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Abstract Key high transmission dates for the year 2020 are used to create sce-
narios of the evolution of the COVID-19 pandemic in several states of Mexico for
2021. These scenarios are obtained through the estimation of a time-dependent
contact rate, where the main assumption is that disease behavior is heavily de-
termined by the mobility and social activity of the population during holidays
and other important calendar dates. First, changes in the effective contact rate
on predetermined dates of 2020 are estimated. Then, this information is used to
propose different scenarios for the number of cases and deaths for 2021. The fun-
damental assumptions behind this methodology are that the effective contact rate
incorporates the main superspreading transmission events during last year, that
each region has an independent epidemic not explicitly interconnected with other
regions and, finally, that there are no new highly transmissible SARS-CoV-2 vari-
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ants active during the timeline of the forecasts. Also, several levels of vaccination
are considered to analyze their impact on the projections of the epidemic curve.
The objective is to generate a range of scenarios that could be useful to evalu-
ate the possible evolution of the epidemic and its likely impact on incidence and
mortality.

Keywords Superspreading · SARS-CoV-2 epidemic · Kermack-McKendrick
models · Epidemic projections · Bayesian inference

1 Introduction

As a consequence of the COVID-19 epidemic’s impact on the regional and global
economy, one of the most relevant problems that every country faces is to decide
how and when businesses, public centers, tourism, schools, and universities can
safely reopen [21]. Therefore, it is of the highest importance to postulate plausi-
ble scenarios for the evolution of the SARS-CoV-2 pandemic to design effective
reopening strategies for decision-makers. This knowledge is even more pressing in
countries that lack of infrastructure (i.e., testing, contact tracing) to acquire a
more precise or, perhaps we should say, a less uncertain idea of the behavior of
the pandemic on days or, ideally, weeks into the future.

During 2020, much effort was centered on projecting the fate of the COVID-19
pandemic and evaluating the efficacy of the mitigation strategies adopted to con-
tain it [7,14]. The transmission dynamics of the pandemic has been modeled using
many different methodologies, several of them centered on estimating the effec-
tive reproduction number Rt or using some version of the well-known Kermack-
McKendrick model [8,15,28,33].

Around the world, nonpharmaceutical interventios (NPIs) vary in strength.
Examples include lockdowns, use of face masks, regulations on the number of
people allowed in meetings, and so forth. They range from strict and mandatory
enforcement by the governments to a voluntary personal decision. The rationale
behind any particular version of a mitigation strategy followed in each country
or region is generally based on local or national conditions that intermix public
health, economic and political factors and perspectives [4]. One factor, however,
that has shown to be decisive in the success or failure of a given containment or
mitigation strategy and that has show remarkable difficulty to control or project is
human behavior. Recently, some efforts in modeling this topic have been reported
[3].

In Mexico, states present different shapes of epidemic curves. For example,
Fig. 1 shows the epidemic curves of Mexico City, Queretaro state, and Tamaulipas
state until May 2021. There are some features in these curves worth describing.
One is the initial slow growth of the epidemic that seems almost linear in Mexico
City and Queretaro state with a shorter growth period in Queretaro state; the
second is the long plateau that develops in Mexico City and a much shorter one in
Queretaro state, and the third an epidemic curve with two peaks in Tamaulipas.

The initial quasi-linear growth of the epidemic cannot be explained by classi-
cal models. Previously it has been have argued that the initial slow growth was a
consequence of an early application of largely voluntary mitigation measures [1].
The first recorded case in Mexico occurred by the end of February 2020, and the
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Fig. 1 Daily number of COVID-19 confirmed cases by symptoms onset until May 24, 2021
for A) Mexico City, B) Queretaro state and C) Tamaulipas state.

first mitigation measures were applied 25 days later, on March 23, 2020. Moreover,
there were superspreading events in Mexico City during Easter celebrations (April
6-12) and early May (April 30 to May 10) that shifted the day of maximum inci-
dence to the end of May [1,26], and pushed the epidemic into a quasi-stationary
state characterized by values of Rt ≈ 1. This behavior, observed around the world,
has been explored in [16,27,31]. In particular,
[31] claim that this quasi-linear growth and the maintenance of the effective re-
production number around Rt ≈ 1 for sustained periods involves critical changes
in the structure of the underlying contact network of individuals.

Superspreading events are indeed associated to heightened population mobility
and social activity [2,5,9,18,24,25,29,32,34]. It is a phenomenon that has shown
to be determinant for the time evolution of many infectious diseases [19]. The
SARS-CoV-2 epidemic dynamic observed in Mexico City and, in general, in the
country, has been driven by events associated with heightened mobility and in-
creased social activities during holidays and other important calendar key dates.
The characteristic plateau of Mexico City reached by the end of May, 2020, for
example, has been explained by a succession of events that were essentially super-
spreading events [1,26].

Now that we have more than one year of data regarding the evolution of the
COVID-19 pandemic, the following question arises: can we use the past history
of the epidemic curve to project the main likely tendencies in the behavior of
COVID-19 for the rest of 2021? The objective of the present work is to provide
an answer to that question for the case of the Mexican epidemics. In order to do
that, a characterization of the transmission dynamics of COVID-19 is presented
based on the assumption that human behavior during specific dates is the main
factor driving the evolution of the pandemic. It is postulated that a modifica-
tion of the Kermack-McKendrick model with a time-dependent effective contact
rate can accurately describe the observed number of confirmed cases and deaths
of COVID-19. The effective contact rate will change in calendar dates associated
with religious or civic holidays, commercial incentives and government interven-
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tions, when superspreading events or changes in tendency occurred. Then, this
characterization of the transmission dynamics of the disease is used to develop
a methodology to generate epidemic scenarios that use the known history of the
disease recorded during 2020 and early 2021. The effect of these change points or
key calendar dates on the contact rate occurs at a much faster scale than changes
due to the implementation or lifting of NPIs [12,17]. All these dates are known
in advance, and activities can be planned (short vacations, family visits, among
others). We focus on the epidemic developing in Mexico, taking as examples three
particular states (Mexico City, Queretaro state and Tamaulipas state).

Our approach is similar to the one presented in [12]. However, to determine
changes in the effective contact rate, besides looking at the actual effects of gov-
ernmental mitigation measures, we look at particular events on dates related to
civic, religious, and official vacation periods known in advance each year.

The paper is organized as follows. Section 2 presents the methodology used.
Section 3 describes the results of the estimation process and the proyected scenar-
ios. Finally, Section 4, contains the discussion about this work.

2 Methodology

This section describes the underlying mathematical model, the estimation of the
time-varying effective contact rate and the basic assumptions for the projection of
scenarios.

2.1 Mathematical model

A compartmental model is used to describe the evolution of the COVID-19 epi-
demic. Fig. 2 shows the corresponding model diagram. The model considers three

Fig. 2 Diagram for the mathematical model. There are three types of infectious individuals:
asymptomatic (I), symptomatic (Y) and reported (T), but this last group does not play a
role in the transmission. The other state variables represent: susceptible (S), vaccinated (V),
exposed (E), recovered (R) and dead (D).
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classes of infected individuals: asymptomatic (I), symptomatic (Y ), and reported
(T ). Once reported, infected individuals are effectively isolated and are no longer
participants in the transmission process. The three infected classes can recover
(R) but only reported symptomatic individuals can die (D) since we consider the
ideal case where all severe cases are reported. Susceptible (S) individuals can be
vaccinated (V ) with an effective vaccination rate ψ. Both vaccinated and reported
individuals will eventually return to the susceptible state after a certain, possibly
different, immunity period. Vital dynamics are also included since this work is
aimed to produce mid-term scenarios for the epidemic. The full set of equations is
given by

S′ = ωR+ φV − ψS − β(t)(Y + qI)
S

N
+ χM − χS, (1)

V ′ = ψS − φV − χV,

E′ = β(t)(Y + qI)
S

N
− γE − χE,

I ′ = ργE − δI − χI,

Y ′ = (1− ρ)γE − εηY − (1− ε)νY − χY,

T ′ = (1− ε)νY − ακT − (1− α)µT − χT,

R′ = δI + εηY + ακT − ωR− χR,

D′ = (1− α)µT,

where N = S + V + E + I + Y + R is the population that participates in the
infectious process and M = N + T is the total population at time t.

The effective vaccination rate is deduced as

φ = − ln(1− a× b)/c, (2)

where a is the target coverage (% of the population targeted to receive the vaccine),
b the vaccine efficacy and c the time horizon in which a should be achieved. In
what follows φ defines plausible scenarios because in Mexico vaccination roll-outs
are regionally heterogeneous and vaccine availability is limited.

The basic reproduction number is given by

R0 = β0
( qργ

(δ + χ)(γ + χ)
+

(1− ρ)γ
(εη + (1− ε)ν + χ)(γ + χ)

)
.

The parameter β0 is the effective contact rate at the start of the epidemic. Fur-
thermore, the effective reproduction number is calculated as

Rt = R(t)S(t)/N(t), (3)

where

R(t) = β(t)
( qργ

(δ + χ)(γ + χ)
+

(1− ρ)γ
(εη + (1− ε)ν + χ)(γ + χ)

)
.

Table 1 shows a description of all model’s parameters and their preset values.
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Parameter Description Value Units
β(t) Effective contact rate estimated days−1

ψ Effective vaccination rate variable days−1

φ Vaccination immunity rate 0.005556 days−1

ω Natural immunity rate 0.005556 days−1

γ Incubation rate 0.196078 days−1

δ Asymptomatic recovery rate 0.142857 days−1

η Symptomatic recovery rate 0.071429 days−1

κ Reported recovery rate 0.1 days−1

ν Screening rate estimated days−1

µ Death rate estimated days−1

ρ Proportion of asymptomatic 0.2 %
ε Proportion of symptomatic recovered 0.85 %
α Proportion of reported recovered estimated %
q Asymptomatic infectiousness reduction 0.45 %

Table 1 Description of the parameters involved in model 1 (see [1,26] for sources).

2.2 Effective contact rate estimation

The main feature of the model is the time-dependent effective contact rate β(t).
This function is defined by a piecewise cubic Hermite interpolating polynomial
[13]. We set bk as the effective contact rate at the k-th time change point, i.e.
β(tk) = bk, k = 1, . . . ,K. Fig. 3 shows a diagram of the structure of β(t). Hermite
interpolation is used to guarantee that β(t) remains positive for all times. We

Fig. 3 Construction of the effective contact rate β(t). It is defined by a piecewise cubic Hermite
interpolating polynomial, parametrized by K change points at fixed times t1, t2, . . . , tK and
their corresponding values b1, . . . , bK .

emphasise that, instead of choosing the change times tk equally spaced along the
observation period, they are located at predetermined calendar dates associated to
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superspreding events, government interventions or other events that could affect
the evolution of the epidemic curve.

The function β(t) (parameters t1, t2, . . . , tK , b1, b2, . . . , bK) must be estimated
from data. We use federal national records from daily reported cases and deaths to
create point and interval estimates of these parameters, within a Bayesian inference
framework. Details about the inference can be found in Appendix A.

2.3 Projected scenarios

Our main point is that the effective contact rate β(t) in 2020 and early 2021 pro-
vides information that can be used to create scenarios for the evolution of the
epidemic curve for the rest of 2021. There exists key calendar events or fixed dates
where the Mexican population has family gatherings, political or civic activities
every year, that during 2020 were associated to heightened transmission, height-
ened hospital demand, and increases in deaths. If this observation holds then,
there are several ways in which we can project trends and define scenarios. One
way is by simply prolonging for a few weeks or months the last observed trend of
β(t) and see the effect on the number of cases and deaths using the model. This
is a common approach to create short-term forecasts. It usually works as long as
that last observed trend does not change in the data, which could occur in a few
days, weeks, or even months. However, we can improve this methodology using our
estimation of β(t): it is possible to know which dates are associated with changes
in the trend and the magnitude of the contact rate. Therefore, we can assume
that the percentage change observed in β(t) between two consecutive dates will be
repeated in the same period the next year. To exemplify this idea, suppose that
β(t) on December 24, 2020, was 0.2 and on December 31, 2020, was 0.3, implying
that the contact rate increased by 50%. Then, to predict the change in the same
period of 2021, the estimated contact rate on December 24, 2021, lets say 0.05,
will increase a 50% to reach 0.075. Starting this process on the last date of the
estimated contact rate, it is possible to generate projections that incorporate the
history of the epidemic.

3 Results

To exemplify this methodology, the epidemic data of several states of Mexico will
be used to estimate the effective contact rate β(t) and then to propose scenarios
for the rest of 2021 and early 2022.

3.1 Key superspreading events

The overall perspective of the epidemic management in Mexico can be fairly sum-
marized by saying that a) all non-pharmaceutical interventions have been and are,
to date, non-mandatory but voluntary except for some policies regarding closure
or reopening of businesses; and b) the population increased mobility and social ac-
tivities during certain periods is strongly associated to nation-wide holidays. The
list of dates that we consider important for every state is given in Table 2.
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Date Description Date Description
2020-03-13 First COVID-19 case 2020-12-24 Christmas
2020-03-23 NPI start 2020-12-31 New year’s eve
2020-04-30 Children’s day 2021-01-06 Wise men day
2020-05-10 Mother’s day 2021-02-14 Valentine’s day
2020-06-21 Father’s day 2021-03-14 Benito Juarez birth
2020-09-16 Independence day 2021-04-04 Easter
2020-11-02 Day of the Dead 2021-04-30 Children’s day
2020-11-21 Buen Fin (Black Friday equivalent) 2021-05-10 Mother’s day
2020-12-12 Day of the Virgin of Guadalupe

Table 2 Key calendar dates associated to superspreading events used as change points for the
effective contact rate β(t) in the state of Tamaulipas. Except for the date of the first COVID-19
case (by symptoms onset), all the other dates are the same for each state analyzed. Mexico
City reported its first case on February 20, 2020 and Querétaro state reported its first case on
March 5, 2020.

To provide evidence on the key calendar dates superspreading hypothesis, sev-
eral indicators are analyzed such as positivity, hospitalizations, mortality, among
others. Only positivity is presented but other indicatores can be found in the sup-
plementary material. When analyzing raw counts of the number of cases by day,
the variability between days makes it difficult to determine the behavior of the data
curve. To deal with this problem, we use a simple moving average with a window
size of seven days, making it easier to identify overall trends. The positivity rate
is defined as the ratio of positive tests to suspected cases.

Figure 4 shows the positivity rate for three states: Mexico City, Queretaro and
Tamaulipas. Estimations are noisy but still it can be appreciated that, depending
on the length of the holiday, there is an increase either immediately after or even
during the key event. Also, changes in the trend can be associated to several key
dates. As an example, December celebrations such as Christmas cause an increase
in the positivity rate, which starts decreasing after New Year.

Fig. 4 Positivity rate by age group for A) Mexico City, B) Queretaro state and C) Tamaulipas
state. Dashed red vertical lines give the dates listed in Table 2.
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It must be pointed out that changes in these indicators are not exclusive to the
key dates we have selected (Table 2). Also, not necessarily all the dates chosen have
the same impact for each state. However, our main hypothesis is that significant
changes are indeed associated to the dates previously selected and they are enough
to drive the general epidemic trends in each state.

3.2 Effective contact rate estimates for Mexico

As mentioned in Section 2.2, the effective contact rate is determined by an interpo-
lating function and parametrized by (t0, t1, . . . , tK , b0, b1, . . . , bK). Times t0, . . . , tK
are determined by the key dates in table 2. We point out that β(t0) and β(t1),
b0 and b1 respectively, are equal. Given that t1 represents the time then the first
mitigation measures were implemented, setting b0 = b1 implies that the effective
contact rate is constant right before the mitigation interventions that altered the
natural progression of the epidemic. All other parameters b1, . . . , bK are estimated.
It is assumed that, at the beginning of the pandemic, there are no vaccinated in-
dividuals, no reported infected individuals, no recovered cases and no deaths. The
number of exposed, asymptomatically infected and symptomatically infected indi-
viduals are also estimated. Finally, the COVID-19 death rate, the screening rate,
and the proportion of reported recovered individuals can vary from one state to
another and therefore are also estimated. See Appendix A for more details.

Fig. 5 shows the point-wise posterior median estimate of β(t) for several states
in Mexico, including the three examples previously discussed: Mexico City, Quere-
taro and Tamaulipas. Although each place has a different curve there are, nonethe-
less, common patterns. Notice that the rate remains low between June 2020 and
September 2020 and the effect of the winter holidays is clear in each state. It is
interesting that a few states showed an increase in the contact rate after the start
of mitigation measures such as Queretaro, Guanajuato and Campeche. Overall,
we can group states that show very similar behavior, a type of information that
could potentially be used to classify epidemic curves. This will be explored in a
forthcoming work.

3.3 Scenarios

As described above, we modify the last estimate of the effective contact rate,
β(t), corresponding to April 30, 2021, with the purpose of generating projections
supported on the effective contact rate patterns observed on the same dates in
2020. However, the one aspect of the epidemic that is clearly different from last
year’s is the availability of vaccines, and thus this factor requires especial handling.
Vaccination in places like Mexico is difficult to model since many different vaccines
are applied, each with very different characteristics, such as the ones produced
by Pfizer, Moderna, AstraZeneca and CanSino, to mention some. Moreover, the
national vaccination strategy contemplates several stages depending on the stock
of vaccines, which at the moment is very limited. By the end of May 2021, 16% of
the population has been vaccinated, although only 9% has a complete vaccination
scheme [20]. Nationally, vaccination started at the end of December 2020, but there
are differences in the vaccination roll out in each state and limited information
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Tamaulipas

Fig. 5 Effective contact rate β(t) estimated for several Mexican states from the beginning of
the pandemic (late February to early March) in 2020 until April 30, 2021.

about it. For the purposes of this work, it is assumed that vaccination started on
February 15, 2021, which is the date when most of the states started vaccination
for the general population above 60 years old. The efficacy of the vaccines is set to
0.95 and that the expected coverage of the vaccines is 30%, 50% and 70% of the
population after the first year. These three scenarios are considered to analyze the
effect of vaccination.

Importantly, the variability of the estimates of β(t) is high, especially at the
beginning of the epidemic. This is mainly caused by the initial conditions that are
also estimated. Kermack-McKendrick models are very sensitive to changes in these
conditions. As a consequence, a subset of projections for some states is extremely
high and biologically unfeasible as they imply very high values of the effective
reproduction number Rt. For that reason, the predictions shown in this work are
limited to those with estimates of Rt for the prediction period below the maximum
observed Rt in the past. We think this restriction is reasonable.

Fig. 6 shows the results for Tamaulipas state. The model correctly describes
the main trends during the estimation period. The effect of the vaccination is to
decrease the number of new reported cases and deaths, although qualitatively, the
behavior of the predictions is the same. Thus, if similar conditions to 2020 occur in
2021, the most likely scenarios indicate that the number of new infections will be
low and decreasing for the rest of the year. Nonetheless, there is still the possibility
of an important increase of the number of infections in the following months.

Fig. 7 shows the scenarios for Mexico City. In this case the most likely trend
is that the number of cases and deaths decrease in time with very low levels on
infections for the rest of the year. There is a small probability of an outbreak at
the end of 2021 and the beginning of 2022, and its magnitude could by similar to
the one observed for the same period in 2020 if only 30% is vaccinated by that
date. Fig. 8 shows the scenarios for Queretaro state. In this case the number of
cases and deaths go down very fast and there will be no more outbreaks.

Black bars in Figs. 6, 7 and 8 show two weeks of available data on reported
cases and deaths for the last three weeks that was not used for in the estimation.
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Fig. 6 Projected scenarios for Tamaulipas state. First, second and third columns show sce-
narios when target vaccination coverage are 30%, 50% and 70%, respectively. These coverages
are achieved in a year. The insets show an enlarged view of the first months of each projection.

Fig. 7 Projected scenarios for Mexico City. First, second and third columns show scenarios
when target vaccination coverage are 30%, 50% and 70%, respectively. These coverages are
achieved in a year. The insets show an enlarged view of the first months of each projection.

Projections agree with the observed data. These figures also show 3 estimates of
the effective reproduction number for each scenario according to three different
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Fig. 8 Projected scenarios for Queretaro state. First, second and third columns show scenarios
where target vaccination coverage are 30%, 50% and 70% during the first year, respectively.
The insets show an enlarged view of the first months of each projection.

methodologies, one derived form the equation 3 and the other two obtained using
EpiEstim [6,30] and Covidestim [10,22].

4 Discussion

Our objective is to generate a range of scenarios using the known history of the epi-
demic, that could be useful to evaluate its possible evolution and its likely impact
on incidence and mortality. The fundamental assumptions behind this method-
ology are that the effective contact rate incorporates the main superspreading
transmission events during last year, that each region has an independent epi-
demic not explicitly interconnected with other regions and, finally, that there are
no new highly transmissible variants active during the timeline of the forecasts.

The magnitude and changes of the contact rates on key dates on 2020 together
with the magnitude of Rt, constitute two indicators that provide an approximation
of what could happen during 2021. The main assumptions are that these dates
will again constitute superspreading events and that the evolution of the epidemic
curve in 2021 will still be highly influenced by the same events. The idea is simple
but the use of key calendar dates creates a practical basis, in the absence of
significant testing and contact tracing, to anticipate changes in the transmission
of the disease that can provide mid to long term outbreak risk projections. There
is no doubt that superspreading events will still be important for the COVID-19
pandemic however, it is not clear what the magnitude of their impact will be. The
methodology presented here is a step towards the solution of this problem.

It could be argued that this procedure will not be useful because the conditions
of the previous year will not be the same for the next one. However, in places like
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Mexico the proposed procedure is sensible because: 1) lockdowns and other non-
pharmaceutical interventions are not mandatory, 2) there is very limited testing
and practically no contact tracing, and 3) significant superspreading events oc-
curred mostly during holidays that happen every year. Nonetheless, we are aware
that, for now, only the short-term predictions can be evaluated.

New events that were not present during 2020 can have an important impact
in the evolution of the epidemic curve during 2021. For example, on June 6, 2021,
there will be Federal Elections in the country, which could potentially constitute a
superspreading event. If that were the case, the current projections may fail. How-
ever, it is possible to adjust the estimates to accommodate this date. The process
will be less immediate than the one used here because there were no elections
during 2020. Nonetheless, scenarios can be created based on the changes observed
in other superspreading events. As was mentioned before, there are several ways
of using the information contained in β(t).

Our model does not explicitly introduces seasonality that could start acting
on the epidemic by October 2021 under the assumption that COVID-19 behaves
similarly to influenza. However, since the pattern of changes of the observed contact
rate for 2020 is being used, any seasonal effect with impact on last year’s contact
rate will be inherited into the projected contact rates of 2021.

Even without the projections, the estimation of a time dependent effective
contact rate alone provides interesting information. The evolution of the epidemic
curves of different locations can be compared, and possibly grouped, using these
estimations. In the case of Mexico, a common feature to all states is that the effec-
tive contact rate had one fast period of growth on the winter holidays (December
12 to December 31, 2020), supporting the idea that superspreading events did
occur in the proposed dates. Even when not all the key dates considered in the
analysis have an significant effect in all the states, the results suggest that it is
important to closely look at the behavior of the epidemic on these dates.

Finally, this study highlights the importance of enforcing the application of
NPIs in Mexico and countries of similar characteristics. In all our scenarios, the
reduction in β(t) can be achieved only through them, given the low vaccination
rate that exists at the end of May. This is not surprising, a recent study [23]
has shown that even with high efficacy vaccines and a greater coverage than the
current one in Mexico, vaccination alone cannot achieve a significant reduction in
cases if NPIs are relaxed too quickly.
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A Statistical inference

In order to create predictions for the evolution of the COVID-19 pandemic during 2021, we
focus on the estimation of the time dependent contact rate β(t) during 2020 and the start of
2021 as was described in Section 3. To simplify the estimation process, β(t) is assumed to be
a piecewise Hermite interpolating polinomial that only changes at preset times t1, t2, . . . , tk,
and it is constant before t1. Then, instead of estimating a continuous function, we only need
to estimate the values of the effective contact rate b1, b2, . . . , bk at t1, t2, . . . , tk.

The dates where the effective contact rate changes are described in Table 2. Those dates
are converted into a numeric scale to get t1, t2, . . . , tk simply by calculating the number of
days from the first reported case (by symptoms onset). For each Mexican state, the starting
date for the analysis is different.

The initial number of exposed (E0), asymptomatic (I0) and symptomatic (Y0) individuals
will also be estimated as these are important unknown quantities. Parameters α, µ and ν de-
pend on the state analyzed. Parameter 1/µ is directly estimated from the records of confirmed
cases by calculating the average difference in days between the date of symptoms onset and
the date of death, while 1/ν is calculated as the average difference in days between the date
of symptoms onset and the date of hospital registration. Only parameter α is included in the
inference process.

Let θ = (E0, I0, Y0, α, b1, b2, . . . , bk) the vector of parameters that will be estimated using
a Bayesian inference approach. All the other parameters needed to solve model (1) are fixed
and their values can be found in Table 1.

Let Xj and Yj be the random variables that count the number of daily COVID-19 reported
cases and deaths at time tj , respectively, for j = 1, 2, ...n, where tj represent the number of days
since the first reported case by symptoms onset. We assume that the probability distribution
of Xj and Yj , conditional on the vector of parameters θ, is a Poisson distribution such that

E[Xj ] = µX(tj |θ) = A(tj |θ)−A(tj−1|θ), (4)

E[Yj ] = µY (tj |θ) = D(tj |θ)−D(tj−1|θ), (5)

with A(t|θ) ad D(t|θ) being the cumulative number of reported cases and deaths according to
model (1). Assuming that variables X1, X2, . . . , Xn, Y1, . . . , Yn are conditionally independent,
then the likelihood function is given by

π(x1, . . . , xn, y1, . . . , yn|θ) =
n∏

j=1

µX(tj |θ)xj exp{−µX(tj |θ)}
xj !

µY (tj |θ)yj exp{−µY (tj |θ)}
yj !

.

(6)

The joint prior distribution for vector θ is a product of independent probability distributions.
For all the initial conditions E0, I0, Y0, the prior distribution is Uniform(0,20) and for all the
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contact rates b1, . . . , bk the prior is Uniform(0,5). The prior for α is a Beta distribution with
parameters c1 = 20.0 and c2 = 2.2 which has an expected value of 0.9. Then

π(θ) = π(E0)π(I0)π(Y0)
k∏

i=1

π(bi) ∝ αc1−1(1− α)c2−1.

The posterior distribution of the parameters of interest is

π(θ|y1, . . . , yn) ∝ π(y1, . . . , yn|θ)π(θ),

and it does not have an analytical form since the likelihood function depends on the numer-
ical solution of the ODE system (1). We analyze the posterior distribution using an MCMC
algorithm called t-walk [11]. For each state, three chains of 1,000,000 iterations are run, from
which 100,000 are discarded as burn in. At the end, only 2000 iterations are used to create the
estimations presented in this work. The posterior predictive distribution is used to create the
scenarios for the rest of 2021 under the three specific values of the vaccination rate φ.
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