True, False}. The first hyperparameter search involved 301 

training all combinations of hyperparameters above for 100 epochs and saving results from the 302 

epoch with the lowest loss. Furthermore, we explored a second hyperparameter search which 303 

explored class weighted loss functions, oversampling minority class samples and setting final 304 

bias term to the expected class ratios from top performing models from the initial 305 

hyperparameters search. We examined expanding training to 300 epochs and considering both 306 

loss and auPRC results for selection of the final model. The selected hyperparameters that 307 

resulted in best performance on the validation set were the following: r2plus1d_18 model, 308 

pretrained weights, weighted minority class, adam optimizer, batch size of 20, and frames 16 with sampling 309 

period of 4. 310 

Multimodal model training 311 

For multimodal training models, the electrocardiogram and echocardiogram data were paired 312 

according to unique patient identifiers. Data selection for the earliest clinical encounter was 313 

selected for all training, validation and test set partitions; this resulted in a total of 1,414 training, 314 

176 validation, and 168 internal test samples.  The detailed characteristics of the dataset can be 315 

found in Table 1. We hypothesized that using the learned weights from the single-modal models 316 

would benefit training so we explored both pre-trained late fusion and random late fusion 317 

models. All multimodal models were trained to 300 epochs and we considered both loss and 318 

auPRC results for selection of the final multimodal model. We implemented LVH-Fusion using 319 

PyTorch on the Stanford University Research cluster, Sherlock. The selected hyperparameters 320 

that resulted in best performance on the validation set were the following: r2plus1d_18 model + 321 

resnet 34, pretrained weights, weighted minority class, adam optimizer, batch size of 10, and 322 

frames 16 with sampling period of 4. 323 
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Comparison to feature based models 324 

Standard reported features from Tracemaster electrocardiogram machines were extracted for 325 

each ECG considered in this study. We used these features for input into a XGboost model to 326 

determine if a feature-based method would exceed the performance metrics of the unimodal 327 

neural network models. The list of ECG features used were modeled from Kwon et al. 2020 10.  328 

Comparison with normal samples  329 

In order to explore how our neural networks, perform on non-left ventricular hypertrophy 330 

individuals, we sampled electrocardiograms with clinical annotations of sinus rhythm and 331 

echocardiograms with a normal ejection fraction greater than 45.  We took the best performing 332 

single-modal model and retrained them to include an additional non-LVH class; details of 333 

sample size and performance metrics can be found in Supplementary Table 5 and Supplementary 334 

Table 6, respectively.   335 

Ablation experiments  336 

To further understand how the neural networks make their predictions, we explored various 337 

ablation studies.  338 

We retrained the single-modal echo model with data ablated in the following ways: 339 

1) a single randomly selected frame of each echo, repeated for the length of the original 340 

video to compare to the best performing unimodal model.  341 

2) The end diastolic frame from each echo, repeated for the length of the original video to 342 

fairly compare to the best performing unimodal model. The end diastolic frame was 343 

identified by a trained sonographer from EchoNet-dynamic13. 344 

3) Using the estimated left ventricular segmentation from EchoNet-dynamic13, we set all 345 

pixels to zero except a segmented box around the left ventricle. 346 

For electrocardiogram we retrained the single-modal models for the following experiments: 347 

1) Using 8 of the 12 leads, to compare to the best performing unimodal model.  348 

2) Masking out each lead independently to compare to the best performing single-modal 349 

model and understand impacts each lead holds on performance. 350 

Echocardiogram models were trained to 300 epochs and electrocardiogram models were trained 351 

for 150 epochs. 352 
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SHAP Interpretation experiments  353 

SHAP GradientExplainer19 uses an extension of integrated gradient values and SHAP values, 354 

which aims to attribute an importance value to each input feature by integrating the gradients of 355 

all interpolations between a foreground sample (test samples) and a provided background 356 

samples (training data). The importance scores sum up to approximately the difference between 357 

the expected value of all background samples and the individual prediction estimate of interest. 358 

We applied this method to both ECG and echocardiogram models; 1500 samples were used to 359 

build the background distribution for the ECG model and 80 samples were used to build the 360 

background distribution for the echocardiogram model. In both cases, the full test set was used as 361 

foreground samples.   362 

 363 

Data and Code availability  364 

All the code for LVH-Fusion will be available at https://github.com/AshleyLab/lvh-fusion/  after 365 

publication. The data that support the findings of this study are available on request from the 366 

corresponding author upon approval of data sharing committees of the respective institutions.  367 

 368 
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 426 
 427 
FIGURES 428 
 429 
Figure 1. LVH-Fusion study design.  430 
Two disease of interested are denoted, HCM and HTN, alongside data modality types used in 431 
this study. Single modal as well as multimodal model architecture were explored. LVH-Fusion is 432 
based on a late average fusion neural network, denoted in blue.  433 
 434 

435 
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 437 
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Figure 2, Ablation studies impact on LVH-Fusion performance 439 
Bootstrap 95% CI for performance metrics, F1-score and average precision score, for each model 440 
trained on ablated input data. for each prediction metric is shown. (TOP row) Results from 441 
ablating ECG input. (BOTTOM row) Results from ablating echocardiogram input. For each 442 
ablation setting, a separate model was trained on that type of ablated data to quantify the 443 
information content in the data.  444 
 445 
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Figure 3, LVH-Fusion ECG interpretations. 449 
SHAP explanations of one true positive, HCM sample (A). Red areas indicate timesteps that hold450 
a positive impact on prediction, while blue timesteps indicate a negative impact on prediction, no 451 
color is neutral. (B) Selected regions of ECG leads denote timesteps of high estimated 452 
importance, focusing on inverted T-waves and lead V3 R peaks. (C) Local explanations of the 453 
cumulative SHAP values on prediction output across leads. Lead V3 overall contains the highest 454 
values of SHAP values for this sample presented.  455 
 456 
 457 
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Figure 4, LVH-Fusion echocardiogram interpretations. 460 
SHAP explanations for two true positive samples, HCM (top row) and HTN (bottom row). Each 461 
class has 3 frames selected with SHAP values overlaid. Red areas indicate pixels that hold a 462 
positive impact on prediction, while blue pixels indicate a negative impact on prediction, no 463 
color is neutral. We observe red areas of importance converging on the asymmetric septal wall in 464 
the HCM example. 465 
 466 

467 
 468 
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 470 
TABLES 471 
 472 
Table 1 Breakdown of data by partition 

Label Partition Number of unique  
Echo patients 

Number of  
Echos 

Number of unique  
ECG patients 

Number of 
ECGs 

HCM 

Train 
256 596 662 4,281 

Validate 
31 58 71 424 

Test 
27 88 78 380 

HTN 

Train 
1,469 1,976 1,535 8,348 

Validate 
186 270 191 1,127 

Test 
181 246 191 1,201 

 473 
 474 
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 475 

Table 2: Model performance metrics  

Models auROC auPRC F1-score Sensitivity Specificity Precision NPV FPR FNR FDR 

Late averaged fusion 
0.914 (0.858 - 
0.961) 

0.781 (0.642 - 
0.898) 

0.711 (0.571 - 
0.826) 

0.727 (0.560 - 
0.880) 

0.952 (0.921 - 
0.979) 

0.696 (0.526 - 
0.850) 

0.959 (0.930 - 
0.986) 

0.048 (0.021 - 
0.078) 

0.273 (0.118 - 
0.438) 

0.304 (0.148 - 
0.467) 

Late ranked fusion 
0.917 (0.866 - 
0.960) 

0.758 (0.621 - 
0.874) 

0.480 (0.353 - 
0.591) 

0.818 (0.667 - 
0.950) 

0.760 (0.701 - 
0.818) 

0.340 (0.235 - 
0.449) 

0.965 (0.935 - 
0.991) 

0.240 (0.182 - 
0.299) 

0.182 (0.050 - 
0.333) 

0.660 (0.552 - 
0.766) 

Late fusion random 
0.890 (0.832 - 
0.941) 

0.643 (0.475 - 
0.803) 

0.556 (0.409 - 
0.681) 

0.682 (0.500 - 
0.842) 

0.884 (0.838 - 
0.925) 

0.469 (0.323 - 
0.621) 

0.949 (0.915 - 
0.978) 

0.116 (0.075 - 
0.162) 

0.318 (0.156 - 
0.500) 

0.531 (0.382 - 
0.679) 

Late fusion pretrained 
0.891 (0.829 - 
0.943) 

0.625 (0.460 - 
0.784) 

0.452 (0.333 - 
0.556) 

0.864 (0.731 - 
0.967) 

0.705 (0.642 - 
0.767) 

0.306 (0.210 - 
0.403) 

0.972 (0.943 - 
1.000) 

0.295 (0.234 - 
0.359) 

0.136 (0.033 - 
0.269) 

0.694 (0.596 - 
0.787) 

Single modal: ECG 
0.834 (0.784 - 
0.880) 

0.686 (0.590 - 
0.776) 

0.639 (0.555 - 
0.712) 

0.676 (0.580 - 
0.770) 

0.831 (0.786 - 
0.877) 

0.605 (0.512 - 
0.696) 

0.871 (0.828 - 
0.912) 

0.169 (0.123 - 
0.216) 

0.324 (0.231 - 
0.418) 

0.395 (0.304 - 
0.488) 

Single modal: 
Echocardiogram 

0.889 (0.828 - 
0.942) 

0.719 (0.588 - 
0.833) 

0.625 (0.500 - 
0.735) 

0.741 (0.591 - 
0.875) 

0.906 (0.870 - 
0.940) 

0.541 (0.406 - 
0.676) 

0.959 (0.932 - 
0.982) 

0.094 (0.060 - 
0.130) 

0.259 (0.125 - 
0.407) 

0.459 (0.324 - 
0.595) 
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SUPPLEMENTAL TABLES AND FIGURES 477 
 478 
 479 

Supplemental Table S1 

Data Selection Label Number of unique Echo patients Number of Echos Number of unique ECG patients Number of ECGs 

First Encounters, train, val, and test HCM 

314 314 811 811 

HTN 
1,836 1,836 1,917 1,917 

First Encounter, val and test HCM 
314 654 811 4,430 

HTN 
1,836 2,343 1,917 8,730 

All Encounters train, val, and test HCM 
324 763 917 6,027 

HTN 

1,848 2,516 1,977 13,045 

 480 
  481 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted June 15, 2021. ; https://doi.org/10.1101/2021.06.13.21258860doi: medRxiv preprint 

https://doi.org/10.1101/2021.06.13.21258860


 

 24

 482 
 

Supplemental Table S2 

Model Loss auPRC Optim Batch Data Selection 

VGG11 0.502 0.591 adam 75 First Encounters, all 

VGG13 0.448 0.672 adam 64 First Encounters, all 

VGG16 0.493 0.559 adam 64 First Encounters, all 

VGG19 0.501 0.559 adam 64 First Encounters, all 

densenet121 0.395 0.738 adam 64 First Encounters, all 

densenet161 0.449 0.639 adam 64 First Encounters, all 

densenet169 0.41 0.722 adam 75 First Encounters, val and test only 

densenet201 0.433 0.724 adam 64 First Encounters, all 

resnet101 0.427 0.702 adam 75 First Encounters, all 

resnet152 0.434 0.715 adam 64 First Encounters, all 

resnet18 0.405 0.727 adam 64 First Encounters, all 

resnet34 0.383 0.781 adam 64 First Encounters, all 

resnet50 0.429 0.73 adam 75 First Encounters, all 

resnext101_32x8d 0.405 0.741 adam 75 First Encounters, all 

resnext50_32x4d 0.405 0.734 adam 64 First Encounters, all 

wide_resnet101_2 0.426 0.69 adam 75 First Encounters, all 

wide_resnet50_2 0.416 0.692 adam 64 First Encounters, all 

 483 
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 485 

Supplemental Table S3 

Model loss auPRC optim frames period File selection 

mc3 0.134 0.893 adam 16 2 First Encounters, all 

r2plus1d 0.171 0.851 adam 16 4 First Encounters, all 

r3d 0.152 0.879 adam 16 4 First Encounters, all 

 486 

Supplemental Table S4 

  

auROC auPRC F1score Sensitivity Specificity PPV NPV FPR FNR FDR 

Reduced features (11) 

0.71 0.59 0.5 0.43 0.89 0.6 0.8 0.11 0.57 0.4 

Large features (468) 

0.84 0.73 0.59 0.47 0.95 0.78 0.82 0.05 0.53 0.22 
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 489 

Supplemental Table S5       

  

f1-score precision recall support 

HTN  

0.71  0.78  0.65  181  

HCM  

0.41  1.00  0.26  27  

NORMAL EF  

0.95  0.92  0.97  876  

 

    

macro avg  

0.69  0.90  0.63  1084  

weighted avg  

0.89  0.90  0.90  1084  

 490 
 491 
 492 
 493 

Supplemental Table S6       

  

f1-score precision recall support 

HTN 

0.39 0.35 0.44 178 

HCM 

0.36 0.26 0.57 68 

SINUS 

0.91 0.95 0.88 1789 

 

    

macro avg 

0.56 0.52 0.63 2035 

weighted avg 

0.85 0.87 0.83 2035 
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 496 
 497 
Supplemental Figure S1, Additional examples of true positive HCM ECGs 498 
 499 

500 
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Supplemental Figure S2, ECG ablation study of multiple lead masking 502 

503 
Supplemental Figure S3, Echo SHAP local feature importance plot 504 

505 
 506 
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Supplemental Figure S4, ECG SHAP global feature importance plot 508 
The global importance of each lead is taken to be the mean absolute value summation for each 509 
lead over all the given samples.  Hypertension (HTN) is in solid red, Hypertrophic 510 
Cardiomyopathy (HCM) is denoted by stripes. Lead V3 is ranks highest overall in global feature 511 
importance. 512 
 513 
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