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Abstract 
In sectors like healthcare, having classification models that are both reliable and accurate is vital. 

Regrettably, contemporary classification techniques employing machine learning disregard the correlations 

between instances within data. This research, to rectify this, introduces a basic but effective technique for 

converting tabulated data into data graphs, incorporating structural correlations. Graphs have a unique 

capacity to capture structural correlations between data, allowing us to gain a deeper insight in comparison 

to carrying out isolated data analysis. The suggested technique underwent testing once the integration of 

graph data structure-related elements had been carried out and returned superior results to testing solely 

employing original features. The suggested technique achieved validity by returning significantly improved 

levels of accuracy. 

Data: The extracted graph topological features datasets are available from:   

Keywords: Knowledge graph, classification, machine learning, graph topological features 

 

Abbreviations 
 ML - Machine learning 

 DL - Deep learning 

 DDA - Drug-disease association 

 DDI - Drug-drug interaction 

 LR - Logistic regression 

 SVM - Support vector machines 

 RF - Random forest 

 NN - Neural network 

 NB - Naïve Bayes 

 KNN - k-nearest neighbor 

 DT - Decision tree 

 GCN - Convolutional graph network  

 OF – Original features   

 GTF – Graph topological features 

 SF – Selected features 

 

 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 12, 2021. ; https://doi.org/10.1101/2021.06.09.21258123doi: medRxiv preprint 

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

https://doi.org/10.1101/2021.06.09.21258123
http://creativecommons.org/licenses/by-nc/4.0/


 

1. Introduction 
Over the last few years, there has been an explosion in the interest in the deployment of artificial 
intelligence, especially machine learning (ML) technologies for improving and accelerating the decision-
making process within healthcare. This technology is seen as having the potential to provide diagnostic 
insights swiftly and accurately. A number of machine learning and deep learning (DL) methodologies have 
been created. These techniques have led to improvements in the accuracy of assessing diseases and fewer 
errors in treating disease. Nevertheless, numerous challenges still exist in terms of the development of 
workable ML models for use in healthcare. The difficulty of these challenges is exacerbated by the complex 
nature and sheer size of real-world data, particularly in the current Big Data environment. Additionally, 
numerous ML solutions, especially ones employing classification models, did not fulfill the hopes of the 
creators. The development of extremely accurate and workable classification models in a sector like 
healthcare is highly challenging. If it is shown to be possible to overcome problems concerning the quality 
of data, its volume, and complexity, more research is urgently needed regarding the way knowledge can 
be acquired and utilized practically within the healthcare sector [1]. 
 
In sectors like healthcare, this is vital that the classification model should be both reliable and accurate. 
Although researchers have recently used numerous high-quality and accurate classification 
methodologies, e.g., deep learning, not every classification model has demonstrated adequate superiority 
over previous techniques. This is due to the fact that these techniques gave little attention to correlations 
between data instances. In this research, it is demonstrated how the incorporation of basic knowledge 
graph algorithms can lead to improvements in the way classification models perform. Knowledge graph 
algorithms are created with a focus on correlations, and they have a unique capacity to discover structures 
and provide insights from connected data. 
 

1.1. Knowledge Graphs in Healthcare 
As ML and knowledge discovery have rapidly developed in recent times, numerous new forms of analysis 
of graphs and algorithm mining have been used in a number of areas. Healthcare is one such area, a sector 
that has been under significant pressure as a result of the COVID-19 pandemic. The development of ML 
models that can understand how diseases are transmitted, treated, and prevented is urgently needed; 
these models should be able to mine data from numerous sources, including academic and professional 
literature, hospital records, the pharmaceutical industry, and biological, microbiological, and genetic 
research. In order to do this, ML techniques incorporating analytics based on graphs are showing 
significant potential. It is not surprising that knowledge graphs have been widely used in the healthcare 
sector in recent times and we may categories the different types that can be applied as generative graph 
models, knowledge graph construction and inference, and network embedding. 
 

1.2. Knowledge Graph Construction/Inference 
Pham et al [2] have suggested the construction of knowledge-based heterogeneous information graphs 
to be used for classifications of medical health status. He et al [3] created synthetic triples using 
conceptualization, formulating the challenge as a triple classification that was addressed employing a 
discriminatory model, transferring knowledge from previously prepared language models. These 
researchers showed that their suggested methodology was effective in the identification of plausible 
triples and expansion of the knowledge graph using triples that could be highly diverse and novel in terms 
of edges and nodes. Additionally, Zhu et al [4] undertook a review of the literature regarding extant 
pharmaceutical knowledge bases and how they are applied in research by medical informatics. 
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1.3. Network Embedding 
Yue et al. [5] undertook systematic comparisons with three significant predictive tasks for biomedical 
purposes: predictions of drug-disease Association (DDA), drug-drug interaction (DDI), and protein-protein 
interaction (PPI). They have provided a guideline framework for the proper selection of graph embedding 
methodology and delineating hyper-parameters for a variety of biomedical endeavors. Tu et al [6] put 
forward a Hyper-Network embedding model for the embedding of hyper networks having 
indecomposable hyperedges. This model was used with a quartet of different forms of hyper-network, 
including a drug network, and its performance showed promise. Chang Su et al. [7] undertook a review of 
the literature related to the application of networking embedding to effect advances within biomedicine. 
Baytas et al. [8] suggested a deep strategy for embedding heterogeneous attributed hyper-networks using 
complex non-linear node correlations. This involves the design of fully connected graph convolutional 
layers for the projection of a variety of node types. 
 

1.4. Generative Graph Model Applications 
Chengxi Zang et al. [9] created MoFlow, and an invertible flow model for the generation of molecular 
graphs. Ling Chen et al. [10] proposed a partially supervised learning algorithm based on graphs in order 
to mine data from health examinations and to predict risks for the classification of ongoing situations in 
which most of the data was not labeled. Sacchet MD et al. [11] employed a support vector machines 
classifier for distinguishing between individuals suffering from depression and those who were not on the 
basis of a number of brain network indications. These researchers also carried out an assessment of the 
value of specific graph metrics for the differentiation of the different classes. 
 
Although these methods proved successful, a challenge is presented when faced with the unavailability 
of network data or if data is available but in standard tabulated format. To tackle this problem Tao et al. 
[1] designed a knowledge graph employing healthcare categorization and other knowledge mined from 
the NHANES data set, a collection of latent concepts employing the Pearson Correlation for decoding. This 
research presents a non-complex but extremely accurate way of converting tabulated data into graphs, 
allowing significant improvements in ML classifications. 
 

2. Methodology 

2.1. Data 
The suggested technique underwent testing using well-regarded data sets in the healthcare field: 
 

 D1  - Pima Indians Diabetes Dataset [12]: this is a dataset built by the National Institute of Diabetes 
and Digestive and Kidney Diseases. The database aims to provide diagnostic predictions as to the 
likelihood of a patient having diabetes on the basis of various diagnostic data including age in 
years, diabetes pedigree function, BMI (kilograms), insulin (mu U/m), skin thickness (millimeters) 
blood pressure (mm Hg), plasma glucose concentration levels, and the number of times pregnant. 
The dataset is publically available from Kaggle: https://www.kaggle.com/uciml/pima-indians-
diabetes-database  
 

 D2 - Stroke Prediction Dataset: this is a dataset containing a dozen attributes, these being patient 
id, gender, age in years, hypertension, heart_disease, ever_married,  work_type, residence_type, 
avg_glucose_level, body mass index in kg), and smoking_status. There are missing entries in the 
data and setting attributes are normal, and so a pre-processing stage was required for imputation 
of missing entries and conversion of nominal attributes to integers. The dataset is publically 
available from Kaggle: https://www.kaggle.com/fedesoriano/stroke-prediction-dataset  
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 D3 - Heart Attack Analysis and Prediction Dataset [13]: this database is used for classifying heart 
attacks and has 14 data points including the likelihood of heart attack, maximum heart rate, 
resting ECG, fasting blood sugar (mg/dl), cholesterol level (mg/dl), blood pressure (mm Hg), type 
of chest pain, number of major vessels, angina induced by exercise, sex, and age (years). The 
dataset is publically available from Kaggle: https://www.kaggle.com/rashikrahmanpritom/heart-
attack-analysis-prediction-dataset/metadata  

 

 D4 - Hepatocellular Carcinoma dataset [14], [15]: this dataset was provided by the ML Repository, 
containing laboratory values from blood donors as well as patients with hepatocellular carcinoma, 
along with demographic information including gender and age. The dataset was obtained from 
UCI Machine Learning Repository: https://archive.ics.uci.edu/ml/datasets/HCV+data 

 

Table 1 offers greater detail about the datasets employed by this research. 
 

Table 1: Datasets employed in this research 

Dataset 
D1: Pima Indians 
Diabetes Dataset [12] 

D2: Stroke Prediction 
Dataset 

D3: Heart Disease 
Dataset [13] 

D4: Hepatocellular Carcinoma (HCC) 
dataset [14], [15] 

# of Instances 768 749 303 615 

# of Attributes 9 11 14 13 

Classes 
Tested_negative 
(≈ 65%), Tested Positive 
(≈ 35%) 

Tested_negative 
(≈ 67%), Tested 
Positive (≈ 33%) 

Tested_negative 
(≈ 46%), Tested 
Positive (≈ 54%) 

Tested_negative - blood donors (≈ 88%), 
Tested Positive - Hepatitis C patients (≈ 
12%) 

Attribute 
Characteristics 

Integer, real 
Integer, real, and 
nominals 

Integer, real 
Integer, real, and nominals 

Missing Entries No Yes No Yes 

 

Figure 1 offers an overview of the suggested methodology. 

 

Figure 1: Overview of the suggested methodology 
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For illustration of the methodology, an assumption is made that there is a hypothetical dataset 𝑆 of 𝑛 
samples 𝑠𝑖, 𝑖 = 1, 𝑛̅̅ ̅̅̅ . Every sample 𝑠𝑖 is shown through 𝑚 features 𝐴𝑖,  𝑖 = 1, 𝑛̅̅ ̅̅̅. For simplifying the 
difficulty, an assumption is made that every feature is defined, i.e. 𝐴𝑖  ∈  ℝ. A typical dataset structure 
would be:  

 𝐹1 𝐹2 … 𝐹𝑚 Label 

𝑠1 𝑠1,1 𝑠1,2 … 𝑠1,𝑚 𝑐1 

𝑠2 𝑠2,1 𝑠2,2 … 𝑠2,𝑚 𝑐2 

⋮ ⋮ ⋮ ⋱  ⋮ 

𝑠𝑛 𝑠𝑛,1 𝑠𝑛,2 … 𝑠𝑛,𝑚 𝑐𝑛 

 

Every sample 𝑠𝑖 in the dataset, 𝑆 is part of to class 𝑐𝑖, where  𝑐𝑖  ∈ 𝐶, 𝐶 = {𝐶1, 𝐶2, … 𝐶𝑙}.  This is a standard 
𝑙 -class classification problem that may be resolved employing ML methods. For integrating graph-related 
features, we must firstly use the scalar product operation, thus: 
 

�̇�𝑖,𝑗 = (𝑠𝑖, 𝑠𝑗) = ∑ 𝑠𝑖,𝑝 ∙ 𝑠𝑗,𝑝
𝑚
𝑝−1  (1) 

 

In this instance the adjacency matrix �̇� = {�̇�𝑖,𝑗 ∶  𝑎𝑖,𝑗 ∈  ℝ, 𝑖, 𝑗 =  1, 𝑛̅̅ ̅̅̅}, is representative of a weighted 

graph 𝐺 having 𝑛 nodes. Additionally, we employ a threshold technique for further simplification of the 

problem, e.g., if 𝑡𝑖 =
1

𝑛
∑ 𝑎𝑖,𝑗

𝑛
𝑗=1 , the adjacency matrix A of unweighted G (see below) can be written as  

 

𝑎𝑖,𝑗 = {
0, 𝑖𝑓 𝑎𝑖,𝑗 < 𝑡𝑖

1, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
  (2) 

 𝑠1 𝑠1 … 𝑠𝑛 Label 

𝑠1 0 0|1 … 0|1 𝑐1 

𝑠1 0|1 0 … 0|1 𝑐2 

⋮ ⋮ ⋮ ⋱  ⋮ 

𝑠𝑛 0|1 0|1 … 0 𝑐𝑛 

 
For the extraction of meaningful features, we can represent graph G's notes employing the topological 

features 𝑇𝑖, 𝑖 = 1, 𝑘̅̅ ̅̅̅, a few of which are PageRank value, centrality score, and degree of the node. These 
topological features can then be integrated with original features for incorporation of useful graph 
information and finding correlations between instances, thus: 

 
 𝐹1 𝐹2 … 𝐹𝑚 𝑇1 … 𝑇𝑘  Label 

𝑠1 𝑠1,1 𝑠1,2 … 𝑠1,𝑚 𝑡1,1 … 𝑡1,𝑘 𝑐1 

𝑠2 𝑠2,1 𝑠2,2 … 𝑠2,𝑚 𝑡2,1 … 𝑡2,𝑘 𝑐2 

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 
𝑠𝑛 𝑠𝑛,1 𝑠𝑛,2 … 𝑠𝑛,𝑚 𝑡𝑛,1 … 𝑡𝑛,𝑘 𝑐𝑛 

 

In this instance, the matrix T may be made up of the previously noted features, thus: 
 

𝑇 = {𝑡𝑖,𝑗: 𝑡𝑖,𝑗 ∈  ℝ, 𝑖 =  1, 𝑛̅̅ ̅̅̅, 𝑗 = 1, 𝑘̅̅ ̅̅̅} (3) 
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The topological features under consideration in this research can be seen in summary in Table 2: Topological 

features extracted from the pre-processed datasetTable 2. The features final extracted can then be employed 
alongside the ML classifier, which will provide classifications of greater accuracy. 
 

2.2. Evaluation Measures 
For evaluating the performance of the suggested methodology, we employed 10-fold cross-validation. 
Widely excepted evaluation measures were employed for evaluation of the accuracy of the classifications, 
including F1-score, Recall (RE), Precision (PR), and Accuracy (AC). 
 

Table 2: Topological features extracted from the pre-processed dataset 

 

 

3. Experimental work/results 
This section will detail the experimental work undertaken for effecting significant improvements in the 
accuracy of classifications through the conversion of tabulated data structures into graph data structures. 
It is predicted that graphs will be able to capture extra significant correlations between instances that are 
frequently disregarded in the process of classification. The intention is to undertake an evaluation of the 
benefits of the incorporation of adding graph-related features to original features. It is a simple matter to 
calculate the accuracy of classifications either with or without the suggested graph additions. 
 
In order to test this new methodology, we began by preprocessing the data sets, ensuring that numerical 

values replaced nominal entries and that every missing entry was imputed (employing simple 

methodologies, e.g. average values). Normalization of the dataset values was then undertaken using a 
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standard scaler or the MinMax scaler. In the initial phase, we employed a number of classifiers, including 

Naïve Bayes (NB), neural network (NN), support vector machines (SVM), logistic regression (LR), k-nearest 

neighbor (KNN), random forest (RF), and decision tree (DT) forecast for classifying both classes in all four 

data sets and recording the accuracy of classification. We only considered the original features (OF) and 

default parameter values. In the second phase, we only considered topological features. Additionally, we 

also tested combinations of original features and data extracted from the graphs. As  

Table 3 shows, incorporating the graph topological features affected a significant improvement in 
classification accuracy for every dataset and every classifier. 
 

Table 3: Summary of classification model performance on the basis of original features, graph topological features, 
and a combination of the two with each dataset. Seven classification techniques are employed for measuring 
classification performance. 

  D1: Pima Indians Diabetes 
Dataset 

D2: Stroke Prediction 
Dataset 

D3: Heart Disease 
Dataset 

D4: Hepatocellular 
Carcinoma (HCC) dataset 

  OF* GTF* OF+GTF OF* GTF* OF+GTF OF* GTF* OF+GTF OF* GTF* OF+GTF 

NB Accuracy 0.76 0.85 0.76 0.76 0.9 0.9 0.83 0.93 0.96 0.93 0.92 0.95 

NB Precision 0.76 0.85 0.84 0.77 0.90 0.90 0.83 0.93 0.96 0.93 0.93 0.95 

NB Recall 0.76 0.85 0.84 0.76 0.90 0.90 0.83 0.93 0.96 0.93 0.92 0.95 

NB F1 score 0.76 0.85 0.84 0.76 0.90 0.90 0.83 0.93 0.96 0.93 0.92 0.95 

                            

NN Accuracy 0.75 0.98 0.98 0.72 0.98 0.97 0.78 0.97 0.98 0.96 0.97 0.98 

NN Precision 0.75 0.98 0.98 0.72 0.98 0.97 0.78 0.97 0.98 0.96 0.97 0.98 

NN Recall 0.75 0.98 0.98 0.72 0.98 0.97 0.78 0.97 0.98 0.96 0.97 0.98 

NN F1 score 0.75 0.98 0.98 0.72 0.98 0.97 0.78 0.97 0.98 0.96 0.97 0.98 

                            

SVM Accuracy 0.77 0.95 0.95 0.76 0.96 0.97 0.84 0.97 0.98 0.93 0.96 0.97 

SVM Precision 0.77 0.95 0.96 0.77 0.96 0.97 0.84 0.97 0.98 0.92 0.96 0.97 

SVM Recall 0.77 0.95 0.95 0.76 0.96 0.97 0.84 0.97 0.98 0.93 0.96 0.97 

SVM F1 score 0.77 0.95 0.95 0.76 0.96 0.97 0.84 0.97 0.98 0.92 0.96 0.97 

                            

LR Accuracy 0.77 0.98 0.97 0.77 0.98 0.98 0.82 0.97 0.96 0.96 0.99 0.98 

LR Precision 0.76 0.98 0.97 0.77 0.98 0.98 0.82 0.97 0.96 0.96 0.99 0.98 

LR Recall 0.77 0.98 0.97 0.77 0.98 0.98 0.82 0.97 0.96 0.96 0.99 0.98 

LR F1 score 0.77 0.98 0.97 0.77 0.98 0.98 0.82 0.97 0.96 0.96 0.99 0.98 

                            

KNN Accuracy 0.71 0.97 0.93 0.68 0.96 0.93 0.77 0.98 0.93 0.92 0.97 0.96 

KNN Precision 0.71 0.97 0.93 0.68 0.96 0.93 0.77 0.98 0.93 0.91 0.97 0.96 

KNN Recall 0.72 0.97 0.93 0.68 0.96 0.93 0.77 0.98 0.93 0.92 0.97 0.96 

KNN F1 score 0.71 0.97 0.93 0.68 0.96 0.93 0.77 0.98 0.93 0.91 0.97 0.96 

                            

RF Accuracy 0.76 0.97 0.97 0.74 0.97 0.97 0.82 0.98 0.99 0.98 0.98 0.98 

RF Precision 0.76 0.97 0.97 0.74 0.97 0.97 0.82 0.98 0.99 0.98 0.98 0.98 

RF Recall 0.76 0.97 0.97 0.74 0.97 0.97 0.82 0.98 0.99 0.98 0.98 0.98 

RF F1 score 0.76 0.97 0.97 0.74 0.97 0.97 0.82 0.98 0.99 0.98 0.98 0.98 

                            

DT Accuracy 0.71 0.96 0.95 0.73 0.96 0.97 0.79 0.99 0.99 0.96 0.98 0.97 

DT Precision 0.71 0.96 0.96 0.73 0.96 0.97 0.79 0.99 0.99 0.96 0.98 0.97 

DT Recall 0.71 0.96 0.95 0.73 0.96 0.97 0.79 0.99 0.99 0.96 0.98 0.97 

DT F1 score 0.71 0.96 0.95 0.73 0.96 0.97 0.79 0.99 0.99 0.96 0.98 0.97 
*OF – Original features   
*GTF – Graph topological features 

 
Lastly, an elementary correlation-based feature subset selection [16] was undertaken for identification of 
an elementary correlation-based feature subset selection [16] was undertaken for identification of 
extremely informative features (either original or graph topological) and the measurement of the accuracy 
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with a limited feature set. As table 4 shows, although 18% of the features based on D1 were selected, 21% 
of D2, 30% of D3, and 42% of D4, classification accuracy can be compared to the case when we consider 
every feature (original and graph topological). 

 
Table 4: Classification performance when employing OF, combining OF and GTP, with the selected features 

Datasets Selected Features Types  Feature Types F1 score Accuracy 

D1: Pima Indians 
Diabetes Dataset 

4 features (18% of the 
total number of features) 

OF: BMI 
GTF: In Degree, Out Degree, 
Weighted Degree - GTF 

OF 0.762 0.764 

OF+GTF 0.970 0.970 

SF 0.970 0.970 

D2: Stroke Prediction 
Dataset 

5 features (21% of the 
total number of features) 

OF: Age, Hypertension, Heart-
disease 
GTF: In Degree, Out Degree 

OF 0.739 0.741 

OF+GTF 0.972 0.972 

SF 0.969 0.969 

D3: Heart Disease 
Dataset 

8 features (30% of the 
total number of features) 

OF: Cp, thalachh, oldpeak, caa, thall 
GTF: In degree, Out Degree, 
Modularity 

OF 0.818 0.819 

OF+GTF 0.987 0.987 

SF 0.983 0.984 

D4: Hepatocellular 
Carcinoma (HCC) 
dataset 

11 features (42% of the 
total number of features) 

OF: ALP - ALT, AST, BIL, CHE, CHOL, 
GGT, PROT 
GTF: In Degree, Out Degree, 
Weighted Degree 

OF 0.975 0.976 

OF+GTF 0.982 0.982 

SF 0.984 0.984 

OF – Original features   
GTF – Graph topological features 
SF – Selected features 

 

We additionally undertook an investigation of the information offered by every feature in order to 
increase the accuracy of classification. We employed heat map visualization techniques to illustrate the 
level that each feature adds to the classification model in 2D color. Figure 2: heat map visualization 
demonstrates that the graph's topological features have a high level of correlation with class attributes, 
not original attributes; in each of the four datasets the topological features demonstrated more 
correlation with the class. 
 

 
 

 
 

 

 
(a) D1: Pima Indians Diabetes Dataset [12] (b) D2: Stroke Prediction Dataset 
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(c) D3: Heart Disease Dataset [13]  (d) D4: Hepatocellular Carcinoma (HCC) dataset [14], [15] 

 
Figure 2: Heat map visualization demonstrating that graphs of topological features have a high degree of 

correlation with class attributes, not original attributes. 

 

 

4. Conclusion/discussion 
Graphs have a unique capacity for the capture of structural correlations between data and this provides 
greater insight in comparison to isolated data analysis [17]. Many forms of data are not formulated as 
graphs originally, e.g., text data, images, and tabulated data. In this research, we have put forward a basic 
methodology for the conversion of tabulated data to graph data. Whilst this methodology is relatively 
simple, it has been shown to be a powerful new way of interpreting data. As the result section 
demonstrates, there have been significant improvements to the classification performance with all of the 
four sample data sets. Incorporating graph topological features has added information to the classifier 
which has resulted in better performance. The classifications may be improved to an even greater extent 
by applying more powerful classification techniques, e.g. deep learning. We did not test deep-learning-
based classifiers in this research as the data sets are relatively small. Additionally, using a convolutional 
graph network (GCN) with the features extracted may return promising results. GCN has recently come to 
the fore in ML and related disciplines and has shown that it can provide improved results in a number of 
areas. Although our proposed methodology was tested in a healthcare context, it is a relatively generic 
methodology that can be employed for improving the classification accuracy of tabulated data in all 
disciplines. One limitation of the suggested methodology is that it will only work with numerical data. This 
meant that in this research nominal data had to be transformed to a numerical value when working with 
the D2 and D4 databases. 
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