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Abstract: Infectious human diseases are often characterized by seasonal variation in incidence 

which produces recurring annual peaks with precise timing. Changing weather conditions such as 

temperature and humidity are known to affect virus transmission, but we consider the possibility 

that an intrinsic rhythm in susceptibility, entrained to annual cues, also contributes to seasonality. 

These two mechanisms produce different predictions about how the timing and amplitude of 

seasonal disease depend on environmental forcing. Using databases of health insurance claims and 

weather across U.S. counties, we find that the timing of winter-peaking diseases, but not their 

amplitude, scales with latitude. This latitude scaling is shared across many diagnosis codes 

involving multiple pathogens. Regression against simple models suggests an underlying limit 

cycle that, in temperate zones, is entrained to annual changes in irradiance, possibly a human 

circannual clock. 

 

Significance statement: Peak timing but not amplitude of seasonal disease scales with latitude, 

suggesting a circannual rhythm in host susceptibility. 
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Main Text  

 Seasonal variation in incidence is a common feature of infectious human disease (1-5) 

which has been documented even prior to the discovery of microbes (6, 7). However, the 

fundamental mechanisms underlying seasonal disease remain incompletely understood. Much 

work has sought to identify direct drivers of seasonal disease, whereby changing external weather 

conditions alter either pathogen transmission (8-10), survival (11-17), host behavior (18-21), or 

immune response (22). Decreased temperature, humidity, and exposure to sunlight have been 

shown statistically to precede the onset of seasonal respiratory infection in temperate zones (23-

28). However, attempts to demonstrate the effect of such conditions on the susceptibility of human 

subjects to rhinovirus have been inconclusive (29-31). Furthermore, it is difficult to reconcile these 

explanations of seasonality with the significant burden of respiratory illness in the tropics, where 

some seasonal variation is observed despite the warm and humid climate conditions year-round 

(32-37).  

 The search for direct environmental drivers of disease risk implicitly assumes that 

seasonality results from the external forcing of a system that would otherwise rest at a steady state. 

Here we consider an alternative hypothesis: that the underlying biology may be intrinsically 

oscillatory, so that disease susceptibility depends in part on the internal state of the host. Self-

sustaining oscillations are widespread throughout biology, including circadian clocks (38-40), the 

menstrual cycle (41), circatidal rhythms (42, 43), and circannual rhythms (44-52). Though most 

disease models have not considered internal oscillator mechanisms, it has been previously 

proposed that the seasonal pattern of infectious disease might reflect an endogenous physiological 

cycle in humans (32, 53, 54). These two classes of mechanisms — external forcing versus the 

entrainment of a self-sustaining oscillator — produce qualitatively different predictions about how 
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the timing or amplitude of seasonal disease will respond to the relative strength of environmental 

inputs. While it is not feasible to do controlled laboratory experiments on annual rhythms in 

humans, the existence of large-scale health insurance claims data sets (55) coupled with detailed 

weather records from across the U.S. (56) allow us to quantitively study how these features of 

seasonal disease scale with climate and geography.  

 Driven systems, analogous to an adult pushing a child on a swing, have a stable steady state 

in the absence of external forcing. When forcing is weak, one can approximate a driven oscillator 

with linearized dynamics (see Supplementary text). Two qualitative features of the driven response 

emerge. First, the amplitude of the response is proportional to the input strength (Fig. 1A). Second, 

the phase of the output oscillation is not dependent on input strength. In contrast, self-sustaining 

oscillators are described by limit cycles. In the swingset analogy, the child pumps the swing herself 

and reaches a defined amplitude without external pushes. The simplest model of a weakly driven 

limit cycle is a phase oscillator where external input modulates the angular velocity (57). This 

model can be solved analytically with the following general results: if the natural period of the 

oscillator and the driving period are mismatched, stable entrainment only occurs if the amplitude 

of the input is sufficiently large (see Supplementary text). The phase of an entrained oscillator 

varies inversely with input strength as the entrainment boundary is approached (Fig. 1A). Thus, a 

self-sustaining oscillator mechanism implies a nearly constant amplitude, a phase that depends on 

input strength, and the presence of an entrainment boundary. To discriminate between these 

possibilities — the response of a stable system to oscillatory forcing vs. an underlying limit cycle 

oscillator— we studied how seasonal disease timing scales with the properties of the environment 

across the United States.  

Results 
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We analyzed health insurance claims and climate conditions across 1,707 diverse U.S. 

counties. Our analysis combines 73 of the most common winter-peaking diagnoses (Table S1), 

which are infections of the upper and lower respiratory tracts and related conditions. Disease 

timing and amplitude were computed from 30-day averaged incidence rates across a sample of 4 

winter seasons, comprising a total of more than 68 million diagnoses. Representative plots of 

disease incidence and temperature for three geographically disparate U.S. counties are displayed 

in Fig. 1B. Similar amplitudes of seasonal infection can be observed across the diverse geography 

and climates of the continental U.S., with peaks occurring at very different temperatures in 

different locations. We computed the mean value and standard errors of peak day and amplitude 

(as peak/trough ratio) across the 4-year sample (Fig. 1C). Notably, we observe low year-to-year 

variation in both quantities (Dataset S1). Standard errors associated with the peak days (dashed 

lines) in Fig. 1C are less than 3 days. Thus, the aggregate dynamics of seasonal disease on annual 

timescales reflect a highly deterministic underlying process rather than stochastic bursts of 

infection. Lastly, the pictured counties demonstrate a general trend found in peak timing across 

the country; peak day occurs systematically earlier at lower latitudes. Notably, the scaling of phase 

with latitude has been established as a general feature of circannual rhythms in animals, which are 

entrained to photoperiodic cues (44, 49-52).  

Plotting average peak day by county onto a map of the United States reveals the 

relationship between geography and phase (Fig. 2A). The density map in Fig. 2B shows the 

approximately linear trend relating latitude to peak day. Consequently, the statistical association 

between peak day and latitude is highly significant (𝑅 = 0.44, 𝑝 = 2.18  10−81, linear slope 𝑚 =

0.83). To assess whether geographic or climate factors are most predictive of peak day, we devised 

a test using 𝐿1 regularized regression (LASSO). A series of LASSO fits predicting peak day from 
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geographic, climatological, and demographic covariates were computed under various 

regularization strengths (Fig. 2C). As the 𝐿1 penalty increases, most coefficients tend toward zero, 

revealing which variables provide the greatest predictive power. The climate variables considered 

were the temperature, specific humidity, and solar irradiance of each county in the month 

preceding the annual peak, which have been implicated by prior studies as drivers of seasonal 

disease (23-25, 28, 36). However, the results of our LASSO fits indicate that latitude is the best 

predictor of peak timing. Latitude alone explains ~20% of the observed variance (Fig. 2C, column 

4), while the inclusion of climate factors only improves the model by an additional 10% (column 

1). Mean peak day within geographic bands increases monotonically with latitude (Fig. 2D). 

 We sought to address whether this phase-latitude trend is due to a specific diagnosis or 

specific pathogen which might dominate seasonal trends. In fact, the linear slope of the phase-

latitude trend is robust even when the top 10 most common diagnoses, comprising over 70% of 

the dataset, are removed (Figure S1A). We also detected a consistent phase-latitude slope when 

analyzing only diagnoses for streptococcal sore throat, the most common code associated with a 

specific pathogen (Figure S1B). Thus, we conclude that dependence of seasonal disease timing on 

latitude is unlikely to be caused by idiosyncratic properties of a specific pathogen but is instead a 

shared feature of many seasonal conditions. 

Compared to the timing of annual peaks, disease amplitude does not vary strongly with 

latitude (Fig. 3A). This suggests that the prevalence of winter-peaking diseases is not directly 

linked to the severity of winter weather (e.g. cold, dry air) which varies markedly across the U.S. 

The statistical association between latitude and amplitude is comparatively weaker (Fig. 3B, 𝑅 =

0.07, 𝑝 = 3.07  10−3). Our LASSO models indicate that the weak association between latitude 

and amplitude may arise from collinearity with demographic factors such as population size (Fig. 
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3C). The larger amplitude in rural, less-populous counties may derive from behavioral, 

socioeconomic, or diagnostic differences. Taken together, the clear phase-latitude relationship and 

relative lack of amplitude scaling with geography are consistent with the hypothesis that an 

underlying human circannual clock affects disease susceptibility; these scaling behaviors are 

hallmarks of an entrained self-sustaining oscillator.  

Can a limit cycle oscillator with environmental time-series as inputs recapitulate disease 

timing better than a driven harmonic oscillator? To test this, we regressed the disease incidence in 

each county against generic models of driven system and a self-sustaining oscillator (see 

Supplementary text). Model inputs were regressed to an optimal linear combination of 

temperature, specific humidity, and solar irradiance derived from time series weather data for each 

county. Using the models, we assessed which mechanism was best able to explain the observed 

phase-latitude trend. In the health insurance claims data set, peak day increases at a rate of 0.83 

days per degree latitude (Fig. 4A).  Peak days predicted by the best-fit driven model, which favored 

temperature and specific humidity as inputs (Table S2), only constitute an increase of 0.06 days 

per degree latitude (Fig. 4B, 𝑅 = 0.09, 𝑝 = 1.64  10−4). This finding suggests that the phase 

differences observed across latitudes cannot be explained solely by local weather time-series.  In 

comparison, peak days predicted by the phase oscillator exhibit a dependence on latitude similar 

to the observed trend (Fig. 4C, 𝑅 = 0.87, 𝑝 < 1.80  10−308), and the best fit for its input function 

is only dependent on solar irradiance; coefficients for other climate variables tended toward zero 

(Table S2). This demonstrates that a limit cycle mechanism can recapitulate the observed timing 

using a single input proportional to photoperiod, an established entraining cue of known circannual 

clocks  (49-52). Finally, the phase oscillator model can be extrapolated to predict the presence of 

an entrainment boundary near 18˚N degrees, within the tropics. 
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Discussion 

The two mechanisms considered here, direct response of a system to environmental forcing 

and the entrainment of a self-sustaining oscillator, are not mutually exclusive. A complete picture 

of disease dynamics likely involves both classes of mechanisms. Nevertheless, the success of a 

solar irradiance-entrained limit cycle model in predicting winter respiratory disease timing 

motivates further inquiry into the possibility of a circannual rhythm in disease susceptibility.  

In light of this hypothesis, we also revisit existing data on the seasonality of human 

infectious diseases. A prior analysis of influenza in Brazil found that annual peak timing in the 

sub-tropical region was delayed by upwards of one month as latitudinal distance from the equator 

increased, similar to the phase gradient we observe (33). Consistent with other studies (34, 37, 58, 

59), the fluctuation of influenza incidence was comparatively weak and irregular in the tropical 

part of Brazil. The geographic boundary delineating these two disparate dynamics was identified 

as 16˚S latitude, which is consistent with the entrainment boundary predicted by our model. More 

recently, this analysis has been extended to demonstrate a similar latitudinal gradient for influenza 

and respiratory syncytial virus spanning the temperate zones of both hemispheres (35). A study of 

influenza-like-illness in Ho Chi Minh City, Vietnam (11˚N latitude) identified nonannual 

dynamics with a dominant periodicity of ~200 days (37). Just outside of an entrainment boundary, 

the period of an oscillator is not constant and may slip between its natural period and the driving 

period; thus, the presence of nonannual fluctuations in tropical climates may also suggest an 

underlying circannual clock.  

Latitudinal gradients in disease timing are not limited to winter-peaking diseases. For 

example, nonpolio enterovirus infections in the U.S. were found to follow a similar latitudinal 

gradient in peak timing distributed between July and August (60). Prior to its eradication, the 
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timing of poliomyelitis cases mirrored the latitudinal gradient produced by nonpolio enteroviruses 

but delayed such that the mean timing in each state occurred about one month later. While there 

are many differences between summer enterovirus infections and winter respiratory diseases, their 

qualitatively similar gradients in timing might be explained in part by an intrinsic rhythm in host 

physiology, inducing peak susceptibility to different diseases at different points in the annual cycle, 

rather than in terms of the unique transmission properties and environmental drivers of each 

disease. However, more work is needed to understand the role of transmission in setting the timing 

of seasonal disease in both tropical and temperate climate contexts.  

While we favor an interpretation that near-annual limit cycle oscillator with a human 

circannual clock, another possibility is a self-sustaining oscillator that emerges from the 

epidemiology of infection, recovery, and subsequent fading of immunity. It is known that 

epidemiological models are also able to generate oscillations through the inclusion of seasonal 

forcing via periodic transmission rates (61-64), demographic fluctuations (65, 66), or constraints 

on healthcare intervention (67). The natural frequency of such models can vary widely depending 

on the birth and death rate of the population as well as the basic reproductive number of the 

pathogen. While hypothetical epidemiological rhythms for different diseases with a variety of 

natural frequencies could all be entrained to an annual cycle with a sufficiently strong input, in 

general such a scenario would result in a diverse spread of phase-latitude slopes for different 

diseases, some with opposite sign. 

The potential existence of a circannual rhythm in human disease susceptibility could 

provide a basis for understanding why many diverse pathogens peak annually in temperate 

climates. Not only could these insights be used to improve models of seasonal disease, but they 

should also inspire further experimental investigation into physiological evidence for a circannual 
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clock. Seasonal fluctuations in lymphatic organ size and immune function are well-established  

(68, 69). Recently, a human endocrine circuit was described that could explain seasonal changes 

in gland-size and the production of key hormones such as prolactin (70). The long-term regulation 

of prolactin is notably a feature of the sheep circannual clock (49). There may be other aspects of 

human physiology and social behavior that are linked to circannual rhythms in currently 

underappreciated ways; a better understanding of an underlying annual cycle in humans would 

have far-reaching impacts for basic biology, public health, and infectious disease epidemiology.  
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Figure 1. How seasonal disease scales with increasing input strength can be used to 

distinguish the underlying mechanism. (A) Two qualitatively different mechanisms can convert 

an oscillatory input (the environment) to an oscillatory output (seasonal disease). Driven systems 

have a steady state in a constant environment but can be driven to oscillate by external forcing 

(like a swing-set). In contrast, limit cycles produce spontaneous oscillations with fixed amplitude  

but can entrain to inputs that are close in frequency; a common example is the circadian clock. 

When these systems are weakly driven, varying input strength changes the amplitude of the driven 

oscillator without affecting its phase. Conversely, increased input strength shifts the phase of a 

limit cycle oscillator without affecting its amplitude. (B) Three representative U.S. counties show 

similar amplitudes of winter-peaking seasonal disease despite geographic and climate differences. 

Case counts and temperature values reflect 30-day averages in each county. (C) Peak day is 

estimated from 4 years (April 2005 – April 2009) of 30-day averaged incidence rates, indicated on 

the plot by a dashed line. The pictured counties anecdotally illustrate a trend in which the peak day 

occurs later at higher latitudes. 
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Figure 2. The timing of winter-peaking seasonal disease in the U.S. is most determined by 

latitude, not climate. (A) Average peak timing (days since winter solstice) of winter-seasonal 

disease shows a clear geographic trend. Peak day was computed individually for 1,707 U.S. 

counties across a 4-year sample and demonstrated precise timing. (B) Geographic latitude was 

found to be the strongest correlate with peak day. Pixel intensity indicates the number of counties. 

The linear fit line with a slope of 0.83 is shown in grey dashes; the Pearson correlation coefficient 

is displayed along the bottom right. (C) LASSO models of peak day indicate that latitude has more 

explanatory power than climate variables. Each column displays the coefficient of determination 

𝑅2 (bar graph) and coefficient values (heatmap) for a series of LASSO fits computed at a different 

regularization strength or 𝐿1 penalty. Coefficient magnitudes indicate the relative predictive power 

of each variable at a given regularization. Increasing the 𝐿1 penalty represents an accuracy-

simplicity tradeoff and favors latitude as all other coefficients tend to zero. (D) Mean peak day 

increases monotonically with distance from the equator across latitude-bands. 
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Figure 3. The amplitude of winter-peaking seasonal disease in the U.S. is only weakly 

influenced by climate and geography. (A) Average amplitude (peak/trough ratio) was computed 

individually for 1,707 U.S. counties across a 4-year sample and demonstrated low year-to-year 

variance. (B) Disease amplitude has a comparatively modest linear association with latitude. The 

linear fit line with a slope of 0.02 is shown in grey dashes; the Pearson correlation coefficient is 

displayed along the bottom right. (C) LASSO models of disease amplitude reveal that peak/trough 

ratio is enriched in arid, rural counties with low population size. Columns display the coefficient 

of determination 𝑅2 (bar graph) and coefficient values (heatmap) for a series of LASSO fits 

computed at a different regularization strength or 𝐿1 penalty. Coefficient magnitudes indicate the 

relative predictive power of each variable at a given regularization.   
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Figure 4. Simple models suggest that the timing of winter-seasonal disease can be described 

by an underlying limit cycle entrained to seasonal cues. (A) Schematic of regression analysis 

used to predict disease incidence from time-lagged weather data consisting of temperature, solar 

irradiance, and specific humidity. For each model, nonlinear least-squares optimization was used 

to find a single set of best fit parameters relating weather time-series to future disease incidence in 

1,707 U.S. counties across a 4-year sample. (B) The observed peak day versus latitude relationship 

compared to those predicted by generic driven oscillator and limit cycle oscillator models. Linear 

fit line is shown in grey dashes and the slope is labeled along the top of each plot. Each plot is 

offset such that peak day 0 corresponds to the linear fit of the southernmost county. (C) Because 

the driven linear oscillator can only recapitulate phase differences that are already present in its 

environmental inputs, it is unable to fully explain the observed phase-latitude relationship. (D) The 

limit cycle oscillator can reproduce the relationship between latitude and peak day seen in the data. 

Dashed red line indicates the predicted limit of entrainment in the model (approximately 18˚N). 
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Materials and Methods 

Data and code availability 

Python code and aggregated diagnosis/weather data can be downloaded at 

github.com/afschober/seasonaldisease. Summary statistics of peak day and amplitude are provided 

as a part of the Supplementary Information. 

Description of data sets used 

Health insurance claims and enrollees data for the years 2005 through 2009 were obtained from 

the Truven MarketScan database (55). Corresponding weather time-series were downloaded from 

Physical Solar Model (PSM) v3 hosted on The National Solar Radiation Database (NSRDB) 

website (56). Specific humidity was estimated from relative humidity by using the August-Roche-

Magnus formula to calculate saturation vapor pressure from the temperature record. Pressure and 

relative humidity records from the NSRDB were then used to get the mass mixing ratio of water 

vapor in air. Population sizes for each county were obtained from the U.S. Census Bureau 2010 

Census (71). Statistical analyses and nonlinear regressions were conducted using a custom Python 

script supported by the open-source SciPy (72) and statsmodels (73) modules.  

Identification of winter-peaking diseases 

Winter-peaking diseases were selected through an initial analysis of peak day and amplitude 

applied to nationwide counts of each diagnosis in the database. Claims data were first normalized 

by the total number of enrollees in each year then smoothed using a 30-day average. Diagnoses 

with peaks near the winter-solstice were included if they satisfied the following empirically chosen 

criteria: Nationwide estimates of amplitude (peak/trough ratio) were required to exceed a 1.5 fold-

increase with a standard error of less than 0.5. Standard errors of the corresponding peak times 

were also required to be less than 15 days. Health insurance claims that met the criteria but were 
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not a sign of infectious disease, such as routine vaccinations, were removed manually to obtain a 

final list of diagnosis codes for study (Table S1).  

County estimates of peak day and amplitude 

 County-specific time-series of seasonal disease were constructed by normalizing the total 

claims counts of the selected diagnoses (Table S1) by the corresponding number of enrollees for 

each year of data considered. Time-series of incidence rate were then smoothed using a 30-day 

backward average. Peak day and amplitude as peak/trough ratio in each county were estimated 

across a sample of 4 winter seasons spanning from April 2005 to April 2009. Because photoperiod 

is an established entraining cue of known circannual clocks (44, 49-52), the winter solstice was 

adopted as a reference point for peak day. Thus, peak timing was expressed in units of days since 

the winter solstice. Amplitude was estimated as the average ratio between the annual peak 

incidence rate and the preceding summer’s trough. Peak day and amplitude were first estimated in 

all 3,122 U.S. counties for which both health insurance claims and weather data were available. 

To account for limited sampling depth, counties with an outlier (more than three standard 

deviations from the mean) in peak day or amplitude were removed from the dataset. The collection 

of counties considered was further trimmed based on the following empirically determined noise 

criteria: The standard error of peak day was required to be less than 15 days and the standard error 

of amplitude was required to be less than 1.5. The resulting dataset is comprised of 1,707 U.S. 

counties for which both peak day and amplitude could be precisely determined. Summary statistics 

for these counties are provided in Dataset S1. In our analysis of a subsample of less common 

diagnoses (Figure S1A), the same noise thresholds were applied to reach a total of 1,183 counties. 

For the purpose of analyzing the peak timing of streptococcal sore throat alone (Figure S1B), the 
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noise thresholds were relaxed to 25 days of standard error in peak timing and a 5-fold standard 

error of amplitude, which resulted in the inclusion of 476 counties.  

LASSO models 

 𝐿1 regularized regression (LASSO) models were built for countywide peak day and 

amplitude data against an assortment of geographic, climatological, and demographic factors 

across an array of regularization strengths. Temperature, solar irradiance, and specific humidity in 

each county were represented by their average value during the month of December, which 

encompasses the days leading up to the first peaks of winter-seasonal disease. Peak day, amplitude, 

and their covariates were first statistically standardized by centering their means and normalizing 

by their standard deviations. Then, LASSO coefficients and the corresponding goodness-of-fit 

statistics at each regularization strength were calculated using the statsmodels Python module (73).  

Regression of disease time-series against oscillator models 

 Disease time-series were regressed against simple models of a driven oscillator and a phase 

oscillator using nonlinear least squares. The details of each model are provided in the 

Supplementary text. Nonlinear regressions were computed using the trust region reflective 

algorithm provided by the SciPy Python module (72).  
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