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Determination of seasonal reproduction numbers

In order to reflect observed seasonal variation in transmission rates for respiratory infections

arising from related coronaviruses [1], influenza [1] and respiratory syncytial virus [2], we base

seasonal reproduction numbers in this work on those in [3], which were calculated in [1] based

on the climate of New York City. Other seasonal patterns can be explored using the interactive

online application. In all simulations, we modify these values to force a mean value for the

basic reproduction number of R̄0 = 〈R0(t)〉 = 2.3 by multiplying the climate-derived time

series R0,c(t) by 2.3 and dividing by its average value, i.e.

R0(t) = R0,c(t)
2.3

R̄0,c

.

When transmission rates are assumed to be asymmetrical, the mean value of the R0(t) time

series is adjusted by the desired relative ratio. For example, for R̄0,LAR/R̄0,HAR = 1.2, the

reproduction number time series in the HAR is as above, but in the LAR it is

R0,LAR(t) = R0,c(t)
2.3

R̄0,c

R̄0,LAR

R̄0,HAR

= R0,c(t)
2.3

R̄0,c

× 1.2.

Modeling of nonpharmaceutical interventions (NPIs)

In all simulations, we enforce periods of NPI adoption (arising from behaviours and policies

such as lock downs, mask-wearing, and social distancing) in which the transmission rate is

reduced from its seasonal value described in the previous section.

For the simulations using the decoupled framework (i.e. Figure 3), we used the same NPI

scenarios as in [4]. For all simulations using the coupled framework (i.e. Figures 4, 5, S3, and

S4), we assume that NPIs are adopted between weeks 8 and 44 following the pandemic onset

resulting in the transmission rate being reduced to 40% of its seasonal value. Between weeks 45

and 79, we assume that the transmission rate is 60% of its seasonal value; higher than during
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the previous period due to either behavioural changes following the introduction of the vaccine

or the emergence of more transmissible strains. Finally, we assume that NPIs are completely

relaxed beyond week 80.

Simple vaccination model

Model equations

For the equilibrium calculations, we use the model presented in [3] and assume vaccination is

ongoing. For i = A,B, where for simplicity A is the HAR and B is the LAR, IP,i and IS,i

denote the fraction of primary and secondary infections in country i, respectively. Similarly, for

each country i, SP,i and SS,i denote the fraction of fully and partially susceptible individuals,

respectively; Ri is the fraction recovered from infection (fully immune); and Vi is the fraction

effectively vaccinated (also fully immune). Furthermore, βi and νi are the transmission rate

and vaccination rate in country i, respectively. We assume that demographics and immune

characteristics are the same in both countries: µ is the birth/death rate, γ is the recovery rate,

ε is the relative reduction in susceptibility following the waning of vaccinal or natural immunity,

α is the relative infectiousness of secondary to primary infections, 1
δ

is the average duration

of natural immunity, and 1
δvax

is the average duration of vaccinal immunity. The governing

equations are thus

(S1a)
dSP,i
dt

= µ− βiSP,i(IP,i + αIS,i)− µSP,i − νiSP,i,

(S1b)
dIP,i
dt

= βiSP,i(IP,i + αIS,i)− (γ + µ)IP,i,

(S1c)
dRi

dt
= γ(IP,i + IS)− δRi − µRi,

(S1d)
dSS,i
dt

= δRi + δvaxVi − εβiSS,i(IP,i + αIS,i)− µSS,i − svaxνiSS,i,

(S1e)
dIS,i
dt

= εβiSS,i(IP,i + αIS,i)− (γ + µ)IS,i,

(S1f)
dVi
dt

= νi(SP,i + SS,i)− (δvax + µ)Vi.
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Equilibrium calculations

As computed in [3], we assume that α = 1 (for all that follows), and the basic reproduction

number [5, 6, 7] of country A or B is thus

(S2)R0,i =
βi

γ + µ

(
µ

νi + µ
+ ε

νi
νi + µ

δvax

δvax + νi + µ

)
.

As proved in [3], there is a unique equilibrium ÎT,i = ÎP,i + ÎS,i for each country (since

they are decoupled), and so it follows that the model with simple vaccination (described by

equations (S1a)-(S1f)) has a unique equilibrium. Within each country, if R0,i < 1, then this is

the disease-free equilibrium. Otherwise, if R0,i > 1, the country’s equilibrium has a positive

fraction of total infections ÎT,i. Note that the explicit formula for ÎT,i is given in [3]. For this

analysis, since the two countries are only coupled through their vaccination rates, we can solve

for the corresponding fractions of infections separately.

Both countries may not be the same size. Since the vaccination rate νtot is calibrated for

country A, i.e. a fraction νtot of the population of country A is vaccinated per unit time, we

let φB,A denote the relative size of country B to country A. Thus, assuming that a fraction f

of vaccines is shared from A to B, then the vaccination rates in each country are as follows:

(S3a)νA = (1− f)νtot,

(S3b)νB =
1

φB,A
fνtot.

Therefore, the weighted average of infections across both countries is

(S4)ÎT,avg =
1

1 + φB,A
ÎT,tot =

1

1 + φB,A

(
ÎT,A + φB,AÎT,B

)
.

Model with explicit dosing regimes

Model equations

Here, we use the model presented in [4], which is an extension of the model with simple

vaccination described by equations (S1a)-(S1f). The additional classes of individuals in country

i are defined as follows: V1,i and V2,i denote those vaccinated with one or two doses, respectively;

SS1,i and SS2,i denote those whose one- or two-dose vaccinal immunity has waned, respectively;

IS1,i and IS2,i denote those infected after the waning of one- or two-dose vaccinal immunity,
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respectively (i.e. infected from the SS1,i or SS2,i class); and IV,i denotes those infected while

in V1,i or V2,i. There are also a number of additional parameters: letting k = 1, 2, εk is the

relative reduction in susceptibility to infection following the waning of k-dose immunity; εVk
is the relative reduction in susceptibility while in Vk,i;

1
ρk

is the average duration of k-dose

immunity; c is the fraction of individuals in SS,i for whom a single vaccine dose confers two-

dose immunity; xk denotes the relative revaccination rate of individuals in SSk,i; 1 − pk is the

fraction of individuals in SSk,i who obtain two-dose immunity after a single dose. The parameter

νi now corresponds to the rate of administration of the first vaccine dose, and 1
ωi

is the period

between the first and second dose.

In addition to the model in [4], we also allow for coupling between the LAR and HAR

through both the immigration rate η as in [8] and potential increases in local transmission rates.

By defining the transmission-weighted total number of infections in each country ITα,i as

ITα,i = IP,i + αIS,i + αV IV,i + α1IS1,i + α2IS2,i,

the governing equations can be written as

(S5a)
dSP,i
dt

= µ− βiSP,i[(1− η)ITα,i + ηITα,jφj,i]− (svaxνi + µ)SP,i,

(S5b)
dIP,i
dt

= βiSP,i[(1− η)ITα,i + ηITα,jφj,i]− (γ + µ)IP,i,

(S5c)
dRi

dt
= γ(IP,i + IS,i + IV,i + IS1,i + IS2,i)− (δ + µ)Ri,

(S5d)
dSS,i
dt

= δRi − εβiSS,i[(1− η)ITα,i + ηITα,jφj,i]− (svaxνi + µ)SS,i,

(S5e)
dIS,i
dt

= εβiSS,i[(1− η)ITα,i + ηITα,jφj,i]− (γ + µ)IS,i,

(S5f)dV1,i

dt
= svaxνiSP,i + csvaxνiSS,i + x1p1svaxνiSS1,i + x2p2svaxνiSS2,i −
εV1βiV1,i[(1− η)ITα,i + ηITα,jφj,i]− (ωi + ρ1 + µ)V1,i,

(S5g)dV2,i

dt
= (1− c)svaxνiSS,i + x1(1− p1)svaxνiSS1,i + x2(1− p2)svaxνiSS2,i

+ ωiV1,i − εV2βiV2,i[(1− η)ITα,i + ηITα,jφj,i]− (ρ2 + µ)V2,i,

(S5h)
dIV,i
dt

= βi(εV1V1,i + εV2V2,i)[(1− η)ITα,i + ηITα,jφj,i]− (γ + µ)IV,i,
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(S5i)
dSS1,i

dt
= ρ1V1,i − ε1βiSS1,i[(1− η)ITα,i + ηITα,jφj,i]− (svaxx1νi + µ)SS1,i,

(S5j)
dSS2,i

dt
= ρ2V2,i − ε2βiSS2,i[(1− η)ITα,i + ηITα,jφj,i]− (svaxx2νi + µ)SS2,i,

(S5k)
dIS1,i

dt
= ε1βiSS1,i[(1− η)ITα,i + ηITα,jφj,i]− (γ + µ)IS1,i,

(S5l)
dIS2,i

dt
= ε2βiSS2,i[(1− η)ITα,i + ηITα,jφj,i]− (γ + µ)IS2,i.

For all simulations, we take µ = 0.02y−1 corresponding to a yearly crude birth rate of 20

per 1000 people. Additionally, we take the infectious period to be 1/γ = 5 days, consistent

with the modeling in [1, 3, 9] and the estimation of a serial interval of 5.1 days for Covid-19

in [10], and assume that c = 0.5. We take the relative transmissibility of infections to be

α = αV = α1 = α2 = 1, and therefore only modulate the relative susceptibility to disease ε.

For simplicity, we ignore re-vaccination and thus take xk = 0. For the initial conditions of all

simulations, we take IP = 1× 10−9 and assume the remainder of the population is in the fully

susceptible class. The values of the remaining parameters used in the various simulations are

specified throughout the main text.

Calculation of cumulative case numbers

The total number of cases at any time t in a given country is calculated as

IT,i(t) = IP,i(t) + IS,i(t) + IV,i(t) + IS1,i(t) + IS2,i(t).

Cumulative case numbers between times t1 and t2 in a given country are then:

γ

t=t2∑
t=t1

It,i(t).

Linking vaccination rate to inter-dose period

As in [4], we consider an exponential relationship between the global rate of administration

of the first vaccination dose νtot[ω] and the inter-dose period 1
ω

. We assume that the highest

achievable rate ν0,tot is attained when no second dose occurs (i.e. ω = 0, an infinite inter-dose

period), and that when the first and second doses are spaced by the clinically recommended

inter-dose period Lopt (ωopt = 1
Lopt

), the rate of administration of the first dose is one half of
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its maximum value. Thus,

(S6)νtot[ω] = 2−Loptων0,tot.

Determination of potential net viral adaptation rate

The potential net viral adaptation rate ei in each country is calculated as in [4] as the sum

of the sizes of the infection classes following waned immunity (i.e. IS,i after SS,i, IS1,i after

SS1,i, and IS2,i after SS2,i) weighted by the infection class-specific net viral adaptation rate.

Specifically it is given by

(S7)ei = wISIS,i + wIS1IS1,i + wIS2IS2,i.

Specification of one-dose vaccine efficacy from one- to two-dose im-

mune response ratio

As in [4], the one- to two-dose immune response ratio xe sets the value of ε1 and ρ1, the

susceptibility to infection following waned one-dose vaccinal immunity and the duration of one-

dose vaccinal immunity, respectively. Specifically, we take ε1 = ε2 + (1− xe)(1− ε2) such that

the susceptibility to infection after a waned single dose interpolates linearly between the value

after waned two doses (ε2) when the one and two dose immune responses are equally strong

(xe = 1) and unity (full susceptibility) when a single dose offers no immune protection (xe = 0).

Additionally, ρ1 is given by ρ1 = ρ2/xe.

Calculation of the number of severe cases

At any time t, we compute the number of severe cases in country i as

IT,sev,i(t) = xsev,pIP,i(t) + xsev,sIS,i(t) + xsev,VIV,i(t) + xsev,1IS1,i(t) + xsev,2IS2,i(t).

In all applicable figures, we take xsev,p = 0.14, xsev,s = 0.07, xsev,V = 0.14, and xsev,2 = 0.

In Figure 3 of the main text, we take xsev,1 = 0.14 and xsev,1 = 0 for poor and robust one-

dose vaccinal immunity, respectively. In Figure 4 of the main text and Figures S4-S7, we take

xsev,1 = xsev,2 + (1− xe)(xsev,V − xsev,2) as in [4].
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Details for coupling between the countries

Determination of immigration rate

The chosen immigration rate η sets the degree of direct coupling between both countries via

the importation of infected individuals. To account for the possibility of reductions in travel

when NPIs are in place, at each time point we multiply the baseline value of η by the largest

value of the contemporary reductions in transmission rate in each country due to NPIs. For

example, if at time t the HAR has NPIs in place that reduce transmission to 40% of its seasonal

value while the LAR has NPIs in place that reduce transmission to 60% of its seasonal value,

η is reduced to 40% of its baseline value. When the decoupled framework is considered, we set

η = 0.

Estimation of occurrence of PTIs

At each time point, the potential net viral adaptation rate ei (defined previously [4]) is calcu-

lated in each country. We impose a threshold value of ecutoff = 0.01, and if ei ≥ ecutoff = 0.01,

we allow for a PTI to occur with a 10% probability. Practically, we insure an integer number

of PTIs by using the “Euler” integration method of the R ordinary differential equation (ODE)

solver rk. We fix the initial step size at hini=0.1, and if a PTI does occur we set the time

derivative of the number of PTIs to be 10, such that one PTI is accounted for in the specified

time interval.

Linking the transmission rate to PTIs

At each time t in each country, the baseline transmission rate βi,0(t) (determined as the product

of the inverse of the infectious period γ, the local contemporary seasonal reproduction number

R0(t), and any reductions due to the presence of NPIs) is assumed to be modulated by the total

combined number of PTIs Ntot(t) that have occurred, i.e. Ntot(t) = NA(t)+NB(t). Specifically,

we obtain the instantaneous transmission rate as

βi(t) = βi,0(t)× 1.01Ntot(t).

When the decoupled framework is considered, we set βi(t) = βi,0(t), and thus the occurrence

of PTIs does not affect the transmission rate.
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Caveats and future directions

In our work, we explore the simplest models of vaccine sharing, immunity, coupling, and evolu-

tion. There are a number of caveats, which we have summarized in the main text and expand

on below. These are all important areas of future research.

• Our models make the simplest evolutionary assumptions. As more data are collected,

more sophisticated models (e.g. [11, 12, 13]) should be formulated and incorporated into

our framework. Specifically, we assume in this work that evolution results in secular

increases in avidity to the ACE2 receptor leading to enhanced transmission following

evidence in [14]. In reality, this effect may plateau, and the evolution of new variants may

have more subtle effects on epidemiological parameters, including altering the effectiveness

of vaccines [15]. As more data is accrued, the within-host evolution of SARS-CoV-2 and

its connection to population-level disease transmission should be examined and carefully

modelled (e.g. for influenza, see [16]).

• We also do not consider within-country heterogeneities, such as vaccine refusal [17], age

[18], and superspreading [19]. In prior work, we have considered simple vaccine refusal

extensions of our single-country models [3,4], and similar extensions could be formulated

to incorporate these factors.

• Additionally, we do not explicitly model immigration, and rather consider implicit contact

between individuals in each country. Thus, incorporating explicit movement of individuals

between regions (e.g. [20]) is an important area of future work that would increase the

realism of the framework. Furthermore, we only consider two countries, but in reality

the complex patterns of viral prevalence globally will be affected by vaccine nationalism.

Thus, incorporating multiple countries into the model would be an important extension

to further explore vaccine distribution policies.

• The NPI scenarios we consider are simple and fixed for certain durations. In reality,

these are constantly changing and are highly dependent on human behaviour. Thus,

incorporating human behaviour in our models (e.g. [21,22,23,24,25,26]) is an important

research direction.

• We also assume constant vaccination rates; however, as vaccine production increases,

vaccination rates correspondingly increase. Thus, our model could be coupled with ap-

propriate projections of time-dependent vaccination rates (themselves based on projected

supply, e.g. as in [27]) to refine model predictions.

• For a number of reasons, transmission rates in different countries may have different

patterns, e.g. due to climate [1], or inherent population-level vulnerabilities [28]. We

examined some simple examples of this complexity in the main text, and further explo-

rations are possible with the online interactive application. With proper calibrations to
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various countries, future models should closely examine the ensuing epidemiological and

evolutionary implications of transmission heterogeneities among countries.

• We have also assumed that infectious periods and immune durations are exponentially dis-

tributed. However, the distributions for both of these periods may have different shapes,

and these could lead to complex epidemiological dynamics [29, 30]. Thus, investigating

the resulting dynamics of our model with different distributions for infectious periods and

durations of natural and vaccinal immunity would be important.
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Figure S1: Weighted average of combined equilibrium infections for a smaller LAR relative to
HAR, i.e. φB,A = 0.5 in the simpler model with vaccination. All other parameters are as in Figure
2, and scenarios (C)–(E) are identical to the corresponding scenarios presented in Figure 2C–2E.
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Figure S2: Weighted average of combined equilibrium fraction of infections for a larger LAR
relative to HAR, i.e. φB,A = 2 in the simpler model with vaccination. All other parameters
are the same as in Figure 2, and scenarios (C)–(E) are identical to the corresponding scenarios
presented in Figure 2C–2E.
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Figure S3: Global evolutionary potential in the decoupled framework for the scenarios presented
in Figure 3. The weights for each type of infection are (black) wIS,I = 0.05, wIS1,I = 0.3, wIS2,I =
0.05; (blue) wIS,I = 0.05, wIS1,I = 1, wIS2,I = 0.05; (purple) wIS,I = 0.8, wIS1,I = 1, wIS2,I = 0.8; and
(green) wIS,I = 1, wIS1,I = 0.05, wIS2,I = 0.05.
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Figure S4: Heat maps depicting total and severe cases from the time of vaccine onset through
the end of the 5 year period for both countries, the HAR, the LAR, as well as the combined
number of PTIs to have occurred in both countries at the end of 5 years. All parameters are
identical to Figure 4 of the main text, except the LAR is assumed to have a population double
the size of the HAR, i.e. φB,A = 2.
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Figure S5: Heat maps depicting total and severe cases from the time of vaccine onset through
the end of the 5 year period for both countries, the HAR, the LAR, as well as the combined
number of PTIs to have occurred in both countries at the end of 5 years. All parameters are
identical to Figure 4 of the main text, except the LAR is assumed to have a population double
the size of the HAR, i.e. φB,A = 2, and vaccine availability is assumed to be greater: the maximal
rate of administration of the first dose is set to ν0,tot = 5% .
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Figure S6: Heat maps depicting total and severe cases from the time of vaccine onset through
the end of the 5 year period for both countries, the HAR, the LAR, as well as the combined
number of PTIs to have occurred in both countries at the end of 5 years. All parameters are
identical to Figure 4 of the main text, except the LAR is assumed to have a population one half
of the size of the HAR, i.e. φB,A = 0.5.
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Figure S7: Heat maps depicting total and severe cases from the time of vaccine onset through
the end of the 5 year period for both countries, the HAR, the LAR, as well as the combined
number of PTIs to have occurred in both countries at the end of 5 years. All parameters are
identical to Figure 4 of the main text, except the occurrence of a PTI is assumed to not increase
the transmission rate, i.e. βi(t) = βi,0(t) in both the HAR and LAR for all times (see Methods).
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Figure S8: Time series of cases and potential net viral adaptation rates, as well as cumulative
cases and PTIs. All parameters and calculations are identical to Figure 5 of the main text, except
the occurrence of a PTI is assumed to not increase the transmission rate, i.e. βi(t) = βi,0(t) in
both the HAR and LAR for all times (see Methods).
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