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Transcriptome-wide association study
GWAS summary statistics were obtained from https://www.covid19hg.org/results/r4/; we use the
phenotypes and files detailed in Supplementary Table 2 from the 4th release (2020-10-20).

Genetically regulated gene expression (GReX-) based gene
targeting approach and computational drug repurposing
Perturbargen Library used. We use the LINKS Phase II L1000 dataset (GSE70138)
perturbagen reference library1. All inferred genes (AIG; n=12,328) are considered. Only “gold”
signatures are considered. Imputed transcriptomes used. Analysis is limited to 17 imputed
transcriptomes: (1) the B2 phenotype, and (2) EpiXcan tissue models that have at least one
FDR-significant finding (FDR significance takes into account all COVID phenotypes and all 42
tissue models considered): Adipose: subcutaneous (GTEx), Adipose: subcutaneous
(STARNET), Adipose: visceral (GTEx), Adipose: visceral (STARNET), Artery: Aorta (GTEx),
Artery: Aorta (STARNET), Artery: Mammary (STARNET), Blood (STARNET), GI: esophagus,
GE junction (GTEx), GI: esophagus, mucosa (GTEx), GI: muscularis (GTEx), GI: pancreas
(GTEx), Muscle: skeletal (GTEx), Muscle: skeletal (STARNET), Reproductive: mammary tissue
(GTEx), Respiratory: lung (GTEx), Skin: sun exposed lower leg (GTEx). Summarization and
prioritization approach: From the original CDR pipeline2 (using 100 permutations), applied to
the imputed transcriptome of each tissue, we obtain the average rank of the compound in
antagonizing the GREx and the permutation p values. After pulling together all the results, we
perform a Mann-Whithney U test for each candidate compound/ shRNA against all other
compounds to see if the candidate’s rankings significantly deviate from the median rank. For
each candidate we also estimate a GREx antagonism pseudo z-score, which is defined as the
negative Hodges-Lehmann estimator (of the median difference between that specific candidate
vs. the other candidates) divided by the standard deviation of the ranks of the compounds (

); a positive pseudo z-score is interpreted as a potential−
𝐻𝑜𝑑𝑔𝑒𝑠−𝐿𝑒ℎ𝑚𝑎𝑛𝑛 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑜𝑟

𝑝𝑒𝑟𝑡𝑢𝑟𝑏𝑎𝑔𝑒𝑛

𝑆𝐷 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑟𝑎𝑛𝑘𝑠 𝑜𝑓 𝑎𝑙𝑙 𝑝𝑒𝑟𝑡𝑢𝑟𝑏𝑎𝑔𝑒𝑛𝑠

therapeutic candidate whereas a negative pseudo z-score would suggest that the shRNA is not
antagonizing the imputed transcriptome and is thus likely to exacerbate the phenotype. Of note
is that at this stage each candidate is compared against the other candidates but we can
confirm that the candidate is effectively antagonizing the GREx by looking at the original
permutation p values. FDR is estimated with the Benjamini–Hochberg procedure3. Additional
information for chemical compound analyses: Analysis is limited to compounds eligible for
drug repurposing (n=495). Drug information for the compounds under consideration (e.g. clinical
phase, mechanism of action and molecular targets) was obtained from
http://www.broadinstitute.org/repurposing (file date: 3/24/2020). For comparison with other
studies; the compounds under question were compared with all the other compounds. For the
mechanism of action comparison all compounds with a known mechanism of action represented
with two or more candidates are considered. Final recommendations are for launched
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medications and FDR correction is applied only to launched compounds. Additional
information for shRNA analyses: All shRNAs were considered.

Gene expression profiling and EHR-based phenotyping in the
Mount Sinai COVID-19 Biobank (full methods, dataset and results
will be presented in Beckmann et al, manuscript in preparation).
RNA extraction, RNA-seq library preparation and sequencing, and RNA-seq data processing,
quality control and normalization as previously described4. In addition, we confirmed that no
samples were mislabeled. After removing lowly expressed genes (keeping genes with counts
per million > 1 in 10% of the samples), we normalized the raw count data of the 21,114
remaining genes using voom from the limma R package5. Samples that failed to pass all quality
controls were removed from further analyses. Principal components analyses to explore
covariate effect on gene expression variance genome-wide were done using the prcomp R
function. Batch effect was calculated on a per gene basis using technical replicates sequenced
in all batches. The following additional covariates were included in the model: Subject ID,
number of days since first blood sample, RNA Library Prep Plate, Sex, DV200 Percent and
PICARD metrics PCT_R2_TRANSCRIPT_STRAND_READS, PCT_INTRONIC_BASES,
WIDTH_OF_95_PERCENT, MEDIAN_5PRIME_BIAS, MEDIAN_3PRIME_BIAS. Cell-type
deconvolution. Cell type deconvolution was performed with the Cibersortx software, using
transcripts per million as input and following procedures recommended by the developers6 using
3 independently generated references7,8 as previously described9. Cell types relevant to severity
were defined with a linear mixed model lasso procedure (R package glmmlasso). Differential
Expression. Differential expression (DE) analyses were performed with the dream function from
the variancePartition R package10,11. The covariates included in the model are described aboveA
total of 6 DE signatures were generated (Severe end-organ damage Vs. Severe; Severe
end-organ damage Vs. Moderate; Severe end-organ damage Vs. Control; Severe Vs.
Moderate; Severe Vs. Control; Moderate Vs. Control). Multiple testing was controlled separately
for each DE comparison accounting for the 21,114 genes tested using the false discovery rate
(FDR) estimation method of Benjamini-Hochberg3.

Manipulation of IL10RB and IFNAR2 expression in cell lines and
their effect on SARS-CoV-2 viral load and transcriptional profiles
hiPSC-NPC culture and donor. hiPSC-NPCs of line NSB2607 (male, 15 years old, European
descent)12 were cultured in hNPC media (DMEM/F12 (Life Technologies #10565), 1x N-2 (Life
Technologies #17502-048), 1x B-27-RA (Life Technologies #12587-010), 20 ng/mL FGF2 (Life
Technologies)) on Matrigel (Corning, #354230). hiPSC-NPCs at full confluence (1-1.5x107 cells /
well of a 6-well plate) were dissociated with Accutase (Innovative Cell Technologies) for 5 mins,
spun down (5 mins X 1000g), resuspended and seeded onto Matrigel-coated plates at 3-5x106

cells / well. Media was replaced every 24 days for 4 to 7 days until the next split.

18

https://sciwheel.com/work/citation?ids=9530159&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=148089&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=8129193&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=6954490,8593998&pre=&pre=&suf=&suf=&sa=0,0
https://sciwheel.com/work/citation?ids=9588055&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=9709939,3280148&pre=&pre=&suf=&suf=&sa=0,0
https://sciwheel.com/work/citation?ids=3624100&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=5004346&pre=&suf=&sa=0


SARS-CoV-2 virus propagation and infections. SARS-related coronavirus 2 (SARS-CoV-2),
isolate USA-WA1/2020 (NR-52281) was deposited by the Center for Disease Control and
Prevention and obtained through BEI Resources, NIAID, NIH. SARS-CoV-2 was propagated in
Vero E6 cells in DMEM supplemented with 2% FBS, 4.5 g/L D-glucose, 4 mM L-glutamine, 10
mM Non-Essential Amino Acids, 1 mM Sodium Pyruvate and 10 mM HEPES. Virus stock was
filtered by centrifugation using Amicon Ultra-15 Centrifugal filter unit (Sigma, Cat # UFC910096)
and resuspended in viral propagation media. All infections were performed with either passage
3 or 4 SARS-CoV-2. Infectious titers of SARS-CoV-2 were determined by plaque assay in Vero
E6 cells in Minimum Essential Media supplemented with 4mM L-glutamine, 0.2% BSA, 10 mM
HEPES and 0.12% NaHCO3 and 0.7% Oxoid agar (Cat #OXLP0028B). All SARS-CoV-2
infections were performed in the CDC/USDA-approved BSL-3 facility of the Global Health and
Emerging Pathogens Institute at the Icahn School of Medicine at Mount Sinai in accordance
with institutional biosafety requirements.
gRNA Design and Cloning and shRNAs. gRNAs were designed using the CRISPR-ERA
(http://crispr-era.stanford. edu) web tool. gRNAs were selected based on their specific locations
at decreasing distances from the TSS as well as their lack of predicted off targets and E scores
(http://crispr-era.stanford.edu). For lentiviral cloning: synthesized oligonucleotides were
phospho-annealed (37°C for 30 min, 95°C for 5 min, ramped-down to 25°C at 5°C per min),
diluted 1:100 and then ligated into BsmB1-digested lentiGuide-Hygro-mTagBFP2 (addgene
Plasmid #99374). Product was transformed into NEB10-beta E. coli. via manufacturer’s protocol
(NEB # C3019H). shRNAs were ordered as glycerol stocks from Sigma (IL10RB #
SHCLNG-NM_000628; IFNAR2 # SHCLNG-NM_000874). Gibson Assembly of Vectors:
Unless specified, all cloning reagents were from NEB and plasmid backbones were from
Addgene (https://www.addgene.org/). Primers were synthesized by Thermo Fisher Scientific. All
fragments were assembled using NEBuilder HiFi DNA Assembly Master Mix (NEB, no.
E2621X). All assemblies were transformed into either DH5a Extreme Efficiency Competent
Cells (Allele Biotechnology, no. ABP-CE-CC02050) or Stbl3 Chemically Competent E. coli
(Thermo Fisher Scientific, no. C737303). Positive clones were confirmed by restriction digest
and Sanger sequencing (GENEWIZ). The following vectors have been deposited at Addgene:
lenti-EF1a- dCas9-VP64-Puro, lenti-EF1a-dCas9-VPR-Puro, lenti-EF1a-dCas9-KRAB-Puro,
lentiGuide-Hygro-mTagBFP2, lentiGuide-Hygro-eGFP, lentiGuide-Hygro-dTomato,
lentiGuide-Hygro-iRFP670, and pLV-TetO-hNGN2-Neo. lentiGuide-dTomato and
lentiGuide-mTagBFP2-Hygro lentiGuide-Puro (Addgene, no. 52963) were digested with Mlu1
and BsiWI. dTomato was amplified from AAV-hSyn1-GCaMP6f-P2A-NLS-dTomato (Addgene,
no.51085). HygroR sequence was amplified from lentiMS2-P65-HSF1_Hygro (Addgene, no.
61426). mTagBFP2 was amplified from pBAD-mTagBFP2 (Addgene, no. 3463). The P2A
self-cleaving peptide sequence was amplified using a reverse primer of HygroR and forward
primer of mTagBFP2. All gRNA sequences are provided in Supplementary Table 16.
Lentiviral dCas9 Effectors. To engineer a lentiviral transfer vector that expresses dCas9:
VP64-T2A-Puro (EF1a-NLS-dCas9(N863)-VP64-T2A-Puro-WPRE), dCas9:VP64-T2A-Blast
(EF1a-NLS-dCas9(N863)-VP64-T2A-Blast-WPRE) (Addgene, no. 61,425) was digested with
BsrGI and EcoRI. T2A-PuroR was amplified from pLV-TetO-hNGN2-P2A-eGFP-T2A-Puro
(Addgene, no. 79823). Fragments were then assembled using NEBuilder HiFi DNA Assembly
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Master Mix (NEB, no. E2621). To engineer a lentiviral transfer vector that expresses
dCas9:KRAB-Puro (EF1a-NLS-dCas9(N863)-KRAB-T2A-Puro-WPRE), dCas9:VP64-T2A-Blast
(EF1a-NLS-dCas9(N863)-VP64-T2A-Blast-WPRE) (Addgene, no.61425) was first digested with
BamHI and BsrGI. KRAB was then amplified from pHAGE-TRE-dCas9:KRAB (Addgene, no.
50917). Fragments were then assembled using NEBuilder HiFi DNA Assembly Master Mix.
dCas9:KRAB-Blast was digested with BsrGI and EcoRI, and T2A-PuroR was amplified from
pLV-TetO-hNGN2- P2A-eGFP-T2A-Puro (Addgene, no. 79823). Fragments were then
assembled using NEBuilder HiFi DNA Assembly Master Mix. To engineer a lentiviral transfer
vector that expresses dCas9:VPR-Puro (EF1a- NLS-dCas9(D10A, D839A, H840A, and
N863A)-VPR-T2A-Puro- WPRE), dCas9:VPR was first amplified from SP-dCas9-VPR
(Addgene, no. 63798), and T2A-PuroR was amplified from pLV-TetO-hNGN2-
P2A-eGFP-T2A-Puro (Addgene, no. 79823). dCas9:KRAB-T2A-Puro was digested with BsiWI
and EcoRI. Fragments were then assembled using NEBuilder HiFi DNA Assembly Master Mix.
NGN2-glutamatergic neuron induction of shRNA and CRISPRa treated neurons13,14. On
day -1 NPCs were dissociated with Accutase Cell Detachment Solution for 5min at 37°C,
counted and seeded at a density of at 5x105 cells/well on Matrigel coated 24-well plates in
hNPC media (DMEM/F12 (Life Technologies #10565), 1x N-2 (Life Technologies #17502-048),
1x B-27-RA, 20 ng/mL FGF2 (Life Technologies)) on Matrigel (Corning, #354230). On day 0,
cells were transduced with rtTA and NGN2 lentiviruses as well as desired shRNA or CRISPRa
viruses in NPC media containing 10 μM Thiazovivin and spinfected (centrifuged for 1 hour at
1000g). On day 1, media was replaced and doxycycline was added with 1ug/mL working
concentration. On day 2, transduced hNPCs were treated with corresponding antibiotics to the
lentiviruses (1 μg/mL puromycin for shRNA, 1 mg/mL G-418 for NGN2-Neo). On day 4, medium
was switched to Brainphys neuron medium plus 1 μg/mL dox. Medium was replaced every
second day until SARS-CoV-2 (MOI of 0.1) or mock infection on day 7. The samples were
harvested in Trizol (Invitrogen, Cat #15596026) 24 hours later. RNA was isolated by
phenol/chloroform extraction prior to purification using the RNeasy Mini Kit (Qiagen, Cat #
74106).
Sequencing Platform. RNA samples were received at the New York Genome Center and,
followingan initial quality check, were normalized onto two different 96 well plates for a total
RNA with RiboErase assay and a SARS-CoV-2 targeted assay. For the total RNA assay 200ng
of RNA were normalized into a plate to be run through the KAPA RNA Hyper Prep Kit +
RiboErase HMR (Roche, cat no: 8098140702). This total RNA prep followed the manufacturer's
protocol with minor adjustments for automation on the PerkinElmer sciclone. Briefly, the RNA
first goes through an oligo hybridization and rRNA depletion and then 1st and 2nd strand
synthesis. The cDNA then gets adenylated ends and unique dual indexed adapters ligated onto
the ends. Finally, the sample goes through a clean up followed by enrichment and purification.
The final library was quantified by picogreen and ran on a fragment analyzer to determine final
library size. Samples were normalized, pooled and run on a NovaSeq 6000 S4 in a 2x150 run
format targeting 60M reads per sample. For the SARS-CoV-2 targeted assay we used the
AmpliSeq Library Plus and cDNA Synthesis for Illumina kits (Illumina, Cat no: 20019103 &
20022654). Briefly, 20ng of RNA were reverse transcribed, the cDNA targets were then
amplified with the Illumina SARS-CoV-2 research panel (Illumina, 20020496). The amplicons
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were partially digested and AmpliSeq CD Indexes were ligated onto the amplicons. The library
was then cleaned up and amplified. After amplification there was a final clean up and the
libraries were quantified, pooled and run on a NovaSeq 6000 S4 in a 2x150 run format.
SARS-CoV-2 quantification. Short-read data were taxonomically classified using taxMaps15. As
part of the taxMaps pipeline, reads were processed prior to mapping. Adapter sequences and
low quality (Q < 20) bases were trimmed out and low complexity reads discarded. The
remaining reads were then concurrently mapped against 1) the phiX174 reference genome
(NC_001422.1); 2) the SARS-CoV-2 reference genome (NC_045512.2); and 3) a combined
index encompassing the entire NCBI’s nt database, RefSeq archaeal, bacterial, fungal,
protozoan and viral genomes, as well as a selection of RefSeq model organism genomes,
including the human GRCh38 reference16, to produce the final classification. Given that some
human sequences of ancestral origin (that constitute variation between individuals) are absent
from the GRCh38 reference, a small percentage of human reads usually maps to other primate
genomes and, consequently, is classified as such. To obtain more accurate estimates of the
human content in these samples, all reads classified as “primate” were considered of human
origin and reclassified accordingly. SARS-CoV-2 viral load was determined as the number of
SARS-CoV-2 reads over the host (human) reads.
Competitive gene set testing. Competitive gene set testing using sets from Gene Ontology17

was performed with camera18. First we performed differential expression analysis with limma5

using the first two components of multidimensional scaling and RIN as covariates to identify the
signature of SARS-CoV-2 infection in our cells while adjusting for other treatments. We then
performed competitive gene set enrichment analysis for all gene ontology and betacoronavirus
gene sets (n=18,553). For gene ontology datasets, we kept all significantly enriched gene sets
(FDR<0.05) and kept those with a Jaccard index less than 0.2. For the betacoronavirus gene
sets we kept all the gene sets and filtered based on a Jaccard index of 0.2. The combined
SARS-CoV-2 gene set collection with the two datasets above (significant pruned gene ontology
and all pruned betacoronavirus) was used for all the following competitive gene set testing
except as otherwise indicated (n=296). Thus, in Figure 4D, enrichment analysis is run across
the whole exploratory dataset (n=18,553) for SARS-CoV-2 infection (first row) whereas for all
other conditions we are only exploring the combined SARS-CoV-2 gene set collection (n=296).
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SUPPLEMENTARY RESULTS

COVID-19 phenotypes genetically regulated gene expression
(GREx) comparison.
As shown by correlation, hierarchical and principal component analysis (Supplementary Figure
2) of the COVID-19 phenotypes GREx, the phenotypes mainly cluster in 4 groups: (1) The
severe vs. not severe COVID group (A1 and B1), (2) The severe COVID vs. population group
(A2 and B2), (3) the any COVID vs. population or lab/self-reported negative group (C1 and C2)
and finally (4) a group comprising the predicted COVID phenotype (D1). Of note is that this
GREx-based phenotypic clustering persists despite differences in the different ancestries
included in the genetic analysis (e.g. A1&B1, A2&B2, C1&C2) (Supplementary Table 2).
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SUPPLEMENTARY FIGURES
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Supplementary Figure 1
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Supplementary Figure 1. Gene target prioritization approach. Panel A. Each signature from
the perturbagen signature library (e.g. IL10RB shRNA treatment for 96 hours in MCF7 cells) is
assessed for its ability to reverse the trait-associated imputed transcriptomes. Panel B.
Signatures are grouped by peturbagen (either shRNA or compound) and we first test whether
the signatures for a specific perturbagen are more likely to be ranked higher or lower
(Mann-Whitney U test); then we obtain a GREx antagonism pseudo z-score as follows:

(terms compound and peturbagen are used interchangeably).−
𝐻𝑜𝑑𝑔𝑒𝑠−𝐿𝑒ℎ𝑚𝑎𝑛𝑛 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑜𝑟

𝑝𝑒𝑟𝑡𝑢𝑟𝑏𝑎𝑔𝑒𝑛

𝑆𝐷 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑟𝑎𝑛𝑘𝑠 𝑜𝑓 𝑎𝑙𝑙 𝑝𝑒𝑟𝑡𝑢𝑟𝑏𝑎𝑔𝑒𝑛𝑠

Panel C. Identification of candidate gene targets by integrating TWAS gene-trait associations
and predicted effects of shRNAs in reversing COVID-19-associated transcriptomes. On the left
(scatter plot), the x-axis corresponds to the average TWAS z-score ( ) across all EpiXcan𝑧

𝑇𝑊𝐴𝑆

tissues that have at least one FDR significant gene-trait association and the y-axis corresponds
to the GREx antagonism pseudo z-score ( ) which is defined as the𝑝𝑠𝑒𝑢𝑑𝑜 𝑧

𝐺𝑅𝑒𝑋 𝑎𝑛𝑡𝑎𝑔𝑜𝑛𝑖𝑠𝑚

negative Hodges-Lehmann estimator (of the median difference between that specific shRNA vs.
all other shRNAs) divided by the standard deviation of the ranks of the compounds (

). A positive pseudo z-score is interpreted as a potentially−
𝐻𝑜𝑑𝑔𝑒𝑠−𝐿𝑒ℎ𝑚𝑎𝑛𝑛 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑜𝑟

𝑝𝑒𝑟𝑡𝑢𝑟𝑏𝑎𝑔𝑒𝑛

𝑆𝐷 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑟𝑎𝑛𝑘𝑠 𝑜𝑓 𝑎𝑙𝑙 𝑝𝑒𝑟𝑡𝑢𝑟𝑏𝑎𝑔𝑒𝑛𝑠

therapeutic shRNA whereas a negative pseudo z-score would suggest that the shRNA is not
antagonizing the imputed transcriptome and is thus likely to exacerbate the phenotype. Of note
is that we only have shRNA gene expression signatures for 4,302 genes which is a subset of
the genes that are reliably imputed from the TWAS. At the center, we see the histogram of the
combined z scores ( ). On the right (QQ plot same as𝑧

𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑
= 𝑧

𝑇𝑊𝐴𝑆
 +  𝑝𝑠𝑒𝑢𝑑𝑜 𝑧

𝐺𝑅𝑒𝑋 𝑎𝑛𝑡𝑎𝑔𝑜𝑛𝑖𝑠𝑚

in Figure 2C), we show the p value corresponding to the joint statistic of the two approaches (
) described above against the null. FDR-significant candidate genes are labelled orange𝑧

𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑

(whereas non FDR-significant are grey) and we also provide the direction of the predicted
therapeutic intervention when this can be determined (upregulation or downregulation). IL10RB,
PMVK and ZNF426 are the three FDR-significant target genes, PSMD2, OAS1 and IFNAR2 are
also displayed since they were FDR-significant TWAS genes to demonstrate the added value of
the approach.
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Supplementary Figure 2

Supplementary Figure 2. TWAS gene-trait-tissue association counts per tissue and
COVID-19 phenotype. Only FDR-significant associations are shown. To estimate FDR-adjusted
p values (significant if FDR-adjusted p ≤ 0.05) we consider all phenotypes and tissues. A1: Very
severe respiratory confirmed COVID vs. not hospitalized COVID ; A2: Very severe respiratory
confirmed COVID vs. population; B1: Hospitalized COVID vs. not hospitalized COVID; B2:
Hospitalized COVID vs. population; C1: COVID vs. lab/self-reported negative; C2: COVID vs.
population; D1: predicted COVID from self-reported symptoms vs. predicted or self-reported
non-COVID.
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Supplementary Figure 3

Supplementary Figure 3. Correlation of genetically regulated gene expression (GREx)
across all tissues considering all COVID-19 phenotypes. Correlation is calculated for
imputed expression changes with the Pearson method. Dendrogram on the right edge is shown
from Ward hierarchical clustering.
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Supplementary Figure 4

Supplementary Figure 4. Panel a. Correlation of GREx across COVID phenotypes taking into account all tissue models. Correlation
is calculated for imputed expression changes with the Pearson method. Dendrogram on the right edge is shown from Ward
hierarchical clustering. Panel b. PCA of GREx of COVID phenotypes showing clustering of phenotypes (e.g. A1&B1). The sums of
the squared cosines of the first two principal components (PCs: Dim1 and Dim2) for each phenotype are color-coded as shown in the
legend on the right and represent the importance of these PCs for each phenotype. A1: Very severe respiratory confirmed COVID vs.
not hospitalized COVID ; A2: Very severe respiratory confirmed COVID vs. population; B1: Hospitalized COVID vs. not hospitalized
COVID; B2: Hospitalized COVID vs. population; C1: COVID vs. lab/self-reported negative; C2: COVID vs. population; D1: predicted
COVID from self-reported symptoms vs. predicted or self-reported non-COVID.
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Supplementary Figure 5

Supplementary Figure 5. TWAS gene-trait-tissue association counts per gene and
COVID-19 phenotype (considering all tissue models). Only FDR-significant associations are
shown. A1: Very severe respiratory confirmed COVID vs. not hospitalized COVID ; A2: Very
severe respiratory confirmed COVID vs. population; B1: Hospitalized COVID vs. not hospitalized
COVID; B2: Hospitalized COVID vs. population; C1: COVID vs. lab/self-reported negative; C2:
COVID vs. population; D1: predicted COVID from self-reported symptoms vs. predicted or
self-reported non-COVID.
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Supplementary Figure 6

Supplementary Figure 6. Transethnic meta-analysis for IL10RB and IFNAR2 GReX with
COVID-19 outcomes: death (A) and severity score (B).
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Supplementary Figure 7

Supplementary Figure 7. Effect of IL10RB shRNA on SARS-CoV-2 viral load in
hiPSC-derived NGN-2 glutamatergic neurons. shRNAs for IL10RB was used to knock-down
IL10RB in hiPSC-derived NGN2-glutamatergic neurons. ***, ** and * correspond to p values
from the linear model as ≤ 0.001, 0.01 and 0.05, respectively. For the SARS-CoV-2 viral load
(right panel) we perform pairwise comparison with unpaired t-test; ***, ** and * correspond to p
values of ≤ 0.001, 0.01 and 0.05, respectively.
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Supplementary Figure 8

Supplementary Figure 8. Effect of IFNAR2 shRNA on SARS-CoV-2 viral load in
hiPSC-derived NGN-2 glutamatergic neurons. shRNAs for IFNAR2 was used to knock-down
IFNAR2 in hiPSC-derived NGN2-glutamatergic neurons. ***, ** and * correspond to p values
from the linear model of ≤ 0.001, 0.01 and 0.05, respectively. For the SARS-CoV-2 viral load
(right panel) we perform pairwise comparison with unpaired t-test; ***, ** and * correspond to p
values of ≤ 0.001, 0.01 and 0.05, respectively.
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Supplementary Figure 9

Supplementary Figure 9. Competitive betacoronavirus gene set enrichment analysis in
hiPSC-derived NGN-2 glutamatergic neurons. Distribution of competitive enrichment t
statistics for gene sets that correspond to betacoronavirus relevant gene sets e.g. infections
across different cell systems and tissues (n=192; pruned betacoronavirus gene sets with a
Jaccard index filter of 0.2). P values are from sign test against a theoretical median of 0.
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Supplementary Figure 10

Supplementary Figure 10. Correlation map of SNPs with sizable contribution to the Blood
(STARNET) models of IFNAR2 and IL10RB. SNPs that are used for IFNAR2 are orange,
IL10RB are blue and those used by both have these two colors alternating by letter. Top panel is
correlation (R2 and D’), middle panel shows the model weights and bottom panel the genes in
the region. Only SNPs with a model prior ≥ 2 for each model are shown; SNP correlation based
on 1000G reference panel.
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Supplementary Figure 11

Supplementary Figure 11. Density plots of TWAS association z-scores for FDR-significant
genes (across all 7 COVID-19 phenotypes and 42 tissues). For some genes such as IL10RB
there is a relatively consistent shift of the z-scores to one direction (e.g. right) whereas in other
genes such as IFNAR2 there are both low and high z-score values suggesting phenotype
and/or tissue specificity. FDR-significant genes (FDR-adjusted p≤0.05) for all COVID-19
phenotypes and tissues are displayed.
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Supplementary Figure 12

Supplementary Figure 12. Comparing tissue specificity for adipose and muscle tissues of
IL10RB and IFNAR2 TWAS z-scores. IFNAR2 (blue) TWAS z-scores are consistently low for
adipose tissue and high for skeletal muscle - this effect is consistent for related tissues (e.g.
visceral and subcutaneous adipose tissue) and across cohorts (STARNET and GTEx). No such
tissue specificity is observed in IL10RB (orange). Only the B2 phenotype for COVID-19
associated hospitalization is considered (FDR for B2 is displayed on the right) and FDR
significance levels for z-scores are denoted with vertical dotted lines. Tissue z-scores not
corresponding to adipose or skeletal muscle tissue are faded. Of note is that the faded blue dot
for IL10RB that has a negative z-score that is close to significance corresponds to Cells:
transformed fibroblasts (GTEx).
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Supplementary Table 1
Category: tissue/cell (Cohort) Transcriptomic imputation

method used
Used in gene targeting and
drug repurposing analysis?

Adipose: subcutaneous (GTEx) EpiXcan Yes
Adipose: subcutaneous (STARNET) EpiXcan Yes
Adipose: visceral (GTEx) EpiXcan Yes
Adipose: visceral (STARNET) EpiXcan Yes
Artery: Aorta (GTEx) EpiXcan Yes
Artery: Aorta (STARNET) EpiXcan Yes
Artery: coronary (GTEx) EpiXcan No
Artery: Mammary (STARNET) EpiXcan Yes
Artery: tibial (GTEx) PrediXcan No
Blood (GTEx) EpiXcan No
Blood (STARNET) EpiXcan Yes
Cells: EBV-transformed lymphocytes (GTEx) PrediXcan No
Cells: transformed fibroblasts (GTEx) PrediXcan No
Endocrine: adrenal gland (GTEx) EpiXcan No
Endocrine: pituitary (GTEx) PrediXcan No
Endocrine: thyroid (GTEx) PrediXcan No
GI: colon, sigmoid (GTEx) EpiXcan No
GI: colon, transverse (GTEx) EpiXcan No
GI: esophagus, GE junction (GTEx) EpiXcan Yes
GI: esophagus, mucosa (GTEx) EpiXcan Yes
GI: muscularis (GTEx) EpiXcan Yes
GI: pancreas (GTEx) EpiXcan Yes
GI: salivary gland, minor (GTEx) PrediXcan No
GI: stomach (GTEx) EpiXcan No
GI: terminal ileum (GTEx) EpiXcan No
Heart: atrial appendage (GTEx) EpiXcan No
Heart: left ventricle (GTEx) EpiXcan No
Liver (GTEx) EpiXcan No
Liver (STARNET) EpiXcan No
Muscle: skeletal (GTEx) EpiXcan Yes
Muscle: skeletal (STARNET) EpiXcan Yes
PNS: nerve, tibial (GTEx) PrediXcan No
Reproductive: mammary tissue (GTEx) EpiXcan Yes
Reproductive: ovary (GTEx) EpiXcan No
Reproductive: prostate (GTEx) PrediXcan No
Reproductive: testis (GTEx) PrediXcan No
Reproductive: uterus (GTEx) PrediXcan No
Reproductive: vagina (GTEx) PrediXcan No
Respiratory: lung (GTEx) EpiXcan Yes
Skin: not sun exposed, suprapubic (GTEx) EpiXcan No
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Skin: sun exposed lower leg (GTEx) EpiXcan Yes
Spleen (GTEx) EpiXcan No

Supplementary Table 1. The 42 transcriptomic imputation models used in this study.
Information is also provided about which imputation method was used and whether it was used
for the gene targeting and drug repurposing pipelines.
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Supplementary Table 2

Short
name

Phenotype ncases ncontrols Ancestry
superpopulation
background

GWAS TWAS results in

A1 Very severe respiratory confirmed
covid vs. not hospitalized covid

269 688 EUR “A1_ALL” Supplementary
Appendix 3

A2 Very severe respiratory confirmed
COVID vs. population

4,336 623,902 EUR + AMR “A2_ALL_leave_23andme” Supplementary
Appendix 4

B1 Hospitalized COVID vs. not
hospitalized COVID

2,430 8,478 ALL except EAS “B1_ALL” Supplementary
Appendix 5

B2 Hospitalized COVID vs. population 6,406 902,088 EUR “B2_ALL_eur_leave_23andme” Supplementary
Appendix 6

C1 COVID vs. lab/self-reported
negative

8,668 101,861 ALL except EAS “C1_ALL_leave_23andme” Supplementary
Appendix 7

C2 COVID vs. population 14,134 1,284,876 EUR “C2_ALL_eur_leave_23andme” Supplementary
Appendix 8

D1 predicted COVID from
self-reported symptoms vs.
predicted or self-reported
non-COVID

3,204 35,728 EUR “D1_ALL” Supplementary
Appendix 9

Supplementary Table 2. Overview of the GWAS summary statistics that were used. Short name: short name of the phenotype.
Phenotype: description of the phenotype. ncases and ncontrols correspond to the number of cases and controls taken into account for this
study. Ancestry superpopulation background: ancestry superpopulations that were included in the GWAS. GWAS: GWAS summary
statistics used. TWAS results in: Supplementary appendix where the TWAS results can be found. EUR, AMR, EAS stand for
European, admixed American and East Asian ancestries. All refers to all the superpopulations as defined by the 1000 genomes
project which includes the above plus African and South Asian ancestries.
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Supplementary Table 3

Severity Description nEUR nAFR nHIS nASN

Mild SARS-CoV-2+ 10,851 4,113 2,221 217

Moderate SARS-CoV-2+ and hospitalized with or without
low flow oxygen therapy

2,301 1,187 439 26

Severe SARS-CoV-2+ and hospitalized with either
ventilation, intubation, extracorporeal
membrane oxygenation (EMCO), dialysis
vasopressors or high flow oxygen therapy

383 266 93 8

Death COVID-19 related death 727 262 117 15

Supplementary Table 3. COVID severity scale developed by VINCI and the MVP COVID-19
Science Initiative. Description and counts for each HARE-based population are provided.
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Supplementary Table 4

Severity Description

Control No COVID-19

Moderate COVID-19 with abnormal (<94%) O2 saturation or
pneumonia on imaging

Severe COVID-19 with use of high-flow nasal cannula (HFNC),
non-rebreather mask (NRB), bilevel positive airway
pressure (BIPAP) or mechanical ventilation and no
vasopressor use, and based on CrCl greater than 30 and
alanine aminotransferase (ALT) less than 5× the upper
limit of normal.

Severe with end-organ damage COVID-19 as Severe but with use of vasopressors, or
based on CrCl less than 30, new renal replacement
therapy (hemodialysis/continuous veno-venous
hemofiltration) or ALT more than 5× the upper limit of
normal

Supplementary Table 4. COVID severity scale developed by the Mount Sinai COVID-19
Biobank. Severity score has been previously characterized in detail4.

42

https://sciwheel.com/work/citation?ids=9530159&pre=&suf=&sa=0


Supplementary Table 5

Rank Compound Compound
MW FDR

Mechanism of action
(MOA)

MOA
Rank

Experimental/epidemiological support
(XP) or speculation/ hypothesis/
poorly controlled studies (HY)

Notes and challenges

1 imiquimod 0.0001 interferon inducer|toll-like
receptor agonist HY19–21 Topical use but systemic

absorption 22

2 nelfinavir 0.005 HIV protease inhibitor 1 XP23,24
No longer recommended
since 20193 saquinavir 0.03 HIV protease inhibitor 1 XP23

4 everolimus 4.6×10-9 mTOR inhibitor 20 HY25 Non-formulary (VA)

5 azathioprine 0.0008×10-4 dehydrogenase inhibitor HY26

6 nisoldipine 0.02 calcium channel blocker 33 Non-formulary (VA)

7 cerulenin 3.6×10-11 fatty acid synthase
inhibitor XP: Similar MOA27 Excluded: not FDA

approved

8 pyrvinium-pa
moate 5.1×10-20 androgen receptor

antagonist 7 Other CoV XP28 Excluded: discontinued

9 retinol 0.04 retinoid receptor ligand HY29 Vitamin A

10 selamectin 0.01 nematocide Excluded: not approved
for human use

Supplementary Table 5. Top 10 readily available candidate compounds. Ranking of the compound is provided while considering
only readily available compounds (bold if FDA-approved, underlined if well-powered for population-level analysis). Compound MW
FDR: FDR-adjusted p-values for the Mann-Whitney U test while considering compounds from all clinical phases (not just “launched”).
MOA Rank: rank of the medication mechanism of action among “launched” compounds. All literature support lacks any medical
evidence for use in clinical practice. For the whole table please refer to Supplementary Appendix 11.
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Supplementary Table 6
Compound Indication ICD-9 Indication name Abbreviation

azathioprine

571.42 Autoimmune hepatitis AIHP
555.0,555.1,555.2,555.9 Crohn’s disease CRHN

710.3, 710.4 Dermatomyositis/polymyo
sitis DERM

695.10,695.11,69.12,695.
19 Erythema multiforme ERYT

996.83,V42.1,V42.2 Heart transplant HRTR

287.31 Idiopathic
thrombocytopenic purpuraIDTP

996.81,V42.0 Kidney transplant KDTR
996.82,V42.7 Liver transplant LVTR
996.84,V42.6 Lung transplant LUTR
358.00,358.01 Myasthenia gravis MYAG

583.81

Nephritis and
nephropathy, not
specified as acute or
chronic, in diseases
classified elsewhere

NEPH

391.0,393,420.0,420.90,4
20.91,420.99,423.1,423.2 Non-infectious pericarditis NPER

694.4 Pemphigus PEMP

696.0,696.1,696.8 Psoriasis (with
arthropathy and other) PSOR

714.0,714.1,714.2,714.30
,714.31,714.32,714.33,71
4.4,714.8,714.81,714.89,
714.9

Rheumatoid arthritis RHEU

556.0,556.1,556.2,556.3,
556.4,556.5,556.6,556.8,
556.9

Ulcerative colitis ULCR

360.11,360.12,363.01,363
.03,363.04,363.05,363.06
,363.07,363.08,363.10,36
3.11,363.12,363.13,363.1
4,363.15,363.20,363.21,3
63.22,364.00,364.01,364.
02,364.03,364.04,364.05,
364.10,364.11,364.21,364
.22,364.23,364.24

Uveitis UVET

446.4 Wegener’s
granulomatosis WEGR

everolimus

209.00,209.01,209.02,20
9.03,209.10,209.11,209.1
2,209.13,209.14,209.15,2
09.16,209.17,209.20,209.
21,209.22,209.23,209.24,
209.25,209.26,209.27,20
9.29,209.40,209.41,209.4

Carcinoid tumors CARC
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2,209.43,209.50,209.51,2
09.52,209.53,209.54,209.
55,209.56,209.57,209.60,
209.61,209.62,209.63,20
9.64,209.65,209.66,209.6
7,209.69
996.83,V42.1,V42.2 Heart transplant HRTR
201.00,201.01,201.02,20
1.03,201.04,201.05,201.0
6,201.07,201.08,201.10,2
01.11,201.12,201.13,201.
14,201.15,201.16,201.17,
201.18,201.20,201.21,20
1.22,201.23,201.24,201.2
5,201.26,201.27,201.28,2
01.40,201.41,201.42,201.
43,201.44,201.45,201.46,
201.47,201.48,201.50,20
1.51,201.52,201.53,201.5
4,201.55,201.56,201.57,2
01.58,201.60,201.61,201.
62,201.63,201.64,201.65,
201.66,201.67,201.68,20
1.70,201.71,201.72,201.7
3,201.74,201.75,201.76,2
01.77,201.78,201.90,201.
91,201.92,201.93,201.94,
201.95,201.96,201.97,20
1.98,V10.72

Hodgkin’s disease HODG

996.81,V42.0 Kidney transplant KDTR
996.82,V42.7 Liver transplant LVTR
996.84,V42.6 Lung transplant LUTR
273.3 Macroglobulinemia MACR
189.0,198.0,V10.52 Neoplasm of the kidney NPKD
164.0,212.6 Neoplasm of the thymus NPTY
174.0,174.1,174.2,174.3,
174.4,174.5,174.6,174.8,
174.9,175.0,175.9,233.0,
V10.3

Non-benign Neoplasm of
the breast (male and
female)

NPBR

759.5 Tuberous sclerosis TUSC

imiquimod

702.0 Actinic keratosis ACKE
173.01,173.11,173.21,173
.31,173.41,173.51,173.61
,173.71,173.81,173.91

Basal cell carcinoma BCCA

054.0,054.10,054.11,054.
12,054.13,054.19,054.2,0
54.40,054.41, 054.42,
054.43,
054.44,054.49,054.5,054.
6,054.7,054.71,054.72,05
4.73,054.74,054.79,054.8
,054.9,058.10,058.11,058.
12,058.21,058.29,058.81,

Herpes simplex virus
(HSV) infection HSVI
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058.82,058.89
078.10,078.11,078.12,078
.19,079.4 Viral warts & HPV VHPV

nelfinavir 042,079.53,V08 HIV infection HIVI

nisoldipine
401.0,401.1,401.9,405.01
,405.09,405.11,405.19,40
5.91,405.99

Hypertension HYPT

retinol
264.0,264.1,264.2,264.3,
264.4,264.5,264.6,264.7,
264.8,264.9

Vitamin A deficiency VADE

saquinavir 042,079.53,V08 HIV infection HIVI

Supplementary Table 6. FDA approved and off-label indications for medications in our
analysis used as covariates. For each compound, the indication ICD-9 codes (comma
separated), name and abbreviation used in the models (Supplementary Appendix 12) are
provided.
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Supplementary Table 7

Severity Analysis Cohort PheWAS Cohort

EUR AFR HIS ASN ALL EUR

Sample Size (%) 14,262 (61.4%) 5,828 (25.1%) 2,870 (12.4%) 266 (1.1%) 23,226 (100%) 296,407 (N/A)

Median Age (IQR) 71 (16) 64 (17) 60 (27) 50 (27) 68 (18) 71 (14)

Female (%) 1,231 (8.6%) 824 (14.1%) 295 (10.3%) 26 (9.8%) 2,376 (10.2%) 21,084 (7.1%)

Median Elixhauser (2yr)
(IQR)

4 (13) 5 (14) 0 (8) 0 (4) 4 (13) N/A

COVID Severity
- Mild (%)
- Median (%)
- Severe (%)
- Death (%)

10,851 (76.1%)
2,301 (16.1%)

383 (2.7%)
727 (5.1%)

4,113 (70.6%)
1,187 (20.4%)

266 (4.6%)
262 (4.5%)

2,221 (77.4%)
439 (15.3%)

93 (3.2%)
117 (4.1%)

217 (81.6%)
26 (9.8%)

8 (3.0%)
15 (5.6%)

17,402 (74.9%)
3,953 (17.0%)

750 (3.2%)
1,121 (4.8%)

N/A

Median ICD Count (IQR) N/A N/A N/A N/A N/A 136 (175)

Median length of record
(IQR)

N/A N/A N/A N/A N/A 4,575.4 (3,350.0)

Supplementary Table 7. Demographic characteristics of the MVP cohorts used in the GReX association with COVID-19
severity and death, and PheWAS.
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Supplementary Table 8

Gene Populatio
n

n Beta SE P Bonferroni-adjusted
p

IL10RB ALL 2322
6

0.06
7

0.016 2.4×10-05 9.8×10-05

EUR 1426
2

0.06
0

0.020 3.3×10-03 1.3×10-02

AFR 5828 0.07
7

0.030 9.6×10-03 3.8×10-02

HIS 2870 0.05
8

0.048 2.3×10-01 9.2×10-01

ASN 266 0.46
5

0.210 2.7×10-02 1.1×10-01

IFNAR2 ALL 2322
6

-0.07
1

0.016 6.2×10-06 2.5×10-05

EUR 1426
2

-0.06
2

0.020 2.3×10-03 9.0×10-03

AFR 5828 -0.07
6

0.030 1.0×10-02 4.1×10-02

HIS 2870 -0.09
2

0.048 5.5×10-02 2.2×10-01

ASN 266 -0.40
9

0.204 4.4×10-02 1.8×10-01

Supplementary Table 8. GReX association with COVID-19 severity. Bonferroni-adjustment is
performed for ngenes × noutcomes = 4 for each population cohort.
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Supplementary Table 9

Population /
ethnicity

Sample Size (%) Median Age (IQR) Female (%)

White /
Hispanic or Latino

52 (9.2%) 66 (21.25) 24 (46.2%)

Black or African American /
Hispanic or Latino

10 (1.8%) 52 (32) 7 (70%)

Unknown /
Hispanic or Latino

107 (18.8%) 64 (25) 41 (38.3%)

More Than One Race /
Hispanic or Latino

15 (2.6%) 64 (18) 7 (46.7%)

American Indian or Alaska Native /
Hispanic or Latino

4 (0.7%) 63.5 (17.5) 1 (25%)

White /
not Hispanic or Latino

128 (22.5%) 68 (28.5) 54 (42.2%)

Black or African American /
not Hispanic or Latino

106 (18.7%) 63 (16.5) 54 (50.9%)

Unknown /
not Hispanic or Latino

12 (2.1%) 62 (14.5) 1 (8.3%)

More Than One Race /
not Hispanic or Latino

9 (1.6%) 56 (12) 4 (44.4%)

Asian /
not Hispanic or Latino

36 (6.3%) 60 (22.25) 11 (30.6%)

American Indian or Alaska Native /
not Hispanic or Latino

3 (0.5%) 62 (7.5) 0 (0%)

Native Hawaiian or Other Pacific Islander /
not Hispanic or Latino

1 (0.2%) 68 (0) 1 (100%)

White /
unknown

3 (0.5%) 88 (4.5) 2 (66.7%)

Unknown
unknown

82 (14.4%) 62 (21.5) 35 (42.7%)

Supplementary Table 9. Demographic characteristics of the Mount Sinai COVID-19
Biobank.
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Supplementary Table 10

Count (%)

# Individuals with number of samples below:
- 1
- 2
- 3
- 4
- 5
- 6
- 7

176 (31.0%)
156 (27.5%)
110 (19.4%)
71 (12.5%)

39 (6.9%)
15 (2.6%)

1 (0.2%)

# of samples with COVID Severity below:
- Control
- Moderate COVID-19
- Severe COVID-19
- Severe COVID-19 with EOD

122 (10.1%)
600 (49.6%)
269 (22.2%)
218 (18.0%)

Supplementary Table 10. Sample characteristics of the Mount Sinai COVID-19 Biobank.
The differential gene expression analysis is based on samples not individuals. Here we provide
information about how many samples were taken from each individual and a breakdown by
severity for the samples.
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Supplementary Table 11

gRNA Target gene logFC t P value

IL10RB-1 IL10RB 2.67 5.67 0.0000009

IL10RB-2 IL10RB 1.46 3.44 0.0012

IL10RB-3 IL10RB 1.67 3.90 0.0003

IL10RB-4 IL10RB 0.98 3.64 0.0007

Supplementary Table 11. Effect of CRISPRa gRNAs on target gene. Metrics are provided
against scramble gRNA.
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Supplementary Table 12

shRNA Target gene logFC t P value

IL10RB IL10RB 0.06 0.27 0.78

IFNAR2 IFNAR2 -0.41 -2.39 0.02

Supplementary Table 12. Effect of shRNAs on target genes. Metrics are provided against
scramble shRNA
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Supplementary Table 13

Treatment Target gene logFC t P value

SARS-CoV-2 infection IL10RB 0.025 0.13 0.89

SARS-CoV-2 infection IFNAR2 0.3 3.70 0.00098

Supplementary Table 13. Effect of SARS-CoV-2 infection on target genes (IL10RB and
IFNAR2). Metrics are provided against non SARS-CoV-2 infected cells taking into account
(scramble gRNA and shRNA treatments).
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Supplementary Table 14
Unique patient counts

Ever
prescribeda

Within 90
days prior to
2/15/2020b

Tested for
SARS-CoV-2c

SARS-CoV-
2+d

Top 7 compounds 176,782 14,329 4,416 369

imiquimod 91,671 4,859 883 88

everolimus 921 350 105 7

azathioprine 21,180 5,765 1,419 123

retinol 62,564 3,362 2,018 152

nelfinavir 3,294 12 4 0

saquinavir 1,176 5 3 0

nisoldipine 47 7 0 0

Antiretroviralse 30,102 24,269 6,693 777

Non-protease inhibitors 30,063 24,232 6,676 777

NRTI 29,888 22,866 6,237 722

NNRTI 19,192 4,913 1,216 121

Other 21,648 14,300 3,824 453

Protease inhibitors (PI) 15,519 3,826 1,101 114

Groups of patients diagnosed with
HIV (ICD-9 042 or ICD-10 B20)

A: No anti-HIV medications 29,777 34,823 4,720 1,003

B: Any of anti-HIV medications AND PI 15,480 3,789 1,084 114

C: Any of anti-HIV medications AND no
PI 14,583 20,443 5,592 663

Supplementary Table 14. Unique patient counts for the VHA population-level analysis.
aData through 12/31/2020. bAny prescription in the 90 days prior to 2/15/2020. cAny prescription
in the 90 days prior to the date of first COVID-19 testing. dAny prescription in the 90 days prior
to the first positive test for SARS-CoV-2 as of 11/30/2020. eLimited to patients with any HIV
diagnosis codes (ICD-9 042 or ICD-10 B20) prior to the index date. Includes records for
Veterans alive as of 2/15/2020.
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Supplementary Table 15

Protease inhibitor Patient count

Darunavir 3,005

Ritonavir 1,651

Atazanavir 485

Lopinavir 142

Fosamprenavir 25

Nelfinavir 11

Tipranavir 6

Saquinavir 5

Indinavir 5

Supplementary Table 15: Patients receiving prescriptions of specific anti-HIV protease
inhibitor medications in the 90 day window prior to the SARS-CoV-2 test. Counts are
limited to 3,862 patients diagnosed with HIV and taking antiretroviral medications.
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Supplementary Table 16

gRNA target Oligo Sequences forward Oligo Sequences reverse

IL10RB gRNA#1 caccgAGGCTTGGCAGATGCACACG aaacCGTGTGCATCTGCCAAGCCTc

IL10RB gRNA#2 caccgGGATCCTCGCAAGCTTTGAA aaacTTCAAAGCTTGCGAGGATCCc

IL10RB gRNA#3 caccgGCATGCTGGAATGACGGTGG aaacCCACCGTCATTCCAGCATGCc

IL10RB gRNA#4 caccgTTGAAGTCCGCTCTCCGCAC aaacGTGCGGAGAGCGGACTTCAAc

Scramble gRNA caccgGCACTCACATCGCTACATCA aaacTGATGTAGCGATGTGAGTGCC

Supplementary Table 16: gRNA CRISPRa sequences
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DESCRIPTION OF OTHER SUPPLEMENTARY
APPENDICES
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SUPPLEMENTARY APPENDIX 2
Brief description: Table translating Phecodes to Phenotypes and the respective phenotype
categories they belong to.

Column descriptions:

Column Description

Phecode Numerical phecode

Phenotype Phenotype associated with phecode

exclude_name
Category for each phecode. Phecodes were grouped into categories
using Phecode Map v1.2 with manual curation for some uncategorized
phecodes

SUPPLEMENTARY APPENDICES 3 TO 9
Brief description: TWAS results for COVID-19 GWASs:

Name Phenotype TWAS results in

A1 Very severe respiratory confirmed covid vs. not
hospitalized covid

Supplementary Appendix 3

A2 Very severe respiratory confirmed COVID vs. population Supplementary Appendix 4

B1 Hospitalized COVID vs. not hospitalized COVID Supplementary Appendix 5

B2 Hospitalized COVID vs. population Supplementary Appendix 6

C1 COVID vs. lab/self-reported negative Supplementary Appendix 7

C2 COVID vs. population Supplementary Appendix 8

D1 predicted COVID from self-reported symptoms vs.
predicted or self-reported non-COVID

Supplementary Appendix 9

Each sheet within an excel file represents a different tissue. Column descriptions:

Column Description

gene
a gene's id: as listed in the Tissue Transcriptome model. Ensemble Id for
most gene model releases (e.g. in this study). Can also be an intron's id
for splicing model releases

gene_name gene name as listed by the Transcriptome Model, typically HUGO for a
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gene (e.g. in this study). It can also be an intron's id.

zscore S-PrediXcan or S-EpiXcan's association result for the gene

effect_size
S-PrediXcan or S-EpiXcan's association effect size for the gene. Can
only be computed when beta from the GWAS is used.

pvalue p-value of the aforementioned statistic

var_g
variance of the gene expression, calculated as W' * G * W (where W is
the vector of SNP weights in a gene's model, W' is its transpose, and G
is the covariance matrix)

pred_perf_r2
R2

CV (cross-validated) of tissue model's correlation to gene's measured
transcriptome (prediction performance). Recommended filtering is > 0.01

pred_perf_pval
p-value of tissue model's correlation to gene's measured transcriptome
(prediction performance).

pred_perf_qval
q-value of tissue model's correlation to gene's measured transcriptome
(prediction performance).

n_snps_used
number of SNPs from GWAS that were used in the S-PrediXcan or
S-EpiXcan analysis

n_snps_in_cov number of SNPs in the covariance matrix

n_snps_in_model number of SNPs in the imputation model

gwas GWAS name (phenotype) from the COVID-19 hg

tissue Imputation model used

method
Imputation method used for imputation model construction (in this study
PrediXcan or EpiXcan)

gwas_fdr
FDR-adjusted p value 3 for association when considering all gene-trait
associations across all tissue models within this specific GWAS (e.g.
COVID-19 B2 phenotype)

Tissue.keyword Pattern matching string for internal pipeline

fdr_all
FDR-adjusted p value 3 for association when considering all gene-trait
associations across all tissue models and all GWASs (all COVID-19
phenotypes)
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var_g
variance of the gene expression, calculated as W' * G * W (where W is
the vector of SNP weights in a gene's model, W' is its transpose, and G
is the covariance matrix)

SUPPLEMENTARY APPENDIX 10
Brief description: Results of IL10RB and IFNAR2 GREx PheWAS

Column descriptions:

Column Description

ID Concatenation of gene and phenotype analyzed

phecode Phecode identifier in string format

beta Association of gene expression and phenotype for gene and phenotype
described in ID column

p P value for association of gene expression and phenotype for gene and
phenotype described in ID column

neg_log10p -log10 transformation of p column

beta_dir Binary classifier for direction of beta column. TRUE if positive. FALSE if
negative.

beta_mag Absolute value of beta column

phecode_num Numerical phecode

Phenotype Phenotype associated with each phecode

exclude_name
Category for each phecode. Phecodes were grouped into categories
using Phecode Map v1.2 with manual curation for some uncategorized
phecodes. Refer to Supplementary Appendix 2 for mappings.

HasCounts Number of individuals in cohort with >0 counts for this phecode

NoCounts Number of individuals in cohort with 0 counts for this phecode

gene Gene whose expression was used in regression model for the specified
phecode

adjusted.p Adjusted p value using method specified in MC.method column

neg_log10adjusted
.p

-log10 transformation of adjusted.p column
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Rank Rank of association significance from most significant to least

MC.method Method for generating adjusted.p column from p column

SUPPLEMENTARY APPENDIX 11
Brief description: Computational drug repurposing results for launched compounds
First sheet: “Column.Info” provides the column descriptions for the results in the
“launched.compounds sheet”.

SUPPLEMENTARY APPENDIX 12
Brief description: Provides information about the EHR validation of the CDR pipeline.
Start from the first sheet of the Excel file (“TOC”)
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