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Abstract 

Background 

Recent efforts have identified genetic loci that are associated with coronavirus disease 2019 

(COVID-19) infection rates and disease outcome severity. Translating these genetic findings into 

druggable genes and readily available compounds that reduce COVID-19 host susceptibility is a 

critical next step. 

Methods 

We integrate COVID-19 genetic susceptibility variants, multi-tissue genetically regulated gene 

expression (GReX) and perturbargen signatures to identify candidate genes and compounds that 

reverse the predicted gene expression dysregulation associated with COVID-19 susceptibility. 

The top candidate gene is validated by testing both its GReX and observed blood transcriptome 

association with COVID-19 severity, as well as by in vitro perturbation to quantify effects on viral 

load and molecular pathway dysregulation. We validate the in silico drug repositioning analysis 

by examining whether the top candidate compounds decrease COVID-19 incidence based on 

epidemiological evidence.  

Results 

We identify IL10RB as the top key regulator of COVID-19 host susceptibility. Predicted GReX up-

regulation of IL10RB and higher IL10RB expression in COVID-19 patient blood is associated with 

worse COVID-19 outcomes. In vitro IL10RB overexpression is associated with increased viral 

load and activation of immune-related molecular pathways. Azathioprine and retinol are prioritized 

as candidate compounds to reduce the likelihood of testing positive for COVID-19. 

Conclusions 

We establish an integrative data-driven approach for gene target prioritization. We identify and 

validate IL10RB as a suitable molecular target for modulation of COVID-19 host susceptibility. 

Finally, we provide evidence for a few readily available medications that would warrant further 

investigation as drug repositioning candidates.   
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Introduction 

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which causes coronavirus 

disease 2019 (COVID-19), is the latest of the betacoronaviruses to pose a global health threat. 

Of the recent respiratory virus pandemics, SARS-CoV-2 demonstrates the highest 

transmissibility1. Despite the fact that the overwhelming majority of affected individuals have mild 

symptoms, infection-fatality risk in an urban area of a developed country (e.g. New York City) is 

still high, ranging from 1.4% for young adults (25-44 years old) to 19.1% for more susceptible 

older individuals (aged 75 years and older)2. Thus, unexplained heterogeneity in susceptibility to 

the disease and severity of illness exists even when accounting for known risk factors such as 

age3. 

The COVID-19 Host Genetics Initiative (HGI)4 coordinates a global effort to elucidate the genetic 

basis of COVID-19 susceptibility. Ongoing efforts have uncovered multiple risk loci for COVID-19 

susceptibility; however, these risk variants only partly explain inter-individual variability and, as 

many of the variants reside within non-coding regions of the genome, the formulation of testable 

hypotheses to elucidate their potential effects is challenging. To translate these genetic findings 

to novel therapeutics for COVID-19, we developed a multidisciplinary translational genomics 

framework that integrates genetic studies of COVID-19 susceptibility, genotype-tissue expression 

datasets and perturbargen signature libraries to identify druggable gene targets and readily 

available compounds that can be repositioned as treatments for COVID-19. We provide evidence 

from in vitro, in vivo and retrospective epidemiological studies that validate the association of the 

top candidate gene, IL10RB, with COVID-19 outcome severity. Overall, our study prioritizes gene 

targets and compounds with direct translational value to modulate host physiology and immune 

response and increase resilience to SARS-CoV-2 infection. 

Methods 

Transcriptome-wide association study 

Transcriptomic imputation model construction. Transcriptomic imputation models are 

constructed as previously described5 for peripheral tissues of the GTEx v86 and STARNET7 

cohorts (Supplementary Table 1; Figure 1A). The genetic datasets of the GTEx and STARNET 

cohorts are uniformly processed for quality control (QC) steps before genotype imputation. We 

restrict our analysis to samples with European ancestry as previously described5. Genotypes are 

imputed using the University of Michigan server8 with the Haplotype Reference Consortium (HRC) 

reference panel9. Gene expression information is derived from RNA-seq gene level counts which 

are adjusted for known and hidden confounds, followed by quantile normalization. For GTEx, we 

use publicly available, quality-controlled, gene expression datasets from the GTEx consortium 

(http://www.gtexportal.org/). RNA-seq data for STARNET were obtained in the form of 

residualized gene counts from a previously published study. For the construction of the 

transcriptomic imputation models we use elastic net based methods; when there is available 

epigenetic annotation information10 for a given tissue we employ the EpiXcan5 method to 

maximize power; when not available, we use the PrediXcan11 method. COVID-19 phenotypes 
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GWAS summary statistics. Summary statistics for all 7 COVID-19 phenotypes (A1, A2, B1, B2, 

C1, C2 and D1; Supplementary Table 2) were obtained from the COVID-19 Host Genetics 

initiative4. Multi-tissue transcriptome-wide association study (TWAS). We performed the 

gene-trait association analysis as previously described5. Briefly we applied the S-PrediXcan 

method12 to integrate the COVID-19 GWAS summary statistics and the transcriptomic imputation 

models constructed above to obtain gene-level association results. Gene set enrichment 

analysis for TWAS results. To investigate whether the genes associated with a given trait exhibit 

enrichment for biological pathways, we use gene sets from MsigDB 5.113 and filter out non-protein 

coding genes, genes located at MHC as well as genes whose expression cannot be reliably 

imputed. Statistical significance is evaluated with one-sided Fisher’s exact test and the adjusted 

p values are obtained by the Benjamini-Hochberg method14. 

Genetically regulated gene expression (GReX-) based gene 

targeting approach and computational drug repurposing 

Both the gene targeting approach and the computational drug repurposing (CDR) approach 

integrate genetically regulated gene expression (GReX) information (using the TWAS gene-trait-

tissue association results) with a perturbagen signature library15 (LINKS Phase II L1000 dataset 

GSE70138); the gene targeting approach uses the shRNA signatures (gene expression changes 

after knocking down a gene) and the CDR uses compound signatures (Figure 1). We only 

consider GReX from 17 tissue models of the B2 phenotype that have significant TWAS results 

(FDR adjustment is applied to all COVID-19 phenotypes and tissues; Supplementary Table 1; 

Supplementary Materials and Methods in Supplementary Appendix 1; the steps of the method 

are also outlined in Supplementary Figure 1). Signature antagonism of trait GReX. Each 

signature from the perturbagen signature library (e.g. IL10RB shRNA treatment for 96 hours in 

MCF7 cells) is assessed and ranked for its ability to reverse the trait-associated imputed 

transcriptomes using a previously published method16. Summarization of the effect of 

signatures across tissues. Signatures are grouped by peturbagen (either shRNA or compound) 

and we first test whether the signatures for a specific perturbagen are more likely to be ranked 

higher or lower (Mann-Whitney U test); then we obtain a GReX antagonism pseudo z-score as 

follows: −
𝐻𝑜𝑑𝑔𝑒𝑠−𝐿𝑒ℎ𝑚𝑎𝑛𝑛 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑜𝑟𝑝𝑒𝑟𝑡𝑢𝑟𝑏𝑎𝑔𝑒𝑛

𝑆𝐷 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑟𝑎𝑛𝑘𝑠 𝑜𝑓 𝑎𝑙𝑙 𝑝𝑒𝑟𝑡𝑢𝑟𝑏𝑎𝑔𝑒𝑛𝑠
. Gene prioritization approach. This final step only 

applies to the gene targeting approach and not the computational drug repurposing. For 

prioritization we estimate, for each gene, the p value corresponding to the joint statistic of the two 

approaches (𝑧𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑 = 𝑧𝑇𝑊𝐴𝑆  +  𝑝𝑠𝑒𝑢𝑑𝑜 𝑧𝐺𝑅𝑒𝑋 𝑎𝑛𝑡𝑎𝑔𝑜𝑛𝑖𝑠𝑚). 

IL10RB and IFNAR2 GReX association with COVID-19 severity 

and other phenotypes in the Million Veteran program 

Cohort: Within the broader cohort of the Million Veteran Program17, for the COVID-19 severity 

analysis we used all COVID19 positive individuals as of March 11th, 2021 (nEUR=14,262, 

nAFR=5,828, nHIS=2,870, nASN=266; EUR: European; AFR: African; HIS: Hispanic; ASN: Asian). 

For the phenome-wide association study (PheWAS), we used individuals of European Ancestry 
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(n=296,407). Ancestries were defined by the HARE method18. Genotypes used for imputation 

were filtered by Minor Allele Frequency (>0.01), Variant level Missingness (<0.02), as well as 

imputation R2 (>0.9). We consider the MVP severity cohort an independent cohort from the GWAS 

since less than 7% (1,519) of its participants were included in the COVID-19 related 

hospitalization GWAS (“B2_ALL_eur_leave_23andme”; release 4) comprising less than 7% and 

0.2% of the GWAS’s cases and total individuals respectively. For the individual imputation we use 

the EpiXcan tissue model of blood from the STARNET cohort for the following reasons: (1) as a 

tissue, blood is relevant (immune cells) and accessible - allowing for testing and validation, and 

(2) as an imputation model, the blood (STARNET) is the most powerful model (identifying the 

most FDR significant gene-trait associations; Supplementary Figure 2), allows the concurrent 

study of both IL10RB and IFNAR2 (Figure 2a) and is based on collection from beating heart 

donors (in contrast to the GTEx model which is based mostly on postmortem blood). Phenotypes: 

There are four COVID-19 severity levels: mild, moderate, severe and death (see Supplementary 

Table 3 for more information of the phenotypic definition and counts). Transcriptomic 

imputation: GReX for blood IL10RB and IFNAR2 was calculated with the EpiXcan5 Blood 

(STARNET) transcriptomic imputation model (Supplementary Table 1). For TWAS, we only 

considered SNPs with imputation R2≥0.3. Ancestry-specific principal component analysis was 

performed using the EIGENSOFT19 v6 software as previously described20. GReX association 

with COVID-19 severity. Associations of GReX and COVID-19 severity (Supplementary Table 

3) were independently performed in each ancestry group. All associations were performed on 

scaled GReX with the following covariates: Elixhauser comorbidity index21 for 2 years, sex, age, 

age squared (age2), and top 10 ancestry-specific principal components. To estimate the effect of 

GReX on COVID-19 related death we used a logistic regression analysis (binomial distribution) 

where death was defined as “1” whereas mild, moderate, and severe cases were defined as “0”. 

To estimate the effect of GReX on COVID-19 related outcome severity we performed an ordinal 

logistic regression where COVID-19 severity was ordered as follows: mild, moderate, severe and 

death. The ancestry-specific associations were meta-analyzed with a fixed-effect model using the 

inverse-variance method to estimate the effect of IL10RB and IFNAR2 GReX in the total 

population. GReX PheWAS. Phecodes22 assigned to clinical encounters up to 2018 (predating 

the COVID-19 pandemic) were grouped into categories using Phecode Map v1.2 with manual 

curation for some uncategorized phecodes (as provided in Supplementary Appendix 2). All 

phecodes with at least one count in more than twenty five individuals in the cohort were 

considered for further analysis. Association testing was performed between scaled GReX and 

counts of each phecode with a negative binomial distribution - this is the appropriate distribution 

to capture the full range of phecode counts since variance was higher than the mean phecode 

count in 99.95% of the phecodes evaluated (1840/1841; the only exception was “Other disorders 

of purine and pyrimidine metabolism”). The following covariates were used: total number of 

phecodes per individual, length of record, sex, age, and top ten ancestry-specific principal 

components. Phecodes with non-convergent regression models were dropped. Significance was 

tested at the 0.05 false discovery rate (FDR) level. 
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Gene expression profiling and EHR-based phenotyping in the 

Mount Sinai COVID-19 Biobank 

For the Mount Sinai COVID-19 biobank23, electronic medical records (EMR) of all patients 

hospitalized in the previous 24 hours were screened daily to identify eligible patients (and 

controls) and to obtain bio-specimens with very broad inclusion criteria and very limited exclusion 

criteria. This study was approved by the Institutional Review Board (IRB) at the Icahn School of 

Medicine at Mount Sinai (20-0327). Given the extraordinary challenges posed by the COVID-19 

pandemic for obtaining informed consent, and in consideration of the public health crisis, a 

delayed consent model was applied. This delayed consent model enabled bio-specimen 

collection at the time of clinical blood draws without prior informed consent. Patients were 

contacted both during their hospital admission, and post-discharge to either provide or decline 

consent for the use of their banked specimens for research purposes. In the event the patient 

were to be deemed incapacitated, or expired during their hospitalization, the subject's legally 

authorized representative was contacted in order to provide or decline consent. Bio-specimens 

for this analysis were obtained from 568 individuals; some individuals (n=392) are contributing 

more than one bio-specimens. The complete biobank dataset and analyses will be presented in 

Beckmann et al. (manuscript in preparation). In brief, RNA was extracted from blood samples and 

used to prepare RNA-seq libraries which were QCed and sequenced as previously described24. 

RNA-seq reads were processed, QCed and aligned to a reference genome as previously 

described24. Important covariates affecting transcript counts were identified with the 

variancePartition method25. Cell type proportions were calculated with CIBERSORTx26 using the 

LM22 reference27. COVID-19 severity associated cell types are identified as having non-zero 

coefficients in a linear mixed model lasso procedure (R package glmmlasso) predicting COVID-

19 severity. Finally, we used dream28 for differential gene expression analysis while accounting 

for covariates identified by variancePartition25 above, as well as, the proportions of COVID-19 

severity associated cell types identified above. COVID-19 severity scale. Phenotypic information 

is obtained by the EMR of the Mount Sinai Health System which is reviewed by a screening team 

that includes practicing physicians. Each bio-specimen is associated, when possible given the 

information in the EMR, with a COVID-19 severity measurement that corresponds to the time of 

collection. There are 4 levels of severity29: controls, moderate, severe and severe end-organ 

damage summarized in Supplementary Table 4. 

Manipulation of IL10RB and IFNAR2 expression in cell lines and 

their effect on SARS-CoV-2 viral load and transcriptional profiles 

 

NGN2-glutamatergic neurons were derived from hiPSC-NPCs of donor NSB260730 as previously 

described31. gRNAs were designed using the CRISPR-ERA (http://crispr-era.stanford.edu) web 

tool and cloned into a lentiviral transfer vector using Gibson assembly31,32; shRNAs were ordered 

as glycerol stocks from Sigma. Wild type or dCas9 expressing NPCs were infected with rtTA and 

NGN2 lentiviruses as well as desired shRNA or CRISPRa lentiviruses and differentiated for 7 

days before SARS-CoV-2 infection with a multiplicity of infection (MOI) of 0.1 or mock infection 
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for 24 hours. After the completion of the experiment, RNA was isolated, quality metrics were 

obtained and 200ng of RNA was processed through a total RNA library prep using the KAPA RNA 

Hyper Prep Kit + RiboErase HMR kit (Roche, cat no: 8098140702) following the manufacturer’s 

protocol with modifications for automation and optimization to be sequenced on the NovaSeq 

6000 S4 2x150bp run at 60M reads per sample. An additional 20ng of RNA was run on a SARS-

CoV-2 targeted primer panel using the AmpliSeq Library Plus and cDNA Synthesis for Illumina 

kits (Illumina, Cat no: 20019103 & 20022654). All samples were normalized, pooled, and run on 

the NovaSeq 6000 S4 in a 2x150 run targeting 750k reads per sample. The STAR aligner 

v2.5.2a33 was used to align reads to the GRCh38 genome (canonical chromosomes only) and 

Gencode v25 annotation. The module featureCounts34 from the Subread package v1.4.3-p135 

was used to quantify genes. RSeQC v2.6.136 and Picard v1.7737, were used to generate QC 

metrics. Differential expression analysis was performed with limma38 using the first two 

components of multidimensional scaling and RIN as covariates. Competitive gene set testing 

using sets from Gene Ontology39,40 was performed with camera41. SARS-CoV-2 quantification 

was performed by taxonomically classifying short-read data with taxMaps42. The AmpliSeq 

approach confirmed the presence or absence of the virus in our samples. 

Population-level analysis of the effect of compound and compound 

category use against COVID-19 incidence 

 

Data. We use the VA COVID-19 Shared Data Resource (CSDR), a data domain that includes 

demographic and clinical information related to COVID-19 of all patients who tested for SARS-

CoV-2 within the Veterans Health Administration (VHA) or whose positive test result outside VHA 

was recorded in VHA clinical notes. The CSDR was supplemented with additional data elements 

from the Corporate Data Warehouse (CDW) of the VHA, a national repository of national 

electronic health records of all individuals who received care in the VHA. Cohort. The base cohort 

included all Veterans who were alive as of February 15, 2020. Since the earliest testing date 

reported in the CSDR was February 16, 2020, we considered all living patients through February 

15 to be eligible to be tested for SARS-CoV-2. From this base cohort, we derived two separate 

samples to examine incidence of COVID-19 among the users of the top 10 compounds and 

antiretroviral medications. For the top 10 compound analysis, we assembled a sample consisting 

of patients who underwent SARS-CoV-2 testing matched to patients who did not undergo SARS-

CoV-2 testing on age, race, and VHA facility. The index date was defined as February 15, 2020. 

For the antiretroviral medication analysis, we created a sample of patients who were ever 

diagnosed with human immunodeficiency virus (HIV) prior to the index date and were actively on 

selected antiretroviral medications in the 90 days prior to the index date. Exposure. Exposure to 

the top 7 FDA-approved compounds (imiquimod, nelfinavir, saquinavir, everolimus, azathioprine, 

nisoldipine and retinol) and selected antiretroviral medications (see Supplementary Table 5) was 

determined by collecting prescriptions of the included medications within the 90 days prior to the 

index date. Outcome. We used a binary variable indicating a positive reverse transcriptase 

polymerase chain reaction (RT-PCR) SARS-CoV-2 test result through November 30, 2020. 

Covariates. We assessed at the index date patients’ age, race, marital status, body mass index, 

smoking status, the Charlson Comorbidity index43 in the prior two years, VHA utilization in the 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 2, 2021. ; https://doi.org/10.1101/2021.05.31.21254851doi: medRxiv preprint 

https://sciwheel.com/work/citation?ids=49324&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=148598&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=147994&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=1264160&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=10624091&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=148089&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=10376357,6481881&pre=&pre=&suf=&suf=&sa=0,0
https://sciwheel.com/work/citation?ids=1509844&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=5029998&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=3819675&pre=&suf=&sa=0
https://doi.org/10.1101/2021.05.31.21254851
http://creativecommons.org/licenses/by-nc-nd/4.0/


prior year, the number of days to first SARS-CoV-2 positivity, and the presence of drug-specific 

FDA-approved and common off-label indications (Supplementary Table 6; for the individual 

compound analysis) as determined by International Classification of Diseases. We also included 

the VHA facility of SARS-CoV-2 testing as a fixed effect in the individual compound models and 

as a random effect in the antiretroviral medication model. Statistical analysis. Multivariable 

ordinal logistic models were used to test the association of drug exposure with COVID-19 

incidence, weighted by the inverse of the predicted probabilities of being tested for SARS-CoV-2. 

Due to the limited availability of SARS-CoV-2 tests and resources, SARS-CoV-2 testing was 

prioritized based on a wide ranging factors including patients’ demographics, comorbidities, and 

severity of symptoms. Such targeted testing likely resulted in a highly selective group of patients 

who were tested for SARS-CoV-244. To adjust for the non-randomness in testing, we employed 

the inverse probability weighting method, where the weight is based on the predicted probabilities 

(propensity scores) of being tested, estimated by a logistic regression model using drug exposure, 

selected patient covariates, and VHA facility45,46. For this propensity model, we implemented the 

nested case-control design with incidence density sampling to match each tested patient (case) 

to five patients who were eligible to be tested (controls) at the time of the case’s testing on age, 

race, and VHA facility47.   
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Results 

Overview of the multidisciplinary translational genomics framework 

We develop a translational genomics framework that integrates three major sources of data 

(GWAS, genotype-tissue expression datasets and perturbargen signature libraries) to identify and 

validate susceptibility genes for targeted therapeutics and candidate compounds that are readily 

available for drug repositioning (Figure 1). We first integrate GWASs for COVID-19 phenotypes 

with multi-tissue transcriptomic imputation models to predict genetically regulated gene 

expression (GReX) changes that are associated with COVID-19 susceptibility (Figure 1A; Output 

1).  

We develop and apply a gene prioritization approach (Figure 1B; Output 2) that integrates GReX 

with shRNA signature libraries15 to identify key genes whose expression: a) is predicted to be 

dysregulated in COVID-19 susceptible individuals and b) can be targeted to reverse the 

transcriptome-wide gene expression dysregulation that is associated with COVID-19 

susceptibility. From this prioritization step, we identify IL10RB as the top gene target candidate, 

which we subject to three validation steps. The first validation step is to increase phenotypic 

specificity by examining whether IL10RB GReX is associated with COVID-19 severity in patients 

that tested positive for SARS-CoV-2 (Figure 1B: EHR validation). In addition, we perform a GReX-

based PheWAS to further understand the effect of IL10RB on pre-existing relevant phenotypes 

(before the emergence of COVID-19). The second validation step is to associate IL10RB gene 

expression in peripheral blood with COVID-19 severity in a patient cohort (Figure 1B: in vivo 

validation). The third, and final, validation step is to perform isogenic manipulation of IL10RB gene 

expression in vitro and study its effect on SARS-CoV-2 viral load and transcriptional dysregulation 

(Figure 1B: in vitro validation).  

To identify readily available compounds for drug repositioning, we perform computational drug 

repurposing and identify top candidates (Figure 1C; Output 3). We then perform population-level 

analysis to validate these in silico predictions by testing whether the candidate compounds 

decrease the likelihood of testing positive for SARS-CoV-2 (Figure 1C: EHR validation). Overall, 

this framework provides a prioritized list of: a) novel druggable targets for drug development or 

repositioning and b) readily available candidate compounds that can be further investigated in 

clinical trials.  
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Figure 1. Data-driven GReX-based approach for molecular target prioritization and 

computational drug repurposing for COVID-19. 
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COVID-19 transcriptome-wide association study 

We perform a transcriptome-wide association study (TWAS) leveraging 2 transformed cell lines 

and 40 peripheral tissue models from two cohorts (GTEx v86 and STARNET7; n=16,738 reliably 

imputed genes; Supplementary Table 1) by using GWAS summary statistics for 7 COVID-19 

phenotypes4 (Supplementary Table 2). Overall, for COVID-19 phenotypes we observe a very high 

correlation among the imputed transcriptomes of different tissues (range of Pearson’s r is 0.68 to 

0.93; Supplementary Figure 3) even though the imputed transcriptomes of the COVID-19 

phenotypes are quite diverse (Supplementary Figure 4; more detailed description of the different 

phenotypes can be found in the Supplementary Appendix 1). 17 genes are significantly 

associated with COVID-19 infection and outcomes (FDR-adjusted p ≤ 0.05) when considering all 

7 phenotypes and 42 tissues: CCR1, CCR2, CCR3, CCR5, CXCR6, DNPH1, DPP9, IFNAR2, 

IL10RB, IL10RB-AS1, KCNN3, KIF15, OAS1, OAS2, OAS3, PDE4A and TMEM241. Some of 

these genes are identified in more than one COVID-19 phenotype (e.g. IL10RB and IFNAR2) 

whereas others (e.g. OAS2) are only associated with one (Supplementary Figure 5); the GWAS 

contributing the highest number of gene-trait associations is “hospitalized COVID vs. population” 

(B2 phenotype as per COVID-19 HGI; 13 out of the 17 genes are captured; Supplementary Figure 

5). We also observe that most gene-trait associations are detected in Blood (STARNET) and 

Mammary artery (STARNET), identifying 7 and 6 gene-trait associations, respectively 

(Supplementary Figure 2). For the remainder of our analysis we thus focus on the B2 phenotype 

which we will refer to as “COVID-19 associated hospitalization” as: (1) it is the highest powered 

GWAS and (2) conceptually, it captures genetic determinants protecting individuals both from 

infection (since the control group could have been SARS-CoV-2 negative or non-hospitalized 

positive) and from severe outcomes of COVID-19 - unsurprisingly, B2 exhibits moderate GReX 

correlation with both these phenotypes (Supplementary Figure 4). 

When considering only the COVID-19 associated hospitalization (B2) phenotype, we identified 88 

gene-trait-tissue associations corresponding to 26 unique gene-trait associations (AFF3, CCR1, 

CCR2, CCR3, CCR5, CDCP1, CRHR1, CXCR6, DPP9, IFNAR2, IL10RB, IL10RB-AS1, KANSL1-

AS1, KCNN3, LINC02210, LRRC37A2, LRRC37A4P, MAPT, OAS1, OAS3, PDE4A, PIGK, 

PLEKHM1, PSMD2, THBS3, ZNF778; FDR-adjusted p ≤ 0.05 while only considering B2; 

Supplementary Appendices 3 to 9 for all results split by COVID-19 phenotype) across 11 genomic 

regions (Figure 2A for protein-coding genes). Significant genes are enriched for pathways mainly 

involved in immune host response (Figure 2B). Overall, these results indicate that genetically-

associated changes in genes involved in immune related pathways predispose individuals to more 

severe COVID-19 outcome. 

Gene target prioritization identifies IL10RB as key regulator  

Towards prioritizing genes as putative molecular targets for intervention, we next ask the 

question: “perturbation of which gene would be potentially therapeutic by antagonizing the GReX 

associated with COVID-19 susceptibility?”. We answer this question with a computational shRNA 

antagonism approach5,16 (Supplementary Figure 1) whose output we integrate with the TWAS 

findings to identify IL10RB as the top significant candidate for gene targeting with a proposed 

intervention of downregulation (Figure 2C). IL10RB is a gene predicted to be significantly 
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upregulated in individuals susceptible to COVID-19 hospitalization and whose downregulation 

significantly antagonizes the polygenetically driven gene expression differences (GReX) 

associated with COVID-19 hospitalization (Supplementary Figure 2C left panel). Based on mouse 

models, IL10RB overexpression increases susceptibility to lethal bacterial superinfections in the 

lung both via postviral increased IL-10 signaling which dampens the immune response48, and by 

direct disruption of the lung epithelial barrier via increased expression of type III interferons 

(IFNλ)49. IFNAR2, which is in the same locus (less than 2kbp from IL10RB), is not significant in 

this analysis, thereby nominating IL10RB as the most promising candidate in the locus, while 

deprioritizing IFNAR2.  
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Figure 2. Transcriptome-Wide Association Study (TWAS) for COVID-19 associated 

hospitalization (hospitalized COVID vs. the general population) identifies associated 

genes, pathways and aids in identification of druggable gene targets. Panel A. FDR-

significant TWAS results for COVID-19 susceptibility across all tissues. Box color indicates gene-

trait-tissue association z-scores. Gray squares represent genes whose genetically regulated gene 

expression (GReX) could not be imputed. ***, ** and * correspond to FDR-adjusted p values of 

association equal or less than 0.001, 0.01 and 0.05 respectively. Dendrogram on the bottom edge 

is shown from Ward hierarchical clustering for tissues based on all GReX (not just FDR-significant 

results). Displayed results are limited to protein coding genes; cytogenetic location (at band level 
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resolution) is also provided on the left of each gene. Panel B. Enrichment of COVID-19 TWAS 

associated genes for biological processes and canonical pathways. Odds ratio with 95% 

confidence interval (CI) is plotted for the significant enrichments of TWAS gene-trait associations 

from all tissues. Pathways are ranked based on estimated enrichment odds ratio. Analysis is 

limited to protein coding genes and excludes genes residing in the major histocompatibility 

complex (MHC) on chromosome 6. Enrichments that are FDR significant are annotated as 

follows: *, ** and *** for FDR-adjusted p≤0.05, 0.01 and 0.001 respectively; Fisher’s exact test. 

Panel C. Prioritization of candidate gene targets to reverse TWAS gene-trait associations. p value 

is estimated based on the joint statistic of two approaches (𝑧𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑 = 𝑧𝑇𝑊𝐴𝑆  +

 𝑝𝑠𝑒𝑢𝑑𝑜 𝑧𝐺𝑅𝑒𝑋 𝑎𝑛𝑡𝑎𝑔𝑜𝑛𝑖𝑠𝑚) against the null. FDR-significant candidate genes are labelled orange. 

The direction of the predicted therapeutic intervention (upregulation or downregulation) is 

illustrated. IL10RB, PMVK and ZNF426 are FDR-significant target genes (n=4,302 imputed genes 

with reliable shRNA signatures).  

Predicted upregulation of blood IL10RB is associated with COVID-

19 severity and increased incidence of respiratory failure 

The COVID-19 related hospitalization GWAS has utilized a broadly-defined phenotype to increase 

cohort inclusion and sample size. To enhance granularity and phenotyping depth of IL10RB GReX 

association with COVID-19 associated hospitalization, we determine whether predicted up-

regulation of blood IL10RB predicts COVID-19 outcome severity and death in individuals who 

tested positive for SARS-CoV-2. We perform individual GReX imputation and association analysis 

in the VA’s Million Veteran Program (MVP)17, where severity of COVID-19 related outcomes is 

deduced from EHR of COVID-19 positive cases (n=23,226; cohort characteristics in 

Supplementary Table 7). IL10RB GReX is associated with increased incidence of COVID-19 

related death in individuals of European descent (EUR; logistic regression; OR=1.13; Bonferroni-

adjusted p=0.01; n=14,262) and in the trans-ethnic meta-analysis (logistic regression; OR=1.12; 

Bonferroni-adjusted p=0.002; n=23,226) (Figure 3A and Supplementary Figure 6); IFNAR2 GReX 

is not associated with COVID-19 death. However, both IL10RB and IFNAR2 GReX are associated 

with more severe COVID-19 clinical outcomes in EUR, participants of African descent (AFR) and 

in the transethnic meta-analyses (ordinal logistic regression; Figure 3A and Supplementary Figure 

6; Supplementary Table 8). 

To better understand the phenotypic variation linked with IL10RB and IFNAR2 imputed 

expression, we perform a phenome-wide association study (PheWAS) utilizing the IL10RB and 

IFNAR2 GReX models in MVP (Figure 3B; cohort characteristics in Supplementary Table 7; 

Supplementary Appendix 10 for complete set of results). For IL10RB, among significant results, 

we found that COVID-19 related GReX dysregulation (higher IL10RB GReX in blood) was 

positively associated with respiratory failure and tracheostomy complications and disorders of the 

circulatory system such as heart aneurysms and non-rheumatic mitral valve disorders as well as 

cholecystitis without cholelithiasis and inflammatory conditions of the jaw. On the other hand, it 

was negatively associated with intracerebral hemorrhage, infections of the skin (e.g. lower limb 

cellulitis) and genitourinary system (e.g. cystitis and urethritis), type 1 diabetes, kidney disease 

(e.g. renal osteodystrophy), schizophrenia, functional disorders of the digestive system and 
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bladder, and overall unspecified debility and sequela. COVID-19 related IFNAR2 GReX 

dysregulation (lower IFNAR2 GReX in blood) shares some positive associations with IL10RB 

such as respiratory failure and heart aneurysms but is independently associated with congestive 

heart failure, (chronic) renal failure and dialysis, delirium dementia, stomach cancer and 

antisocial/borderline personality disorder. On the other, we identify negative associations with 

cerebral ischemia, specific infections (cellulitis of foot, toe and pyoderma, acute osteomyelitis), 

arthropathies, functional disorders of the digestive system and bladder, and overall unspecified 

debility and sequela. Overall, in addition to predisposing individuals to COVID-19 related 

hospitalization and outcome severity, increased IL10RB and decreased IFNAR2 GReX are 

associated with respiratory failure independent of COVID-19 exposure.  
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Figure 3. Association of blood IL10RB and IFNAR2 GReX with COVID-19 related outcomes 

and non COVID-19 phenotypes. Panel A. GReX of IL10RB and IFNAR2 is imputed in 23,216 

individuals in the MVP cohort for whom COVID-19 outcome severity information is available. For 

COVID-19 related death (left panel) we check the association of GReX with the outcome of 

COVID-19 related death (4.8% of this cohort) under logistic regression models for IL10RB and 

IFNAR2 GReX while adjusting for age, sex, Elixhauser’s comorbidity score and ancestry-specific 

population structure. For COVID-19 outcome severity, we applied an ordinal regression model 

(same predictors and covariates as above) using an outcome scale corresponding to mild (74.9% 

of the cohort), moderate (17%), severe (3.2%) COVID-19 related outcomes and death (4.8%). 

EUR, AFR and HIS refer to harmonized European, African and Hispanic ancestry respectively 

and the sample sizes are provided in the legend at the top. For both panels, the population of 

Asian ancestry (n = 266) is included in the fixed effects meta-analysis (Population: “ALL” in the 

graph) but not plotted. ***, ** and * correspond to Bonferroni-adjusted association p values (for 

ngenes × noutcomes for each population cohort) of equal or less than 0.001, 0.01 and 0.05 respectively. 

Panel B. PheWAS of IL10RB and IFNAR2 blood GReX for individuals of European descent in 

the MVP cohort (n=296,407). Phenotypes are grouped in categories shown in the x-axis, y-axis 

represents -log10(Bonferroni-adjusted p values). The data points are triangles that face to the top 

or bottom for positive and negative association with GReX respectively; the magnitude of the 

effect size is represented by the triangle size and the color corresponds to the phenotype 

category. Only the top 20 associations are labeled (orange for IFNAR2 and blue for IL10RB); full 

results are provided in Supplementary Appendix 10. Horizontal black line corresponds to 

Bonferroni-adjusted p = 0.05.  
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Increased IL10RB blood expression predicts worse COVID-19 

outcome 

Transcriptome imputation models can only partially explain the variance in observed IL10RB and 

IFNAR2 gene expression (R2
CV is 0.099 and 0.278 respectively). To further confirm the 

association of IL10RB with COVID-19 severity, we utilize blood gene expression profiling data 

from COVID-19 patients and controls at the Mount Sinai COVID-19 Biobank23 (cohort 

characteristics in Supplementary Table 9 and Supplementary Table 10). We establish a direct 

significant association between observed blood IL10RB expression and severe COVID-19 

outcome, including end-organ damage. The levels of IL10RB expression are gradually increased 

with disease severity with higher effect size in the most severe COVID-19 patient group (end-

organ damage) against all other groups (Figure 4A). Similar analysis for blood IFNAR2 gene 

expression failed to demonstrate a robust association. 

IL10RB overexpression increases in vitro SARS-CoV-2 viral load. 

It has recently been shown that SARS-CoV-2 viral load in patients is associated with increased 

disease severity and mortality50. To explore the effect of IL10RB and IFNAR2 expression on 

SARS-CoV-2 viral load we perform a series of in vitro experiments where we manipulate gene 

expression levels with short hairpin (shRNA; for down-regulation) and clustered regularly 

interspaced short palindromic repeats activation (CRISPRa; for up-regulation) and quantify the 

SARS-CoV-2 viral load (Figure 4B). Overall, we test (in technical triplicates) down-regulation of 

IL10RB and IFNAR2 by shRNA (Supplementary Figure 7; Supplementary Figure 8) and up-

regulation of IL10RB by CRISPRa (by using four different guide RNAs; Figure 4C). We perform 

these experiments in NGN2-glutamatergic post-mitotic neurons32 derived from human induced 

pluripotent stem cell (hiPSC) since these cells can be effectively infected by SARS-CoV-2, allow 

replication of the virus and can serve as a model cell system for SARS-CoV-251. Indeed, we find 

that the gene expression dysregulation caused by SARS-CoV-2 infection in our model cell system 

mimics the transcriptional signatures corresponding to SARS-CoV-2 (and other 

betacoronaviruses) infection of a diverse range of cell types52 (Figure 4D; Supplementary Figure 

9). 

We observe a significant increase in SARS-CoV-2 viral load (Figure 4C; p=0.0087; unpaired t-

test) after IL10RB overexpression using 4 different guide RNAs (gRNAs) (Figure 4C and 

Supplementary Table 11). Competitive pathway enrichment analysis demonstrates that  

overexpressing IL10RB in non-infected cells leads to the induction of COVID-19 relevant 

pathways implicated in vascular, immune system and extracellular matrix processes (Figure 4D), 

which are also activated by SARS-CoV-2 infection (Figure 4D). Surprisingly, even in the absence 

of SARS-CoV-2, IL10RB over-expression leads to transcriptional changes reminiscent of 

betacoronavirus infection (Supplementary Figure 9). In the rescue experiment, shRNA knock-

down of IL10RB does not reduce IL10RB levels robustly, most likely due to low basal expression 

(Supplementary Figure 7; Supplementary Table 12. On the other hand, we are able to 

successfully knock down IFNAR2 (higher basal expression; Supplementary Figure 8; 

Supplementary Table 12) which leads to a decrease in SARS-CoV-2 load. Interestingly, SARS-

CoV-2 infection induces expression of IFNAR2 (Supplementary Figure 8; Supplementary Table 
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13) but not IL10RB (Supplementary Figure 7; Supplementary Table 13). This suggests that the 

increased IFNAR2 (but not IL10RB) levels observed in the most severe group of COVID-19 

patients (Figure 4A) may reflect the increased likelihood of SARS-CoV-2 viremia in those 

patients50.  

 
Figure 4. Increased IL10RB expression is associated with worse COVID-19 outcomes in 

vivo and increased SARS-CoV-2 viral load in vitro. Panel A. Increased IL10RB expression is 

associated with worse COVID-19 outcomes in vivo. *, ** and *** for FDR-adjusted p≤0.05, 0.01 
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and 0.001 respectively Panel B. In vitro experimental overview. Panel C. CRISPRa gRNAs 

(IL10RB-1, IL10RB-2, IL10RB-3 and IL10RB-4) were used to overexpress IL10RB in hiPSC-

derived NGN2-glutamatergic neurons. ***, ** and * correspond to p values from the linear model 

of equal or less than 0.001, 0.01 and 0.05 respectively. For the SARS-CoV-2 viral load (right 

panel) we perform pairwise comparison with unpaired t-test; ***, ** and * correspond to p values 

equal to, or less than, 0.001, 0.01 and 0.05 respectively. Panel D. Competitive gene set 

enrichment analysis in hiPSC-derived NGN-2 glutamatergic neurons. On the left side we are 

testing enrichment for canonical pathways and biological processes (Gene ontology) that are 

significantly enriched (FDR<0.05) in SARS-CoV-2 infection (top row) and on the right side for 

gene sets that correspond to betacoronavirus infections across different cell systems52 (only 

significant results are shown; FDR < 0.05). 

Computational drug repurposing analysis and population-level 

validation of top candidate compounds against COVID-19 

incidence 

We perform computational drug repurposing to identify compounds53 with the potential to reverse 

the GReX associated with COVID-19 related hospitalization. The top 10 candidates are 

imiquimod, nelfinavir, saquinavir, everolimus, azathioprine, nisoldipine, cerulenin, pyrvinium-

pamoate, retinol and selamectin (Supplementary Table 5; all results in Supplementary Appendix 

11). After excluding the compounds that are not currently FDA approved (cerulenin, pyrvinium-

pamoate and selamectin), we determine whether a compound is associated with reduced COVID-

19 incidence. We identify 755,346 veterans who have received the SARS-CoV-2 test from the 

broader Veterans Health Administration cohort (over 9 million US veterans) and estimate the 

likelihood of a positive SARS-CoV-2 test when the candidate compound is prescribed within 90 

days prior to the test. We exclude from the analysis nelfinavir, saquinavir and nisoldipine 

(Supplementary Table 14), as they have been prescribed in less than 100 individuals. For the 

final population-level analysis, we consider the remaining four compounds: imiquimod, 

everolimus, azathioprine and retinol. We also group compounds by mechanism of action, no 

mechanism of action was significant when adjusting for multiple test correction but the top class 

was anti-HIV protease inhibitors (Supplementary Table 5). 

In the individual compound analysis (Supplementary Appendix 12), 2 out of 4 compounds are 

significantly associated with a lower likelihood of testing positive for SARS-Cov-2 (Figure 5) after 

adjusting for important epidemiologic factors, medication indications and propensity to get tested 

(Supplementary Table 6; Supplementary Appendix 12). Azathioprine (odds ratio, 0.69; 95% CI, 

0.62 to 0.77) and retinol (oral administration; odds ratio, 0.81; 95% CI, 0.72 to 0.92) are 

significantly associated with a strong decrease in COVID-19 incidence (Figure 5). Imiquimod, 

which is administered in the form of a topically applied cream (either 3.75% or 5%), has been 

shown to have significant systemic absorption both in humans54 and mouse models55 but it is 

unclear if it is sufficient to have a systemic effect. For everolimus we had an order of magnitude 

fewer exposed individuals so we may not be sufficiently powered to detect an effect. When 

grouping medications by mechanism of action, the top category is anti-HIV protease inhibitors. 

Given how HIV medications are currently prescribed in highly active antiretroviral therapy 
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(HAART) cocktails, we perform the analysis within HIV patients receiving antiretroviral treatment 

and compare the individuals who take anti-HIV protease inhibitors against the individuals who 

take other antiretroviral medications while adjusting for important covariates, as with the individual 

medication analysis above; overall these two groups have similar medical comorbidities 

(Supplementary Appendix 12). We find no effect of anti-HIV protease inhibitors against COVID-

19 incidence (Figure 5; Supplementary Appendix 12). 

 
Figure 5. EHR validation of computational drug repurposing. Top individual compounds 

(imiquimod, everolimus, azathioprine and retinol; left panel) and the top compound category (anti-

HIV protease inhibitors; right panel) are evaluated to determine whether they are associated with 

a decreased likelihood for a positive SARS-CoV-2 test. For the individual compound analysis, all 

individuals that had a SARS-CoV-2 test and could be matched are considered (n=755,346). The 

number of individuals that tested positive vs. negative for SARS-CoV-2 are provided in the y-axis 

labels. For the top compound category (anti-HIV protease inhibitors), the group of those receiving 

anti-retroviral treatment with an anti-HIV protease inhibitor (n=1,105) are compared against those 

that are receiving other anti-HIV medications (n=5,450). The effect size (log(OR)) is plotted along 

with 95% CI error bars. ***, ** and * correspond to Bonferroni-adjusted association p values equal 

to, or less than, 0.001, 0.01 and 0.05, respectively.   
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Discussion 

Our multidisciplinary translational genomics framework integrates genetic variation, GREx and 

perturbargen signature libraries to identify druggable gene targets and readily available 

compounds that can be repositioned for COVID-19 (Figure 1). Transcriptomic imputation5,11,12 

serves as the genomics backbone of this approach and it trades off a part of SNP heritability in 

exchange for GReX56 which has translational potential. For gene target prioritization, this potential 

is realized with the integration of the multi-tissue TWAS results with an shRNA signature library15 

to identify genes whose perturbation can reverse the disease-associated GReX. This shRNA 

GReX antagonism approach identifies IL10RB (21q22.11) as the most promising gene target and 

overcomes traditional limitations of GWAS and TWAS analyses in identifying key genes within a 

gene cluster. Based on existing approaches, IL10RB would not have been the top candidate for 

further investigation. First, the index SNP for COVID-19 susceptibility in 21q22.11, rs1305072857, 

falls within an intronic region of IFNAR2 (less than 24kbp from IL10RB). In addition, integrating 

genotype-gene expression datasets cannot identify the most likely causal gene in this locus since 

the index SNP is associated with gene expression changes of both IFNAR2 and IL10RB57. 

Similarly, the genes can only be partially prioritized with targeted individual imputation (Figure 3A; 

IFNAR2 is not associated with COVID-19 death but is associated with COVID-19 severity) and 

cannot be prioritized on TWAS based on summary statistics (Figure 2A) even when considering 

splicing58 due to co-regulation59 (Supplementary Figure 10). IL10RB is, in part, prioritized because 

it has a more uniform imputed transcriptional dysregulation across tissues (predominant down-

regulation; Figure 2A, Supplementary Figure 11). On the other hand, IFNAR2 is expected to be 

up-regulated in some tissues and down-regulated in others58 (Figure 2A, Supplementary Figure 

11), e.g. there is a consistent, predicted, down-regulation in adipose tissue and an opposing up-

regulation in muscle tissue (Supplementary Figure 12). Unfortunately, technological innovations 

that would allow differential targeting of tissues are not readily available; thus, our gene target 

prioritization approach inherently penalizes opposing effects on GReX by integrating multiple 

tissues (Supplementary Figure 1). 

Towards validating IL10RB as a suitable molecular target, we establish a direct association of 

increased IL10RB GReX (Figure 3A) and expression (Figure 4A) with worse COVID-19 clinical 

outcomes and death. Importantly, these results provide external validity for our findings beyond 

individuals of European ancestry60 by performing ancestry-specific analysis for GReX (Figure 3A) 

and leveraging a diverse patient cohort for expression profiling (Figure 4A). Finally, isogenic 

manipulation of IL10RB in a model cell system for SARS-CoV-251 reveals that inducing IL10RB 

expression results in priming of SARS-CoV-2 pathways (Figure 4D) and increased SARS-CoV-2 

viral load upon infection (Figure 4C) which is associated with worse COVID-19 outcomes50. 

IL10RB serves as a receptor for members of the extended IL-10 family of cytokines 

(IL10RA2IL10RB2 heterotetramer for IL-10; IL10RB heterodimers with IL22RA1, IL20RA and 

IFNLR1 for IL-22, IL-26 and IFNL1/IFNL2/IFNL3 respectively) which emerged before the adaptive 

immune response and are essential in modulating host defense mechanisms, especially in 

epithelial cells, to limit the damage caused by viral and bacterial infections61. This family of ligands 

has diverse and often contradicting roles in host response with an undetermined extent of 

functional cross-talk between them62; thus, further molecular dissection will be required to identify 

the causal signaling pathway(s) of IL10RB in COVID-19 susceptibility. IL-10 was found to be an 
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important mediator of enhanced susceptibility to respiratory post-viral bacterial superinfections in 

a mouse model48. IL-22 promotes antibacterial activity63 and enhances tissue regeneration and 

wound healing64. IL-26 is poorly understood. Finally, IFN-λs (IL-28/IL29) are induced by viral 

infection and show antiviral activity65,66; unsurprisingly, in a COVID-19 mouse model 

administration of IFN-λ1a diminishes SARS-CoV-2 replication67. However, the participation of 

IFN-λs in damaging pro-inflammatory responses remains to be evaluated since recent mouse 

model studies showed that: 1) viral RNA induced IFN-λ production causes direct disruption of the 

lung epithelial barrier and increases susceptibility to bacterial superinfections49 and 2) IFN-λ 

signaling aggravates viral infection by impairing lung epithelial regeneration68. Clinical outcomes 

from pegylated IFN-λ1a clinical trials against COVID-19 will provide evidence about the desired 

modulation direction of this pathway in COVID-19 treatment (phase II clinical trials: 

NCT04343976, NCT04354259, NCT04534673 and NCT04344600). Possible next steps include 

the evaluation of readily available IL-10 neutralizing antibodies (e.g. BT063, Biotest; 

NCT02554019) and IL-22 neutralizing antibodies (e.g. ILV-094/095, Pfizer). While the molecular 

dissection of this COVID-19 susceptibility pathway is important, transiently down-regulating 

IL10RB with RNA interference (RNAi69) may be sufficient if a lung targeting approach is 

developed. 

We identify currently available medications that have the potential to reverse the polygenic nature 

of gene expression dysregulation associated with COVID-19 related hospitalization by applying a 

GReX-based computational drug repurposing approach5,16 in a separate analytic arm. We 

previously performed a validation of the overall approach and showed that compounds that were 

predicted to be therapeutic exhibited a progressive enrichment for higher physician-curated 

indication levels across a wide range of diseases (e.g. cardiovascular, autoimmune and 

neuropsychiatric)5. In this study, since there are no known treatments for COVID-19, we validate 

our approach by performing a population-level analysis to study the effect of candidate 

compounds against COVID-19 susceptibility. One of the limitations of this study is that, due to 

limited power, we are studying the effect of the compounds on COVID-19 incidence rather than 

COVID-19 severity. Since we have no direct evidence to support an effect of the compounds on 

COVID-19 disease progression, we can only provide recommendation for prioritization of 

compounds for follow-up in vitro and in vivo studies. The only compounds identified by the in silico 

analysis which performed well in the retrospective epidemiologic validation (Figure 5) are 

azathioprine and retinol. Immunosuppressive therapy (including azathioprine as a monotherapy 

or combination therapy) has been proposed to be beneficial in a small retrospective study70 but 

there is conflicting evidence regarding azathioprine treatment in a COVID-19 ferret model71. For 

retinol (vitamin A), a recent study of molecular simulations identified it as a potential ligand that 

may stabilize the closed conformation of the spike protein thus possibly reducing the opportunity 

for ACE2 interaction72; alternative mechanisms have been hypothesized but not experimentally 

tested73–76. In pursuit of a candidate medication class, the negative findings of the anti-HIV 

protease inhibitor population-level analysis (Figure 5) echo the recent results of the randomized 

controlled clinical trial that found no benefit in prescribing lopinavir-ritonavir in hospitalized adult 

patients77. Our computational drug repurposing pipeline positioned anti-HIV protease inhibitors in 

the first place due to nelfinavir and saquinavir (Supplementary Table 5) but these medications 

were prescribed to less than 0.5% of the individuals receiving anti-HIV protease inhibitors in the 

validation cohort (Supplementary Table 15). Thus, even though we have demonstrated that there 
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is no significant effect of the anti-HIV protease inhibitors as a medication class, nelfinavir and 

saquinavir may still be valuable candidates. In particular, nelfinavir is a promising compound 

worthy of further exploration based on a recent study highlighting its excelling anti-SARS-CoV-2 

in vitro activity and pharmacokinetic profile among the anti-HIV protease inhibitors that were 

tested78. In addition to the high anti-SARS-CoV-2 activity (EC50=1.13μΜ), selectivity index 

(CC50/EC50=23.32), Ctrough/EC50 ratio (3.43)78 and potent inhibition of SARS-CoV-2 spike (S) 

glycoprotein mediated cell fusion at ~10μΜ that would prevent the virus to avoid extracellular 

neutralizing antibodies79, we now provide GReX-based evidence for nelfinavir to antagonize 

predicted gene expression dysregulation in susceptible hosts. 
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