Supplemental Materials and Methods

extTADA analysis. To estimate yield insight into the genetics of CDH, we performed an empirical Bayesian model of rare-variant genetic architecture, extTADA¹ (Extended Transmission and *de novo* Association) based on burden of *de novo* variants. The extTADA model is developed based on a previous integrated empirical Bayesian model TADA² and estimate mean effect sizes and risk-gene proportions from the genetic data by estimating parameters using MCMC (Markov Chain Monte Carlo) process.

Two major parameters, relative risk of a gene causing a disease γ and the proportion of disease risk genes across the local gene groups π , were estimated by the connection to variant fold enrichment (FE), which was calculated as the number of observed variants divided by the number expected. The expectation was from the baseline mutation rate of each gene and was the same as used in burden analysis. Assuming the background mutation rate for each gene is μ , total number of genes in the gene set is *m* and total number of sequenced samples is *N*, then the observed variants were: $X = \pi m \times 2\gamma \mu N + (1 - \pi)m \times 2\mu N$. The expected variants were: $X_e = \pi m \times 2\mu N + (1 - \pi)m \times 2\mu N$.

FE can be calculated from the data, parameters γ , π and β are estimated accordingly using a Hamiltonian Monte Carlo (HMC) MCMC method implemented in the "rstan" package (Carpenter et al., 2017): $FE = \frac{x}{x_e} = \pi(\gamma - 1) + 1$, where $\gamma \sim Gamma$ ($\overline{\gamma}\beta$, β).

Bayes factors can be estimated as following: $B = \frac{P(X|H1)}{P(X|H0)} \sim \frac{Pois(2\gamma\mu N)}{Pois(2\mu N)}$, where H0 is null hypothesis and H1 is alternative hypothesis, $\gamma=1$.

From Bayes' theorem, the posterior odds are equal to the Bayes factor times the prior odds: $\frac{P(H1|X)}{P(H0|X)} = \frac{P(X|H1)}{P(X|H0)} \times \frac{P(H1)}{P(H0)}, \text{ where } P(H1) \text{ is estimated } \pi \text{ and } P(H0) \text{ is } (1-\pi).$

Assuming the posterior probability of association (PPA), P(H1|X) is q, so the posterior probability of the null model P(H0|X) is $q_0 = (1 - q)$, where $q = \frac{B_{\pi}}{1 - \pi + B\pi}$. Per-gene based FDR is calculated from q_0 as the following: q_0 is ranked in an increasing order for all the genes, then FDR is the sum of total q_0 smaller than the current rank k divided by the total number of genes kwith smaller q_0 . To inform the parameter estimation with prior knowledge, we stratify the whole genome genes into constrained genes (ExAC pLI score ≥ 0.5) and non-constrained genes (other genes). The extTADA model was applied to each group of genes to estimate the local parameters and calculate PPAs. Then we combined the PPAs of 2 groups together to calculate a final genomewide FDR (false discovery rate).

Supplemental Figures

Figure S2. Relatedness predicted by KING. (A) CDH cases; (B) controls

Figure S3. Principle components analysis (PCA) of ethnicity using peddy. Cross signals are cases and dots are controls. (A) all samples, (B) samples after matching-ancestry for case-control analysis. AFR: African; AMR: Admixed American/Latinx; EAS: East Asian; EUR: European; SAS: South Asian

Figure S4. Distribution of de novo coding variants per proband. The observed number of variants (green) were compared with the expectation (red) assuming a Poisson distribution with mean equals to the average number of variants per proband.

Synonymous

Figure S5. Gene-level burden test of ultra-rare synonymous.

Figure S6. Mutation locations in ZFPM2 of CDH and published CDH/CHD cases. There are two main domains in ZFPM2, zf-C2H2_6 domain and zf-C2H2 domain. Positions indicated at upper structure are mutations carriers' IDs in CDH, the colored sample IDs are familiar CDH cases and one color is in one family. Deleterious heterozygous variant such as LGD and missense with CADD \geq 20 and minor allele frequency (MAF) <1e-5 alleles in CDH were presented. Deleterious missense is presented in purple, LGD in yellow, stop loss in orange. Inheritance pattern were labelled in circles of mutations. Complex or isolated CDH are presented for each CDH case. Positions at lower structure are mutations in published CDH/CHD samples³⁻ ⁶.

Figure S7. Mutation locations in *MYRF* of CDH. There are four main domains in MYRF, NDT80/PhoG like DNA-binding family (NDT80_PhoG), chaperone of endosialidase (Peptidase_S74), myelin gene regulatory factor-C-terminal domain 1 (MRF_C1) and myelin gene regulatory factor-C-terminal domain 2 (MRF_C2). Deleterious heterozygous variant such as LGD and missense with CADD \geq 27 and minor allele frequency (MAF) <1e-5 alleles in CDH were presented. Deleterious missense is presented in purple, splice in yellow, frameshift in orange and nonsense in pink. Inheritance pattern were labelled in circles of mutations. Complex or isolated CDH are presented for each CDH case.

Supplemental Tables

Data Type	Seq Center	Protocol	#Studied	#Published
	CUGC/NYGC	SureSelect V2/V4	27	17
	University of Washington	SeqCap EZ V2	21	20
Exome	CloudHealth Genomics, China	SeqCap EZ V3	11	2
	University of Washington	VCRome V2	34	34
	Baylor College of Medicine	PCR-free lib prep	191	190
Conomo	Broad Institute	PCR-free lib prep	310	255
Genome	Due al Lustitute	PCR-free lib prep	217	54
	Broad Institute	PCR-plus lib prep	16	2
Total			827	574

Table S1a. Sequencing batches of 827 studied CDH

CUGC: Columbia University Genome Center; NYGC: New York Genome Center

Table S1	b. Enrol	lment cente	rs of 827	studied	CDH
1 and D1	D • L ¹ 11 U 1	micht cente		stuuttu	CDII

Site_No in REDCap	Site	#Studied
1	Columbia	360
2	Washington University	44
3	University of Pittsburgh	12
4	University of Cincinnati	74
5	Omaha Children's Hospital / University of Nebraska	61
6	University of Michigan	45
7	Vanderbilt University	29
9	Wisconsin Children's Hospital	29
10	Cairo University	24
11	North Shore LIJ	5
12	Oregon	12
14	Dallas	11
15	Poland	17
16	U of Wisconsin, Madison	4
19	MGH Boston	100
Total		827

	All			Female			Male		Complex			Isolated								
	#Obs	#Exp	RR	Р	#Obs	#Exp	RR	Р	#Obs	#Exp	RR	Р	#Obs	#Exp	RR	Р	#Obs	#Exp	RR	Р
All genes																				
Syn	247	273	0.9	0.12	105	113	0.9	0.48	142	160	0.89	0.17	78	92	0.85	0.17	164	174	0.9	0.45
Mis	694	609	1.1	0.00071	284	252	1.1	0.047	410	357	1.15	0.0054	241	204	1.18	0.012	443	389	1.1	0.0066
D-mis	292	220	1.3	3.10E-06	133	91	1.5	3.20E-05	159	129	1.23	0.0093	108	74	1.47	0.00018	180	140	1.3	0.0011
LGD	126	85	1.5	3.60E-05	58	35	1.6	0.00038	68	50	1.36	0.013	52	29	1.82	7.20E-05	72	54	1.3	0.021
Constra	ined gen	es																		
Syn	92	93	0.99	0.96	41	39	1.1	0.75	51	54	0.94	0.73	36	31	1.2	0.37	56	60	0.9	0.7
Mis	263	208	1.26	0.00027	111	87	1.3	0.014	152	121	1.25	0.0064	89	70	1.3	0.027	167	133	1.3	0.0042
D-mis	139	88	1.59	3.40E-07	59	36	1.6	0.00063	80	51	1.57	0.00015	52	29	1.8	0.00014	85	56	1.5	0.00028
LGD	65	30	2.2	1.80E-08	37	12	3	1.20E-08	28	17	1.63	0.015	31	10	3.1	6.70E-08	33	19	1.8	0.0026
Non-con	nstrained	genes																		
Syn	155	180	0.86	0.062	64	74	0.9	0.27	91	106	0.86	0.16	42	60	0.7	0.017	108	115	0.9	0.58
Mis	431	401	1.08	0.13	173	165	1.1	0.53	258	235	1.1	0.14	152	134	1.13	0.13	276	256	1.1	0.2
D-mis	153	132	1.16	0.074	74	54	1.4	0.0098	79	78	1.02	0.86	56	44	1.26	0.083	95	84	1.1	0.25
LGD	61	56	1.1	0.46	21	23	0.9	0.83	40	33	1.22	0.19	21	19	1.13	0.56	39	35	1.1	0.56

Table S3. Burden of de novo coding variants.

#Obs: number of observed variants; #Exp: number of expected variants; RR: relative risk; Constrained genes: genes with ExAC pLI>0.5

	Proportion of risk genes	Relative risk (D-mis)	Relative risk (LGD)
All genes	0.007	11.35	23.97
Constrained genes	0.037	10.01	18.30
Non-constrained genes	0.006	3.81	5.24

Table S4. The proportion of risk genes and mean relative risk for CDH cases using extTADA.

 Table S6. Sample size for Population-based case-control analysis. EUR: European; AMR:

 Admixed American/Latinx; AFR: African; EAS: East Asian; SAS: South Asian

	CDH Case (n=748)		SPARK control(n=13,369)		WHICAP control		controls (case*15=11,220)		
	Sample size	Ethnic proportion	Sample size	Ethnic proportion	#Control/#Cas		Sample size	Ethnic proportion	
EUR	576	77.01%	10,513	79.64%		18.2	8640	77.01%	
AMR	110	14.71%	1594	11.36%	908	22.7	1650	14.71%	
AFR	31	4.14%	646	4.61%		20.8	465	4.14%	
EAS	15	2.01%	368	2.62%		24.5	225	2.01%	
SAS	16	2.14%	248	1.77%		15.5	240	2.14%	

	Variant class	Case	Control	Rate in case	Rate in control	Enrichment	Р
	SYN	13227	198396	17.68	17.68	1	1
	Inframe	738	11093	0.9866	0.9887	1	0.97
All (748 cases vs	LGD	3427	55530	4.582	4.949	0.93	9.70E-06
11,220	MIS	29408	441964	39.32	39.39	1	0.75
controlsy	SNV	44387	667484	59.34	59.49	1	0.61
	Indels	2612	43118	3.492	3.843	0.91	1.50E-06
	SYN	627	9408	20.23	20.23	1	1
	Inframe	42	630	1.355	1.355	1	1
AFR (31	LGD	153	2996	4.935	6.443	0.77	0.001
cases vs 465 controls)	MIS	1302	19199	42	41.29	1	0.54
	SNV	2003	29632	64.61	63.72	1	0.55
	Indels	128	2769	4.129	5.955	0.69	2.30E-05
	SYN	2549	38213	23.2	23.2	1	0.98
	Inframe	123	1842	1.12	1.12	1	0.96
Hispanic (110 cases	LGD	572	10506	5.2	6.37	0.82	1.40E-06
vs 1650	MIS	5284	84751	48	51.4	0.94	1.90E-06
controls)	SNV	8120	128930	73.8	78.1	0.94	5.60E-07
	Indels	438	7149	3.98	4.33	0.92	0.088
	SYN	8953	134306	15.5	15.5	1	1
	Inframe	499	7511	0.866	0.869	1	0.96
EUR (576 cases vs	LGD	2476	37800	4.3	4.38	0.98	0.4
8,640	MIS	20582	305088	35.7	35.3	1	0.1
controls)	SNV	30821	458052	53.5	53	1	0.12
	Indels	1832	29068	3.18	3.36	0.95	0.019
	SYN	575	8624	38.33	38.33	1	1
	Inframe	32	479	2.133	2.129	1	1
EAS (15	LGD	94	1907	6.267	8.476	0.74	0.0036
cases vs 225 controls)	MIS	1116	16762	74.4	74.5	1	0.99
	SNV	1740	26135	116	116.2	1	0.97
	Indels	85	1753	5.667	7.791	0.73	0.0032
	SYN	523	7845	32.7	32.7	1	1
	Inframe	42	631	2.62	2.63	1	1
SAS (16	LGD	132	2321	8.25	9.67	0.85	0.08
cases vs 240 controls)	MIS	1124	16164	70.2	67.3	1	0.17
	SNV	1703	24735	106	103	1	0.2
	Indels	129	2379	8.06	9.91	0.81	0.021

Table S7. Similar frequency of ultra-rare variants among all and each ethnic cases and controls.

Supplemental Reference

- 1. Nguyen, H.T., Bryois, J., Kim, A., Dobbyn, A., Huckins, L.M., Munoz-Manchado, A.B., Ruderfer, D.M., Genovese, G., Fromer, M., Xu, X., et al. (2017). Integrated Bayesian analysis of rare exonic variants to identify risk genes for schizophrenia and neurodevelopmental disorders. Genome Med *9*, 114. 10.1186/s13073-017-0497-y.
- He, X., Sanders, S.J., Liu, L., De Rubeis, S., Lim, E.T., Sutcliffe, J.S., Schellenberg, G.D., Gibbs, R.A., Daly, M.J., Buxbaum, J.D., et al. (2013). Integrated model of de novo and inherited genetic variants yields greater power to identify risk genes. PLoS Genet 9, e1003671. 10.1371/journal.pgen.1003671.
- Longoni, M., Russell, M.K., High, F.A., Darvishi, K., Maalouf, F.I., Kashani, A., Tracy, A.A., Coletti, C.M., Loscertales, M., Lage, K., et al. (2015). Prevalence and penetrance of ZFPM2 mutations and deletions causing congenital diaphragmatic hernia. Clin Genet 87, 362-367. 10.1111/cge.12395.
- 4. Ackerman, K.G., Herron, B.J., Vargas, S.O., Huang, H., Tevosian, S.G., Kochilas, L., Rao, C., Pober, B.R., Babiuk, R.P., Epstein, J.A., et al. (2005). Fog2 is required for normal diaphragm and lung development in mice and humans. PLoS Genet *1*, 58-65. 10.1371/journal.pgen.0010010.
- 5. Bleyl, S.B., Moshrefi, A., Shaw, G.M., Saijoh, Y., Schoenwolf, G.C., Pennacchio, L.A., and Slavotinek, A.M. (2007). Candidate genes for congenital diaphragmatic hernia from animal models: sequencing of FOG2 and PDGFRalpha reveals rare variants in diaphragmatic hernia patients. Eur J Hum Genet *15*, 950-958. 10.1038/sj.ejhg.5201872.
- 6. Tan, Z.P., Huang, C., Xu, Z.B., Yang, J.F., and Yang, Y.F. (2012). Novel ZFPM2/FOG2 variants in patients with double outlet right ventricle. Clin Genet *82*, 466-471. 10.1111/j.1399-0004.2011.01787.x.