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Abstract

In sectors like healthcare, having classification models that are both reliable and accurate is vital.
Regrettably, contemporary classification techniques employing machine learning disregard the correlations
between instances within data. This research, to rectify this, introduces a basic but effective technique for
converting tabulated data into data graphs, incorporating structural correlations. Graphs have a unique
capacity to capture structural correlations between data, allowing us to gain a deeper insight in comparison
to carrying out isolated data analysis. The suggested technique underwent testing once the integration of
graph data structure-related elements had been carried out and returned superior results to testing solely
employing original features. The suggested technique achieved validity by returning significantly improved
levels of accuracy.

Data: The extracted graph topological features datasets are available from:
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Abbreviations
e ML - Machine learning
e DL-Deep learning
e DDA - Drug-disease association
e DDI - Drug-drug interaction
e LR- Logistic regression
e  SVM - Support vector machines
e RF-Random forest
e NN - Neural network
e NB - Naive Bayes
e  KNN - k-nearest neighbor
e DT - Decision tree
e  GCN - Convolutional graph network
e  OF — Original features
e  GTF — Graph topological features
e  SF-—Selected features
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1. Introduction

Over the last few years, there has been an explosion in the interest in the deployment of artificial
intelligence, especially machine learning (ML) technologies for improving and accelerating the decision-
making process within healthcare. This technology is seen as having the potential to provide diagnostic
insights swiftly and accurately. A number of machine learning and deep learning (DL) methodologies have
been created. These techniques have led to improvements in the accuracy of assessing diseases and fewer
errors in treating disease. Nevertheless, numerous challenges still exist in terms of the development of
workable ML models for use in healthcare. The difficulty of these challenges is exacerbated by the complex
nature and sheer size of real-world data, particularly in the current Big Data environment. Additionally,
numerous ML solutions, especially ones employing classification models, did not fulfill the hopes of the
creators. The development of extremely accurate and workable classification models in a sector like
healthcare is highly challenging. If it is shown to be possible to overcome problems concerning the quality
of data, its volume, and complexity, more research is urgently needed regarding the way knowledge can
be acquired and utilized practically within the healthcare sector [1].

In sectors like healthcare, this is vital that the classification model should be both reliable and accurate.
Although researchers have recently used numerous high-quality and accurate classification
methodologies, e.g., deep learning, not every classification model has demonstrated adequate superiority
over previous techniques. This is due to the fact that these techniques gave little attention to correlations
between data instances. In this research, it is demonstrated how the incorporation of basic knowledge
graph algorithms can lead to improvements in the way classification models perform. Knowledge graph
algorithms are created with a focus on correlations, and they have a unique capacity to discover structures
and provide insights from connected data.

1.1.  Knowledge Graphs in Healthcare

As ML and knowledge discovery have rapidly developed in recent times, numerous new forms of analysis
of graphs and algorithm mining have been used in a number of areas. Healthcare is one such area, a sector
that has been under significant pressure as a result of the COVID-19 pandemic. The development of ML
models that can understand how diseases are transmitted, treated, and prevented is urgently needed;
these models should be able to mine data from numerous sources, including academic and professional
literature, hospital records, the pharmaceutical industry, and biological, microbiological, and genetic
research. In order to do this, ML techniques incorporating analytics based on graphs are showing
significant potential. It is not surprising that knowledge graphs have been widely used in the healthcare
sector in recent times and we may categories the different types that can be applied as generative graph
models, knowledge graph construction and inference, and network embedding.

1.2.  Knowledge Graph Construction/Inference

Pham et al [2] have suggested the construction of knowledge-based heterogeneous information graphs
to be used for classifications of medical health status. He et al [3] created synthetic triples using
conceptualization, formulating the challenge as a triple classification that was addressed employing a
discriminatory model, transferring knowledge from previously prepared language models. These
researchers showed that their suggested methodology was effective in the identification of plausible
triples and expansion of the knowledge graph using triples that could be highly diverse and novel in terms
of edges and nodes. Additionally, Zhu et al [4] undertook a review of the literature regarding extant
pharmaceutical knowledge bases and how they are applied in research by medical informatics.
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1.3. Network Embedding

Yue et al. [5] undertook systematic comparisons with three significant predictive tasks for biomedical
purposes: predictions of drug-disease Association (DDA), drug-drug interaction (DDI), and protein-protein
interaction (PPI). They have provided a guideline framewaork for the proper selection of graph embedding
methodology and delineating hyper-parameters for a variety of biomedical endeavors. Tu et al [6] put
forward a Hyper-Network embedding model for the embedding of hyper networks having
indecomposable hyperedges. This model was used with a quartet of different forms of hyper-network,
including a drug network, and its performance showed promise. Chang Su et al. [7] undertook a review of
the literature related to the application of networking embedding to effect advances within biomedicine.
Baytas et al. [8] suggested a deep strategy for embedding heterogeneous attributed hyper-networks using
complex non-linear node correlations. This involves the design of fully connected graph convolutional
layers for the projection of a variety of node types.

1.4.  Generative Graph Model Applications

Chengxi Zang et al. [9] created MoFlow, and an invertible flow model for the generation of molecular
graphs. Ling Chen et al. [10] proposed a partially supervised learning algorithm based on graphs in order
to mine data from health examinations and to predict risks for the classification of ongoing situations in
which most of the data was not labeled. Sacchet MD et al. [11] employed a support vector machines
classifier for distinguishing between individuals suffering from depression and those who were not on the
basis of a number of brain network indications. These researchers also carried out an assessment of the
value of specific graph metrics for the differentiation of the different classes.

Although these methods proved successful, a challenge is presented when faced with the unavailability
of network data or if data is available but in standard tabulated format. To tackle this problem Tao et al.
[1] designed a knowledge graph employing healthcare categorization and other knowledge mined from
the NHANES data set, a collection of latent concepts employing the Pearson Correlation for decoding. This
research presents a non-complex but extremely accurate way of converting tabulated data into graphs,
allowing significant improvements in ML classifications.

2. Methodology

2.1. Data
The suggested technique underwent testing using well-regarded data sets in the healthcare field:

e D1 -Pimalndians Diabetes Dataset [12]: this is a dataset built by the National Institute of Diabetes
and Digestive and Kidney Diseases. The database aims to provide diagnostic predictions as to the
likelihood of a patient having diabetes on the basis of various diagnostic data including age in
years, diabetes pedigree function, BMI (kilograms), insulin (mu U/m), skin thickness (millimeters)
blood pressure (mm Hg), plasma glucose concentration levels, and the number of times pregnant.
The dataset is publically available from Kaggle: https://www.kaggle.com/uciml/pima-indians-
diabetes-database

e D2 -Stroke Prediction Dataset: this is a dataset containing a dozen attributes, these being patient
id, gender, age in years, hypertension, heart_disease, ever_married, work_type, residence_type,
avg_glucose_level, body mass index in kg), and smoking_status. There are missing entries in the
data and setting attributes are normal, and so a pre-processing stage was required for imputation
of missing entries and conversion of nominal attributes to integers. The dataset is publically
available from Kaggle: https://www.kaggle.com/fedesoriano/stroke-prediction-dataset
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e D3 - Heart Attack Analysis and Prediction Dataset [13]: this database is used for classifying heart
attacks and has 14 data points including the likelihood of heart attack, maximum heart rate,
resting ECG, fasting blood sugar (mg/dl), cholesterol level (mg/dl), blood pressure (mm Hg), type
of chest pain, number of major vessels, angina induced by exercise, sex, and age (years). The
dataset is publically available from Kaggle: https://www.kaggle.com/rashikrahmanpritom/heart-
attack-analysis-prediction-dataset/metadata

e D4 - Hepatocellular Carcinoma dataset [14], [15]: this dataset was provided by the ML Repository,
containing laboratory values from blood donors as well as patients with hepatocellular carcinoma,
along with demographic information including gender and age. The dataset was obtained from
UCI Machine Learning Repository: https://archive.ics.uci.edu/ml/datasets/HCV+data

Table 1 offers greater detail about the datasets employed by this research.

Table 1: Datasets employed in this research

Dataset D1: Pima Indians D2: Stroke Prediction D3: Heart Disease D4: Hepatocellular Carcinoma (HCC)
Diabetes Dataset [12] Dataset Dataset [13] dataset [14], [15]

# of Instances 768 749 303 615

# of Attributes 9 11 14 13
Tested_negative Tested_negative Tested_negative Tested_negative - blood donors (= 88%),

Classes (= 65%), Tested Positive | (= 67%), Tested (= 46%), Tested Tested Positive - Hepatitis C patients (=
(= 35%) Positive (= 33%) Positive (= 54%) 12%)

Attribute Integer, real, and Integer, real, and nominals

i Integer, real > Integer, real
Characteristics nominals
Missing Entries No Yes No Yes

Figure 1 offers an overview of the suggested methodology.
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Figure 1: Overview of the suggested methodology
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For illustration of the methodology, an assumption is made that there is a hypothetical dataset S of n
samples s;, i = 1,n . Every sample s; is shown through m features 4;, i = 1,n. For simplifying the
difficulty, an assumption is made that every feature is defined, i.e. A; € R. A typical dataset structure
would be:

F; F, | .| E, | Label
S1 | S1a | S12 | | S1m €1
Sz 52‘1 SZ,Z Sz‘m C2
Sn | Sna | Snz | | Sum | Cn

Every sample s; in the dataset, S is part of to class ¢;, where ¢; € C,C = {C;, C5,...C;}. Thisisastandard
l -class classification problem that may be resolved employing ML methods. For integrating graph-related
features, we must firstly use the scalar product operation, thus:

ai; = (su5) = XptaSip Sjp (1)

In this instance the adjacency matrix A= {di'j a; € Rij= ﬁ}, is representative of a weighted

graph G having n nodes. Additionally, we employ a threshold technique for further simplification of the

problem, e.g., if t; = % }‘=1 a; j, the adjacency matrix A of unweighted G (see below) can be written as
_={0, if apj<y 2)
Y1, otherwise

St | S4 | .. | Sp | Label
s;| 0 |O0]1|..]0]1|
s{ (01| O |..|0]1| ¢
s, 10]1]0|1|..] O Cn

For the extraction of meaningful features, we can represent graph G's notes employing the topological
features T%,i = 1, k, a few of which are PageRank value, centrality score, and degree of the node. These
topological features can then be integrated with original features for incorporation of useful graph
information and finding correlations between instances, thus:

Fi | F, |...| Fp | Ty |..| T, | Label
Sl Sl,l Sl 2 e Slym tl,l ey tl,k Cl
Sz 52‘1 52'2 e Sz‘m tz‘l ey tz‘k Cz
Sn | Sna | Snz | | Snm | taa | o | tak Cn

In this instance, the matrix T may be made up of the previously noted features, thus:

T = {ti,j: ti,j € ]R,l = L—n,] :ﬂ} (3)
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The topological features under consideration in this research can be seen in summary in Table 2: Topological
features extracted from the pre-processed datasetTable 2. The features final extracted can then be employed
alongside the ML classifier, which will provide classifications of greater accuracy.

2.2. Evaluation Measures

For evaluating the performance of the suggested methodology, we employed 10-fold cross-validation.
Widely excepted evaluation measures were employed for evaluation of the accuracy of the classifications,

including F1-score, Recall (RE), Precision (PR), and Accuracy (AC).

Table 2: Topological features extracted from the pre-processed dataset

#  Feature Definition Formula
1 Degrees The number of edges connected to a node deg(s;) = 2- Z?—l a; j
2 Indegree The number of head ends adjacent to a node deg™(s;) = E}L1 @i i
3 Out degree The number of tail ends adjacent to a node degt(s;) = E;L] a; j
I Maximum distance between a node and any N . o
4 Eccentricity other node in the graph e(s;) = max(d(s;, s1),d(si,82),...,d(si,8n))
5 Weighted degree The summation of edges connected to a node deq@ e 9Mted(5.) = deg (s;) + degT (s;)
The number of highly authoritative nodes N ’ . N
6 Hub this node is pointing to hisi) = 32,5, aly). Initially, h(s;) = 1
. The amount of valuable information that -
7 Authority a node holds a(s;) = Ey_wi a(y). Initially, a(s;) = 1
] A measure of the importance of a node within S pfe) — 1-¢ 4 PR(s;)
8  PageRank the araph PR(s;) = =~ tc- E____ng(s‘_) —-'—deg+ oy, ¢ =085
. A number of triangles that include a node s; ey o
9  Triangle a5 one Vertex tr(si) = Zsj,ﬁk“_f(s_‘) {sj, 81}
10 Closeness centrality Time it takes to reach other nodes in the graph C(si) = W
j=1 Hia9j
. An indicator of a node centrality or importance . foN Ts;,ap (5i)
[1 Betweenness Centrality | . " graph Cp(si) = 25,7&5\#59 Ty
. . Allows to reverse the sum and reciprocal . N 1 .,
12 Harmonic Centrality operations in closeness centrality Cr(si) = 2roq d(siss;) W #
. R A measure of the transitive influence el — 1xm o
13 Eigenvector centrality or connectivity of nodes w(si) = 32051 @i - 2(s5)

*{s;, s, } is an edge between nodes s; and s;.

d(s;, s;) is a distance between nodes s; and s;.

s; ++ y denotes an existence of a link between s; and y nodes.

Ts;,s, 15 a total number of shortest paths from node s to node sp, §,p = 1, 1. @5, 5, (5i) the number of those paths that pass through s;.
M (s;) is a set of nodes that has link to s;.

3. Experimental work/results

This section will detail the experimental work undertaken for effecting significant improvements in the
accuracy of classifications through the conversion of tabulated data structures into graph data structures.
It is predicted that graphs will be able to capture extra significant correlations between instances that are
frequently disregarded in the process of classification. The intention is to undertake an evaluation of the
benefits of the incorporation of adding graph-related features to original features. It is a simple matter to
calculate the accuracy of classifications either with or without the suggested graph additions.

In order to test this new methodology, we began by preprocessing the data sets, ensuring that numerical
values replaced nominal entries and that every missing entry was imputed (employing simple
methodologies, e.g. average values). Normalization of the dataset values was then undertaken using a
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standard scaler or the MinMax scaler. In the initial phase, we employed a number of classifiers, including
Naive Bayes (NB), neural network (NN), support vector machines (SVM), logistic regression (LR), k-nearest
neighbor (KNN), random forest (RF), and decision tree (DT) forecast for classifying both classes in all four
data sets and recording the accuracy of classification. We only considered the original features (OF) and
default parameter values. In the second phase, we only considered topological features. Additionally, we
also tested combinations of original features and data extracted from the graphs. As

Table 3 shows, incorporating the graph topological features affected a significant improvement in
classification accuracy for every dataset and every classifier.

Table 3: Summary of classification model performance on the basis of original features, graph topological features,
and a combination of the two with each dataset. Seven classification techniques are employed for measuring
classification performance.

D1: Pima Indians Diabetes D2: Stroke Prediction D3: Heart Disease D4: Hepatocellular

Dataset Dataset Dataset Carcinoma (HCC) dataset

OF" GTF" OF+GTF OF" GTF" OF+GTF OF" GTF* OF+GTF | OF" GTF* OF+GTF
NB Accuracy | 0.76 0.85 0.76 0.76 0.9 0.9 0.83 0.93 0.96 0.93 0.92 0.95
NB Precision | 0.76 0.85 0.84 0.77 0.90 0.90 0.83 0.93 0.96 0.93 0.93 0.95
NB Recall 0.76 0.85 0.84 0.76 0.90 0.90 0.83 0.93 0.96 0.93 0.92 0.95
NB Flscore | 0.76 0.85 0.84 0.76 0.90 0.90 0.83 0.93 0.96 0.93 0.92 0.95
NN Accuracy | 0.75 0.98 0.98 0.72 0.98 0.97 0.78 0.97 0.98 0.96 0.97 0.98
NN Precision | 0.75 0.98 0.98 0.72 0.98 0.97 0.78 0.97 0.98 0.96 0.97 0.98
NN Recall 0.75 0.98 0.98 0.72 0.98 0.97 0.78 0.97 0.98 0.96 0.97 0.98
NN Flscore | 0.75 0.98 0.98 0.72 0.98 0.97 0.78 0.97 0.98 0.96 0.97 0.98
SVM | Accuracy | 0.77 0.95 0.95 0.76 0.96 0.97 0.84 0.97 0.98 0.93 0.96 0.97
SVM | Precision | 0.77 0.95 0.96 0.77 0.96 0.97 0.84 0.97 0.98 0.92 0.96 0.97
SVM | Recall 0.77 0.95 0.95 0.76 0.96 0.97 0.84 0.97 0.98 0.93 0.96 0.97
SVM | Flscore | 0.77 0.95 0.95 0.76 0.96 0.97 0.84 0.97 0.98 0.92 0.96 0.97
LR Accuracy | 0.77 0.98 0.97 0.77 0.98 0.98 0.82 0.97 0.96 0.96 0.99 0.98
LR Precision | 0.76 0.98 0.97 0.77 0.98 0.98 0.82 0.97 0.96 0.96 0.99 0.98
LR Recall 0.77 0.98 0.97 0.77 0.98 0.98 0.82 0.97 0.96 0.96 0.99 0.98
LR Flscore | 0.77 0.98 0.97 0.77 0.98 0.98 0.82 0.97 0.96 0.96 0.99 0.98
KNN | Accuracy | 0.71 0.97 0.93 0.68 0.96 0.93 0.77 0.98 0.93 0.92 0.97 0.96
KNN | Precision | 0.71 0.97 0.93 0.68 0.96 0.93 0.77 0.98 0.93 0.91 0.97 0.96
KNN | Recall 0.72 0.97 0.93 0.68 0.96 0.93 0.77 0.98 0.93 0.92 0.97 0.96
KNN | Flscore | 0.71 0.97 0.93 0.68 0.96 0.93 0.77 0.98 0.93 0.91 0.97 0.96
RF Accuracy | 0.76 0.97 0.97 0.74 0.97 0.97 0.82 0.98 0.99 0.98 0.98 0.98
RF Precision | 0.76 0.97 0.97 0.74 0.97 0.97 0.82 0.98 0.99 0.98 0.98 0.98
RF Recall 0.76 0.97 0.97 0.74 0.97 0.97 0.82 0.98 0.99 0.98 0.98 0.98
RF Flscore | 0.76 0.97 0.97 0.74 0.97 0.97 0.82 0.98 0.99 0.98 0.98 0.98
DT Accuracy | 0.71 0.96 0.95 0.73 0.96 0.97 0.79 0.99 0.99 0.96 0.98 0.97
DT Precision | 0.71 0.96 0.96 0.73 0.96 0.97 0.79 0.99 0.99 0.96 0.98 0.97
DT Recall 0.71 0.96 0.95 0.73 0.96 0.97 0.79 0.99 0.99 0.96 0.98 0.97
DT Flscore | 0.71 0.96 0.95 0.73 0.96 0.97 0.79 0.99 0.99 0.96 0.98 0.97

OF — Original features
"GTF — Graph topological features

Lastly, an elementary correlation-based feature subset selection [16] was undertaken for identification of
an elementary correlation-based feature subset selection [16] was undertaken for identification of
extremely informative features (either original or graph topological) and the measurement of the accuracy
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with a limited feature set. As table 4 shows, although 18% of the features based on D1 were selected, 21%
of D2, 30% of D3, and 42% of D4, classification accuracy can be compared to the case when we consider
every feature (original and graph topological).

Table 4: Classification performance when employing OF, combining OF and GTP, with the selected features

Datasets Selected Features Types Feature Types F1 score Accuracy
D1: Pima Indians 4 features (18% of the OF: BMI OF 0.762 0.764
Diabetes Dataset total number of features) GTF: In Degree, Out Degree, OF+GTF 0.970 0.970
Weighted Degree - GTF SF 0.970 0.970
D2: Stroke Prediction | 5 features (21% of the OF: Age, Hypertension, Heart- OF 0.739 0.741
Dataset total number of features) disease OF+GTF 0.972 0.972
GTF: In Degree, Out Degree SF 0.969 0.969
D3: Heart Disease 8 features (30% of the OF: Cp, thalachh, oldpeak, caa, thall OF 0.818 0.819
Dataset total number of features) GTF: In degree, Out Degree, OF+GTF 0.987 0.987
Modularity SF 0.983 0.984
D4: Hepatocellular 11 features (42% of the OF: ALP - ALT, AST, BIL, CHE, CHOL, OF 0.975 0.976
Carcinoma (HCC) total number of features) GGT, PROT OF+GTF 0.982 0.982
dataset GTF: In Degree, Out Degree, SF 0.984 0.984
Weighted Degree

OF - Original features
GTF — Graph topological features
SF —Selected features

We additionally undertook an investigation of the information offered by every feature in order to
increase the accuracy of classification. We employed heat map visualization techniques to illustrate the
level that each feature adds to the classification model in 2D color. Figure 2: heat map visualization
demonstrates that the graph's topological features have a high level of correlation with class attributes,
not original attributes; in each of the four datasets the topological features demonstrated more
correlation with the class.
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(c) D3: Heart Disease Dataset [13] (d) D4: Hepatocellular Carcinoma (HCC) dataset [14], [15]

Figure 2: Heat map visualization demonstrating that graphs of topological features have a high degree of
correlation with class attributes, not original attributes.

4. Conclusion/discussion

Graphs have a unique capacity for the capture of structural correlations between data and this provides
greater insight in comparison to isolated data analysis [17]. Many forms of data are not formulated as
graphs originally, e.g., text data, images, and tabulated data. In this research, we have put forward a basic
methodology for the conversion of tabulated data to graph data. Whilst this methodology is relatively
simple, it has been shown to be a powerful new way of interpreting data. As the result section
demonstrates, there have been significant improvements to the classification performance with all of the
four sample data sets. Incorporating graph topological features has added information to the classifier
which has resulted in better performance. The classifications may be improved to an even greater extent
by applying more powerful classification techniques, e.g. deep learning. We did not test deep-learning-
based classifiers in this research as the data sets are relatively small. Additionally, using a convolutional
graph network (GCN) with the features extracted may return promising results. GCN has recently come to
the fore in ML and related disciplines and has shown that it can provide improved results in a number of
areas. Although our proposed methodology was tested in a healthcare context, it is a relatively generic
methodology that can be employed for improving the classification accuracy of tabulated data in all
disciplines. One limitation of the suggested methodology is that it will only work with numerical data. This
meant that in this research nominal data had to be transformed to a numerical value when working with
the D2 and D4 databases.
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