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Abstract

The levels of many blood proteins are associated with Alzheimer’s disease or its pathological
hallmarks. Elucidating the molecular factors that control circulating levels of these proteins may help
to identify proteins causally associated with the disease. Here, genome-wide and epigenome-wide
studies (Nindividuals<1,064) were performed on plasma levels of 281 Alzheimer’s disease-associated
proteins, identified by a systematic review of the literature. We quantified the contributions of genetic
and epigenetic variation towards inter-individual variability in plasma protein levels. Sixty-one
independent genetic and 32 epigenetic loci were associated with expression levels of 49 proteins;
eight and 24 of these respective findings are previously unreported. Novel findings included an
association between plasma TREM2 levels and a polymorphism and CpG site within the MS4A4A locus.
Through Mendelian randomisation analyses, causal associations were observed between higher
plasma TBCA and TREM2 levels and lower Alzheimer’s disease risk. Our data inform the regulation of

biomarker levels and their relationships with Alzheimer’s disease.

Background

Alzheimer’s disease (AD) is one of the leading causes of disease burden and death globally (1,
2). Blood-based methods for assessing disease risk are potentially more cost-effective and less-
invasive than neuroimaging methods or lumbar punctures for collecting cerebrospinal fluid (CSF).
Further, blood-based measures that reflect brain pathology, including amyloid-beta and
phosphorylated tau, are highly promising markers for diagnosis, and for recruitment and patient
stratification in preventative trials (3-6). Approaches that use genomics and untargeted proteomics
have suggested that there are signals in blood that might supplement targeted assays, and contribute
to the understanding and prediction of AD (7-9). However, the relevance of many candidate protein
markers identified by untargeted approaches to AD remains unclear (7, 10-12). Understanding the
molecular factors that regulate the levels of AD-associated proteins may identify proteins with likely

causal roles in disease risk (13-16).

Unlike genetic factors which remain largely stable over the life-course, differential DNA methylation
(DNAm) profiles at individual CpG sites are influenced by genetic and non-genetic factors. These
include dietary and lifestyle behaviours (17). DNAm data may capture independent information
beyond genetic factors in explaining inter-individual variation in circulating protein levels. Several
genome-wide association studies (GWAS) have catalogued polymorphisms associated with plasma
protein levels and identified causal relationships between proteins and disease states including AD

(13, 15, 18-24). Further, Zaghlool et al. (2020) performed the only large-scale epigenome-wide
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association study (EWAS) to date of plasma protein levels (>1,000 proteins) (25). Few studies have
integrated GWAS and EWAS data to quantify the independent and combined contributions of genetic

and epigenetic factors towards differential protein biomarker levels (26-28).

We performed a systematic review of studies that report associations between plasma proteins and
AD diagnosis or related traits such as amyloid burden and cortical atrophy (29-40). We focused on
studies that measured plasma protein levels using the SOMAscan® affinity proteomics platform
(Somalogic® Inc.) as this matches the protocol used in our study, Generation Scotland. We identified
281 proteins that were also measured in our sample. Our first aim was to quantify the degree to which
genome-wide genetic and DNA methylation factors explain inter-individual differences in plasma
levels of 281 AD-associated proteins. Using these data, our second aim was to investigate whether

plasma proteins have likely causal relationships with AD.

For our first aim, we performed a combined GWAS/EWAS on circulating levels of 281 proteins in up to
1,064 participants of the family-based Generation Scotland study. Using Bayesian penalised regression
(through the BayesR+ software), we estimated the proportion of inter-individual variability in plasma
protein levels that can be accounted for by variation in genetic and DNA methylation factors. BayesR+
implicitly adjusts for probe intercorrelations and data structure, including relatedness (41). Results
were then integrated with publicly-available methylation and expression quantitative trait loci
(mQTL/eQTL) data to probe the molecular mechanisms that might regulate protein abundances in
plasma. For our second aim, Mendelian randomisation (MR) and colocalisation analyses tested for

possibly causal relationships between plasma protein levels and AD phenotypes.

Results
Systematic identification of plasma proteins associated with Alzheimer’s disease

Following a systematic search of MEDLINE (Ovid), Embase (Ovid), Web of Science (Thomson
Reuters) and preprint servers, twelve studies were identified that reported associations between
SOMAscan® plasma proteins and AD or related traits (Figure 1, see Methods). In total, 359 unique
proteins were identified and 22 (6.1%) were reported in more than one study (Additional File 1: Table
S1-S3). In the Generation Scotland dataset, there were 309 SOMAmers (Slow Off-rate Modified
Aptamers) that targeted 281/359 proteins of interest (Additional File 1: Table S4 and Additional File
2: Figure S1). The 281 unique proteins were brought forward for analyses (UniProt IDs and Seqg-ids are

shown in Additional 1: Table S5).
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Genome-wide studies of plasma protein correlates of Alzheimer’s disease

There were 1,064 individuals with genotype and proteomic data in Generation Scotland. The
mean age of the sample was 59.9 (SD=5.9) years and 59.1% of the sample were female. In the BayesR+
GWAS, 61 independent variants (or protein quantitative trait Loci, pQTLs) were associated with 42
SOMAmers that mapped to 40 unique protein targets (posterior inclusion probability (PIP) 295%;
Additional File 1: Table S6). The phenotypic correlation structure of these 42 SOMAmers is presented
in Additional File 2: Figure S2. The median correlation coefficient between SOMAmer levels was 0.17.
Thirty-four pQTLs represented cis associations (pQTLs within 10 Mb of transcription start site (TSS) for
a given gene) and 27 pQTLs were trans-chromosomal effects (Figure 2). The majority of variants were
located in intronic regions using annotations from the ENSEMBL variant effect predictor (46.4%,

Additional File 2: Figure S3) (42).

Fifty-three pQTLs were previously reported in GWAS of blood protein levels (Additional File 1: Table
S7) (13-15, 18-20, 22, 23, 27, 28, 43-50). Variants either directly replicated known associations or
showed high linkage disequilibrium (LD, r*>0.75) with known pQTLs for queried proteins. Relative
effect sizes reported in the literature correlated strongly with those in our study (r=0.78, 95%
confidence interval (Cl) = [0.68, 0.85]). We identified eight novel pQTLs associated with eight unique
proteins. Three pQTLs were in cis (GM2A, MATN3 and IL1RAP). Five pQTLs represented trans-
chromosomal effects: rs1126680 (BCHE for KLK6), rs1354034 (ARHGEF3 for YBX2), rs17695224 (FPR3
for MARCKSL1), rs3820897 (COLEC11 for ALPL) and rs1582763 (MS4A4A for TREM?2).

Thirty-one pQTLs were associated with at least one trait in the GWAS Catalog at P<5x10® (range=1-78
associations, Additional File 1: Table S8) (51). In relation to AD traits, the trans pQTL in MS4A4A
(rs1582763) for TREM2 levels was associated with AD in APOE €4 carriers and family history of AD (8,
52). Further, the trans pQTL in APOE (rs769449) for TBCA levels was associated with 15 AD-related

traits including genetic predisposition to AD and CSF biomarkers of the disease (53, 54).

BayesR+ was used to estimate the proportions of inter-individual variation in individual plasma protein
levels that were attributable to common SNPs (minor allele frequency>1%). Estimates ranged from
5.4% (PRL; 95% credible interval (Crl) = [0%, 24.9%]) to 73.0% (IL1RAP; 95% Crl = [56.1%, 82.7%)]), with
a median estimate of 13.0% across all 309 SOMAmers (Additional File 1: Table S9).


https://doi.org/10.1101/2021.06.07.21258457
http://creativecommons.org/licenses/by/4.0/

medRxiv preprint doi: https://doi.org/10.1101/2021.06.07.21258457; this version posted June 10, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.
It is made available under a CC-BY 4.0 International license .

Colocalisation of protein QTLs with expression QTLs

The 34 cis pQTLs identified in BayesR+ were annotated to 23 unique proteins. For 11/23
proteins, at least one pQTL was previously reported to be an expression QTL for the respective gene
in blood tissue (eQTL consortium database) (55). The R package coloc (56) was used to test the
hypothesis that one causal variant might underpin differences in gene expression (eQTL) and protein
levels (pQTL) for each gene of interest. For two proteins (PCSK7 and GM2A), there was strong evidence
(posterior probability (PP)>95%) for a shared causal variant underlying gene expression and protein
levels (Additional File 1: Table S10). MR analyses provided evidence for reciprocal associations
between changes in gene expression and circulating levels of these proteins (Additional File 1: Table
S11). One protein had weak evidence for colocalisation (PDCD1LG2, PP=60%) and eight proteins had

strong evidence for separate causal variants underlying gene expression and protein levels.
Epigenome-wide studies of plasma protein correlates of Alzheimer’s disease

There were 778 individuals with DNA methylation and proteomic data in the Generation
Scotland sample. The mean age of the sample was 60.2 (SD=8.8) years and 56.4% of the sample were
female. Thirty-two CpGs were associated with the levels of 24 unique proteins (PIP>95%, Additional
File 1: Table S12 and Additional File 2: Figure S4). The median correlation coefficient between
measured protein levels was 0.15. The associations consisted of 11 cis CpG sites and 21 trans CpG loci
(Figure 3). The cg07839457 probe in the NLRC5 locus was associated with IL18BP, CSF1R and B2M
levels, and the smoking-associated probe cg05575921 in AHRR (57-59) was associated with TREM2,
PIGR, WFDC2 and RSPO4 levels.

We used linear mixed-effects models that accounted for relatedness to perform sensitivity analyses
for the 32 CpG associations identified in BayesR+ (Additional File 1: Table S13) (60). Effect sizes were
highly correlated with those from BayesR+ and showed full directional concordance (r=0.94, 95% Cl =
[0.88, 0.97], Additional File 2: Figure S5). Twenty-six associations were replicated at a genome-wide
significance threshold of P < 3.6 x 10 (61) and the remaining six associations were replicated with P
< 1.3 x 10™. Further, 8/32 CpG associations were previously reported in the literature and effect sizes
correlated strongly with those in our study (r=0.98, 95% Cl = [0.87, 1.0]). The 24 novel CpG sites were

associated with levels of 17 unique proteins.

Using methylation data, pathway enrichment was assessed among KEGG and GO terms (Additional
File 1: Table S14 and Table S15, respectively, see Additional File 3 for Methods). Genes associated with

the levels of six separate proteins in our EWAS were overrepresented in biological pathways using
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KEGG and GO terms. Genes associated with IL18BP levels were overrepresented in prolactin signalling
and inflammation pathways. Gene sets identified in our EWAS of PIGR, RSPO4 and ANTXR2 levels were
each associated with cancer pathways. Genes associated with B2M levels were enriched in viral
response and antigen processing pathways. LRPAP1 levels were associated with immune cell-
mediated cytotoxicity and antigen processing pathways. LRPAP1 harboured a trans CpG signal in the

MCCD1 locus within the major histocompatibility complex Il region.

In BayesR+, estimates for the proportions of variability in SOMAmer levels that could be accounted
for by DNA methylation measured on the EPIC BeadChip array ranged from 6.0% (ENO2; 95% Crl =
[0%, 27.4%]) to 49.2% (MAPKAPK5; 95% Crl = [36.3%, 61.0%]), with a median estimate of 14.0%
(Additional File 1: Table S16).

Estimates for variance in SOMAmer levels accounted for by genetic and methylation data together,
while conditioned on each other, ranged from 21.8% for ENTPD1 (95% Crl = [0.0%, 59.1%]) to 93.3%
for GHR (95% Crl = 80.1%, 100%]) (Additional File 1: Table S17 and Additional File 4). The mean and

median estimates were 48.7% and 46.8%, respectively.
Colocalisation of protein QTLs with methylation QTLs

Fifteen proteins had both genome-wide significant pQTL and CpG associations in our study.
There were 45 possible SNP-CpG pairs across these proteins. For each pair, we used linear regression
to test whether the SNP was associated with CpG methylation at P<5x10%, thereby representing an
mQTL effect (Additional File 1: Table S18, see Methods). We also performed look-up analyses of mQTL
databases including GoDMC and phenoscanner (62-64). In instances where an mQTL effect was
identified in more than one database, coefficients from the study with the largest sample size were
brought forward for colocalisation analyses. Further, in instances where two or more mQTLs were
associated with the same CpG site in a given locus, only the most significant mQTL was brought

forward for colocalisation analyses (n = 20 mQTLs, 14 proteins, Additional File 1: Table S19).

For seven proteins, we observed strong evidence in coloc that a single causal variant may underpin
differential DNA methylation levels and protein abundances (PP>95%, Additional File 1: Table S20).
For five proteins (MATN3, ANXA2, F7, PLA2G2A and PCSK7), these associations involved cis pQTLs and
mQTLs. A single trans variant in APOE was associated with APOE methylation and plasma TBCA levels.

A trans variant in FUT2 likely influenced FUT2 methylation and measured ALPI levels. MR analyses
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provided evidence that relationships between methylation and protein levels were bidirectional

(Additional File 1: Table S21).

For PCSK7, protein levels colocalised with DNA methylation and gene expression. Using moloc, there
was strong evidence that these three traits colocalise with a common variant in the PCSK7 locus (Nsnps

=543, PP>95%) (65).
Causal associations between plasma proteins and Alzheimer’s disease risk

Bidirectional MR was applied to test for relationships between the 42 SOMAmers with pQTL
associations in BayesR+ and 20 AD-related traits (Additional File 1: Table S22). A Bonferroni-corrected
threshold of P<5.95 x 10 (<0.05/42 x 20) was set. Plasma levels of three proteins had a unidirectional
association with AD risk: TREM2 (Table 1, Wald ratio test, trans pQTL in MS4A4A, beta=-0.13, se=0.05,
P=8.43 x 10'Y7), CSF3 (Wald ratio test, 1 trans pQTL in APOC2, beta=0.10, se=0.01, P=7.62 x 10**) and
TBCA (inverse variance-weighted method, 2 trans pQTLs in APOE, beta=-0.50, se=0.12, P=1.20 x 10°).
Conversely, AD risk was not associated with plasma levels of these proteins. Colocalisation analyses
provided evidence for one causal variant underlying TREM2 or TBCA levels and AD risk, and two

separate causal variants underlying CSF3 levels and AD risk (Additional File 1: Table S23).

Discussion

In this study, we identified eight novel protein QTLs and 24 novel CpG sites that associated
with the levels of 23 AD-related plasma proteins. Using BayesR+, we provided estimates for
associations between common genetic and DNAm variation and inter-individual differences in plasma
levels of 281 AD-related proteins. We integrated our data with publicly-available gene expression and
methylation QTL databases thereby highlighting molecular mechanisms that might causally link pQTLs
to differential levels of eight proteins. This included a trans pQTL in APOE underpinning both DNAm
variation in the APOE locus and TBCA levels. Using Mendelian randomisation and colocalisation
analyses, we observed strong evidence for relationships between plasma levels of TREM2 or TBCA and

AD risk. These associations were driven by trans pQTLs in MS4A4A and APOE, respectively.

For the first time, we show that the trans pQTL (rs1582763) in the MS4A4A locus associates with higher
plasma TREM2 levels. This variant has been associated with higher CSF TREM2 levels and lower AD
risk (8, 66). Furthermore, it is in moderate LD (r* = 0.55) with a variant in the 3’UTR region of MS4A6A
(rs610932) that was associated with serum TREM2 levels in a sample of 5,457 Icelanders (mean age =
75 years) (24). In a strategy that used human macrophages as proxies for microglia, this polymorphism

was shown to alter MS4A4A expression and subsequently modulate TREM2 concentration (67). We
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also identified a novel blood CpG correlate of plasma TREM2 levels (cg02521229) located near
MS4A4A that previously associated with dementia risk in Generation Scotland participants (68). Our
data suggest that risk mechanisms arising from MS4A4A polymorphisms and TREM2 levels can be
captured in plasma assays and that these mechanisms may involve differential methylation in the
MS4A4A locus. We identified four other novel trans pQTLs. First, FPR (formyl peptide receptor)
proteins regulate the phosphorylation of downstream MARCKS (myristoylated alanine-rich C-kinase
substrate) proteins (69, 70). Second, the T allele of rs3820897 in COLEC11 previously was associated
with higher circulating inflammatory protein levels (22). In our study, this allele associated with lower
levels of the anti-inflammatory protein ALPL (non-specific alkaline phosphatase isozyme) (22). Third,
a trans variant in BCHE for KLK6 may represent a technical artefact as it is in moderate LD (r* ~ 0.5)
with variants that increase the DNA-binding affinity of BCHE and therefore induce interactions with
other SOMAmers (20). Fourth, we observed a novel trans association between rs1354034 (ARHGEF3)
and YBX2 levels. The ARHGEF3 locus influences platelet counts (71) and the rs1354034 variant was
associated with >1,000 SOMAmers in a recent pQTL study (20). Individuals with this variant might have
higher platelet counts or reactivity thereby resulting in the secretion of larger amounts of proteins

from platelets during sample preparation.

We observed associations between plasma levels of three proteins (CSF3, MAPKAPKS and TBCA) and
trans pQTLs in the TOMM40-APOE-APOC2 locus. Further, we identified two pQTLs and three CpG
correlates of plasma MAPKAPKS levels in the TMEM97 locus. MAPKAPKS correlated with cognitive
decline in the Twins UK cohort, however its relationship with neuropathology is unknown (37).
TMEM97 acts a synaptic receptor for amyloid-beta and mediates its cellular update via APOE-
dependent and APOE-independent mechanisms (72, 73). Given that TMEM97 polymorphisms may
influence MAPKAPKS levels, our data prioritise MAPKAPK5 for follow-up studies as a potential
downstream effector or correlate of TMEM97 in amyloid clearance. TBCA correlates with amyloid-
beta burden (29). TBCA levels are higher in individuals with the protective APOE £2/¢2 genotype and
lower in carriers of the risk €4 polymorphism (74). These data are consistent with our GWAS and MR
analyses. We supplement these data by identifying two novel CpG correlates of TBCA levels in APOC1
and show the associations are likely mediated via mQTL effects. Future studies should examine
whether TBCA dysregulation is a cause or consequence of disease risk mechanisms in carriers of APOE

€4 polymorphisms.

Our study has a number of limitations. First, our systematic review does not reflect an exhaustive list

of potential AD-associated traits. Furthermore, there is heterogeneity across studies in terms of
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diagnostic criteria and phenotype definitions. Second, by focussing on the SOMAscan® platform alone,
we do not capture all blood protein correlates of AD that are reported in the literature. Third, an
insufficient number of variants were available to test for horizontal pleiotropy in Mendelian
randomisation analyses. Fourth, some loci may have multiple SNPs that are in high LD. In this case,
BayesR+ will interchangeably include and exclude closely-linked SNPs across iterations i.e. an
individual SNP is selected in some iterations and inclusion probabilities will be shared across closely-
linked SNPs. In regions where a SNP shows a high PIP (>95%), there is likely no other variant in LD with
a causal variant. Therefore, if pQTLs with PIP>95% overlap with mQTLs for example then there is
strong evidence for a single causal variant underlying both traits. Fifth, it is important to note that
variants may alter SOMAmer reactivity with protein targets, or reflect technical artefacts such as
sample handling and cross-reactive events (20). The replication of pQTL and CpG associations across
proteomic platforms will help to disentangle biological from non-specific signals (19). Sixth, our sample
consisted of Scottish individuals with a relatively homogenous genetic background thereby limiting

generalisability of findings to individuals from other ethnic backgrounds.

Conclusion

Our strategy of integrating multiple omics measures has determined the degree to which
molecular factors can explain inter-individual differences in blood levels of possible biomarkers for

AD and advanced understanding of mechanisms underlying AD risk.

Methods
Study Cohort

Analyses were performed using blood samples from participants of the STratifying Resilience
and Depression Longitudinally (STRADL) cohort, which comprises 1,188 individuals from the larger,
family-structured Generation Scotland: the Scottish Family Health Study (GS). GS consists of 24,084
individuals from across Scotland, some of whom were members of the Walker Cohort in Dundee (75)
and the Aberdeen Children of the 1950s study (76). Recruitment for GS took place between 2006 and
2011. Members of the STRADL cohort partook in follow-up data collection 4-13 years after baseline
(77, 78). Of the original GS members, 5,649 were invited to take part in the STRADL cohort. There were
1,188 positive respondents. Participants were tested across two sites (=582 and 606 from Aberdeen

and Dundee, respectively).
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Search strategy and inclusion criteria

We searched MEDLINE (Ovid interface, Ovid MEDLINE in-process and other non-indexed
citations and Ovid MEDLINE 1946 onwards), Embase (Ovid interface, 1980 onwards), Web of Science
(core collection, Thomson Reuters) and medRxiv/bioRxiv to identify relevant articles indexed as of 28
May 2021. Search terms are outlined in Additional File 3. Twenty-five articles were identified and one
further article was identified through a supplemental manual literature search. After removal of
duplicates, 23 articles were assessed for inclusion criteria: (i) original research article, (ii) proteins were
measured in plasma, (iii) proteins were measured using SOMAscan® technology and (iv) proteins were

associated with Alzheimer’s disease or related phenotypes. Twelve articles met inclusion criteria.
Protein measurements in Generation Scotland

The 5k SOMAscan® v4 array was used to quantify the levels of plasma proteins in Generation
Scotland participants (n=1,065). This highly multiplexed platform uses chemically modified aptamers
termed SOMAmers (Slow Off-rate Modified Aptamers) that recognise epitopes on their cognate
protein targets with high specificity and high affinity in the nanomolar-to-picomolar range. The

recognition signal is measured as relative fluorescence units (RFUs) on microarrays (79).

Plasma samples were collected in 150 ul aliquots and stored at -80°C. Samples were run in 96-well
plates and reagents were spread across three dilution factors (0.005%, 0.5%, and 20%) to create
distinct sets for high, medium, and low abundance proteins, respectively. Raw microarray data were
normalised through a number of quality control steps, which are detailed in Additional File 3 (80).
After quality control and the exclusion of non-human proteins, deprecated markers and spuriomers,

4,235 SOMAmers were retained for proteomic analyses.

Normalised RFUs (from Somalogic®) were first log-transformed and regressed onto the following
covariates: age, sex, study site (Aberdeen/Dundee), time between sample being collected and sample
being processed for proteomics (factor, 4 levels), estimated glomerular filtration rate and 20 genetic
principal components (PCs) of ancestry from multi-dimensional scaling (to control for population
structure). Relationships between covariates and SOMAmers are shown in Additional File 1: Table S24.
Residualised RFUs were transformed by rank-based inverse normalisation. We refer to these as
protein levels; however, they reflect RFUs which have undergone a number of quality control,

transformation and pre-correction steps.
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Genome-wide association studies

Generation Scotland samples were genotyped using the Illumina Human OmniExpressExome-
8v1.0 Bead Chip and processed using the lllumina Genome Studio software v2011 (lllumina, San Diego,
CA, USA) (81). Quality control steps are outlined in Additional File 3. After quality control, 561,125
SNPs remained for 1,064 individuals. In total, 1,064 individuals had both genotype and proteomic data

available for analyses.

Bayesian penalised regression GWAS were performed using BayesR+ software in C++ (41). BayesR+
utilises a mixture of prior Gaussian distributions to allow for markers with effect sizes of different
magnitudes. It also includes a discrete spike at zero that enables the exclusion of markers with non-
identifiable effects on the trait of interest. Guided by data from our previous studies, mixture
variances for the stand-alone GWAS were set to 0.01 and 0.1 to allow for markers that account for 1%
or 10% of variation in circulating protein levels, respectively (27, 28). In the combined GWAS/EWAS
analysis, genotype and DNAm data must have had the same number of prior variances (n=3 each).
Therefore, mixture variances for SNP data were set to 0.01, 0.1 and 0.2 in the combined analyses.
Input data were scaled to mean zero and unit variance. Gibbs sampling was used to sample over the
posterior distribution conditional on input data and 10,000 samples were used. The first 5,000 samples
of burn-in were removed and a thinning of 5 samples was applied to reduce autocorrelation. SNPs

which exhibited a posterior inclusion probability 295% were deemed significant.
Epigenome-wide association studies

Blood DNAm in Generation Scotland participants was assessed using the Illumina
HumanMethylationEPIC BeadChip Array. Blood DNAm was assessed in two separate sets. After quality
control, 793,706 and 773,860 CpG remained in sets 1 and 2, respectively. In total, 772,619 CpG sites

were shared across sets. Each set was truncated to these overlapping probes.

In the stand-alone EWAS and combined GWAS/EWAS, mixture variances were set to 0.001, 0.01 and
0.1 (n=778). Missing DNAm data were mean imputed separately within each set as BayesR+ cannot
accept missing values. Both sets were then combined and adjusted for DNAm batch, set, age and sex.
Each CpG site was scaled to mean zero and unit variance. Houseman-estimated white blood cell
proportions were included as fixed effect covariates in EWAS models (82). CpG sites that had a

posterior inclusion probability 295% were deemed significant.
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Linear mixed-effects models were performed in sensitivity EWAS analyses using the Imekin function
from the coxme package in R (version 2.2-16) (60). DNAm data were pre-corrected for age, sex, batch
and set. Houseman-estimated white blood cell proportions were incorporated as fixed effect
covariates and a kinship matrix was fitted to account for relatedness among individuals in the family-

based STRADL cohort.
Colocalisation analyses

Formal Bayesian tests of colocalisation were used to determine whether a shared causal
variant likely underpinned two traits of interest (56). For each protein, a 200 kilobase region (upstream
and downstream—recommended default setting) surrounding the variant was extracted from our

GWAS summary statistics.

Expression QTL data were extracted from eQTLGen summary statistics. Methylation QTL
summary statistics were extract from phenoscanner, GoDMC or our own mQTL analyses. Methylation
QTL analyses were performed using additive linear regression models and by regressing CpG sites
(beta values) on SNPs (0, 1, 2) while adjusting for age, sex, DNAm batch, set, Houseman-estimated
white blood cell proportions and 20 genetic PCs (n=778). In instances where an mQTL effect was
identified in more than one database, summary statistics from the study with the largest sample size
were used in coloc (55, 62, 63). For AD-related traits, summary statistics were extracted from the
relevant GWAS (8, 83, 84). Default priors were applied. Summary statistics for all SNPs (+200 kilobases
from the queried SNP) were used to estimate the posterior probability for five separate hypotheses:
a single causal variant for both traits, separate causal variants for both traits, a causal variant for just
one trait (encompassing two hypotheses), or no causal variant for either trait. Posterior probabilities

295% provided strong evidence for a given hypothesis.
Mendelian randomisation

Bidirectional Mendelian randomisation was used to test for possibly causal relationships
between (i) gene expression and plasma protein levels, (ii) DNAm and plasma protein levels and (iii)
plasma protein levels and AD risk or related biomarkers. Pruned variants (r’<0.1) were used as
instrumental variables (IVs) in MR analyses. In tests where only one independent variant remained
after pruning, effect size estimates were assessed using the Wald ratio test. In tests where two SNPs
remained, analyses were performed using the inverse variance-weighted method. Analyses were
conducted using MR-base (85). Two-sample MR was used with the exception of 3 mQTL-pQTL
associations derived from our own summary statistics (F7, PLA2G2A, PCSK7) and these relationships
were assessed using the Wald ratio test. Further information on IVs used are provided in Additional

File 3.
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Ethics approval and consent to participate

All components of the Generation Scotland study received ethical approval from the NHS
Tayside Committee on Medical Research Ethics (REC Reference Numbers: 05/5S1401/89 and
10/51402/20). All participants provided broad and enduring written informed consent for biomedical
research. Generation Scotland has also been granted Research Tissue Bank status by the East of
Scotland Research Ethics Service (REC Reference Number: 20-ES-0021). This study was performed in

accordance with the Helsinki declaration.
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Data availability

According to the terms of consent for Generation Scotland participants, access to data must
be reviewed by the Generation Scotland Access Committee. Applications should be made to

access@generationscotland.org.
Code availability

All code is available at the following Github repository:

https://github.com/robertfhillary/gwas ewas AD plasma biomarkers.
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Figure 1. Systematic review of SOMAscan® plasma proteins that were associated with Alzheimer’s disease in
the literature, and assessment of their molecular architectures and relationships with Alzheimer’s disease in
the present study. The MEDLINE, Embase, Web of Science databases and preprint servers were queried to identify
studies that reported associations between SOMAscan®-measured plasma proteins and Alzheimer’s disease.
GWAS, EWAS and causal inference analyses were performed to identify molecular correlates of 281 AD-associated
plasma protein levels and to probe their causal relationships with Alzheimer’s disease and related traits. AD,
Alzheimer’s disease; EWAS, epigenome-wide association study; GWAS, genome-wide association study. Image
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Figure 2. Genome-wide association studies of plasma protein levels previously associated with Alzheimer’s
disease and disease-related phenotypes. (A) Chromosomal locations of pQTLs identified through Bayesian
penalised regression GWAS. The x-axis shows the chromosomal location of pQTLs associated with the levels
of SOMAmers that correlate with Alzheimer’s disease status or related pathways. The y-axis represents the
position of the gene encoding the target protein. Cis (red circles); trans (blue circles). (B) A circos plot for the
27 trans-associated pQTLs from (A). Lines indicate an association between a pQTL and SOMAmer. GWAS,
genome-wide association study; pQTL, protein quantitative trait locus.
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Figure 3. Epigenome-wide association studies of plasma protein levels previously associated with
Alzheimer’s disease and disease-related phenotypes. (A) Chromosomal locations of CpGs identified through
Bayesian penalised regression EWAS. The x-axis shows the chromosomal location of CpG sites and the y-axis
represents the position of the gene encoding the target protein. Cis (red circles); trans (blue circles). (B) A
circos plot for the 21 trans-associated CpGs from (A). Lines indicate an association between a CpG site and
SOMAmer. EWAS, epigenome-wide association study.
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Table 1. Mendelian randomisation analyses of plasma protein levels and Alzheimer’s disease-associated traits
(Bonferroni-corrected P<5.95 x 107).

Protein Trait Method Beta SE P Reference
Protein levels affecting Alzheimer’s disease-associated traits
TBcA  ‘log-transformed CSF VW 009 001 25x107 (84)
AB42
TREM2  Alzheimer’s disease risk ~ Wald ratio -0.13 0.02 8.4x10Y (8)
TBCA CSF APOE Wald ratio 0.75 0.10 7.3x101 (86)
CSF3 Alzheimer’s disease risk ~ Wald ratio 0.10 001 7.6x10%" (8)
TBCA CSF AB (Z-scores) VW -0.45 0.06 1.8x10% (84)
TBcA  ‘log-transformed CSF VW 008 00l 63x107 (84)
AB42/AB40
TBCA Alzheimer’s disease risk VW -0.50 0.12 1.2 x10° (8)
Alzheimer’s disease-associated traits affecting protein levels
TBCA Log-transformed CSF 4 ot 1114 053 4.4x10°8 (84)
AB42
TBCA CSF AB (Z-scores) Wald ratio -2.14 0.10 4.4x10°% (84)
Log-transformed CSF . 98
TBCA AB42/ABAD Wald ratio 11.67 0.56 4.4x10 (84)
TBCA CSF AB Wald ratio 1221  0.63  2.7x10% (83)

CSF, cerebrospinal fluid; IVW, inverse variance-weighted method; SE, standard error.
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