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Abstract: Chest radiographs are often obtained as a screening for early diagnosis tool to rule out
abnormalities mainly related to different cardiovascular and respiratory diseases. Reading and
reporting numerous chest radiographs is a complex and time-consuming task. This research pro-
poses and evaluates a deep learning (DL) approach based on convolutional neural networks (CNN)
combined with a referee fully connected neural network as a computer-aided diagnosis tool in chest
X-ray triage and worklist prioritization. The CNN models were trained with a combination of three
large scale databases: ChestX-ray14, CheXpert and PadChest. The final database contained 327,176
images labeled with findings obtained by natural language processing (NLP) techniques applied to
the radiology reports. The dataset was split in 16 different balanced binary partitions, which were
used to train 16 finding-specific classification CNNs. Afterwards, a normal vs abnormal partition of
the dataset was created, being abnormal the presence of at least one pathologic change. This final
partition was used to train a fully connected neural network as referee that was fed with all the 16
previously trained outcomes. The Area Under the Curve (AUC) analysis evaluated and compared
the performance of the models. The system was successfully implemented and evaluated with a
test set of 3400 images. The AUC of the normal vs abnormal classification was 0.94. The highest
AUC of the finding-specific classifiers was 0.99 for hernia. The proposed system can be used to assist
radiologists identifying abnormal exams, allowing a time-efficiency triage approach.

Keywords: Deep Learning; Machine Learning; Chest Radiographs; Computer-Aided Diagnosis;
Convolutional Neural Networks.

1. Introduction

Chest plain films are used worldwide in the evaluation of patients with a clinically
variable cardio-respiratory disease expectancy. Chest radiographs represent one of the
largest workloads in radiology departments. Cardiovascular and respiratory diseases are
considered a global health problem, a challenge for our health care systems, having a huge
socio-economic impact. An early evaluation of these disorders can be considered imper-
ative (World Health Organization, 2017) (World Health Organization, 2011) (European
Respiratory Society, 2013).

Despite the technological advancement in CT imaging, chest plain radiographs remain
the most frequently performed diagnostic examination technique in daily practice (Bayo
et al., 2005) including emergency care. Chest radiographs provide information on several
relevant and sometimes life-threatening cardiovascular and respiratory diseases, providing
data on anatomical structures such as the heart, lungs and bones. Radiographs are a
cost-effective procedure when compared to other imaging techniques.

Chest radiographs are complex to read and time consuming, requiring a large learning
curve (Eisen et al., 2006) (Herman & Hessel, 1975). Unfortunately, radiologists are scarce for
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countries, are some of the reasons related to this manpower shortage (Mollura et al., 2010).
Absence of enough radiologists and overflow of heavy daily work led to potential errors,
misdiagnosis and burnouts, directly related with an increased morbidity and mortality
(Kesselman et al., 2016). Therefore, it seems evident that an automatic triage system for
disease detection in chest X-ray films would have an important value for patients, clini-
cians and consequently, health care organizations. This system would help radiologists
to prioritize either reading exams with most probable abnormalities or avoiding reports
when the probability of having an abnormality is extremely low.

Computer-aided diagnosis (CAD) systems have experienced a dramatic progress over
the last decade, mostly since 2015 (van Ginneken, 2017). Currently, we are witnessing a
revolution of Deep Learning (DL) solutions on medical imaging due to the exponential
growth of the amounts of curated data available on the net and the wide availability of
graphical processing units (GPUs), making parallel processing faster and cheaper (Hwang,
2018).

Nowadays, the main challenge to develop a DL CAD system for chest radiographs
triage is data scarcity. To develop DL solutions, a very large dataset that contains examples
of all possible situations, including different pathologies and whole disease spectra that can
be found in a chest radiograph, is necessary. To help researchers, the NIH released ChestX-
ray14, a chest X-ray multi-label dataset which encloses 112,120 posterior-anterior chest
exams labeled with 14 different radiological findings (Wang et al., 2017). This database
boosted the research of DL applications for chest X-ray analysis using end-to-end CNNs
for multi-label classification (Rajpurkar, 2017). Following the same path, CheXpert (Irvin
et al., 2017) and PadChest (Bustos et al., 2020) databases were made public with 224,316
radiographs labeled with 14 findings and 160,000 radiographs labeled with 174 findings
respectively. Due to the unequal occurrence of the different pathologies in patients, there is
a large class imbalance in the datasets, which was not considered in previous approaches
and could affect negatively the performance of CNNs (Buda et al., 2017). Therefore, a
training methodology designed to face this problem is needed.

Our objective is to present a new DL solution to assist radiologists by triaging chest
radiographs, providing an output of either normal or abnormal, abnormal meaning that
cardiovascular, respiratory diseases or fractures have been detected. A novel classification
algorithm was trained with ChestX-ray14, CheXpert and PadChest balanced partitions
using a combination of pathology-specific CNNs to provide the likelihood of a plain chest
exam to be abnormal by means of a referee fully connected neural network.

2. Materials and methods
2.1. Database prepation

The large-scale public databases ChestX-ray14 (Wang et al., 2017), CheXpert (Ra-
jpurkar, 2017) and PadChest (Bustos et al., 2020) were combined to maximize the data for
training the model. The resulting database included 327,176 radiographs of which 94,334
proceeded from ChestX-ray14, 192,967 from CheXpert and 39,875 from PadChest. Since the
annotations of the findings on the source databases presented differences, some decisions
were made to properly combined them. Specifically, ChestX-ray14 and CheXpert contained
radiographs with 14 findings, but not all of them were coincidental. For uniformity, infil-
tration and edema were merged, and pneumonia was merged with consolidation. Support
devices class was suppressed. The final list included 16 findings, which were atelectasis,
cardiomegaly, consolidation, edema, emphysema, enlarged cardiomediastinum, fibrosis,
fracture, hernia, lung opacity, mass, nodule, pleural effusion, pleural affectation, pleural
thickening and pneumothorax. For the PadChest dataset, a search of the images with the
16 resulting findings was performed and combined. Additionally, radiographs in Lateral
view were excluded.

The different number of samples per finding is shown in Table 1. Since each radio-
graph could present more than one finding the sum of the numbers provided on Table
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1 is significantly higher. The normal class was used to train the normal vs abnormal
classification model.

Table 1. Distribution of the different findings

Findings Number of Samples %
Atelectasis 40,501 12.38
Cardiomegaly 30,471 9.31
Consolidation 22,936 7.01
Edema 52,263 15.97
Emphysema 2,795 0.85
Enlarged Cardiomediastinum 9,831 3.00
Fibrosis 2,010 0.61
Fracture 7,636 2.33
Hernia 1,294 0.40
Lung Opacity 16,117 50.16
Mass 5,883 1.80
Nodule 6,453 1.97
Pleural Effusion 87,972 26.89
Pleural Other 2,706 0.83
Pleural Thickening 5,061 1.55
Pneumothorax 22,308 6.82
Normal 110,854 33.88

The database was divided in two partitions, the training set and the test set. To
maximize the data for training the models, 323,776 (99%) were used for training and
evaluation of the training process (validation) and 3,400 (1%) for testing the performance
of the models. The training database was split in 16 different partitions designed to train
finding-specific binary CNNs. Each partition was designed to contain all the samples of
the dataset labeled with a specific finding as well as an equal number of samples without it
randomly selected from the rest of classes. This split methodology guaranteed that balanced
partitions were used to train the CNNS, as balanced datasets offer better performance than
training a single multi-class CNN with a larger but imbalanced dataset (Buda et al., 2017).
Another partition was created to train a referee fully connected neural network. Half of
the images in this partition did not contain any abnormality and were labeled as normal,
being all the other samples randomly selected from the radiographs with at least one of
the 16 findings. Finally, the 17 partitions were split in training (80%) and validation (20%).
Analogously, the test set was composed of 17 balanced partitions of 200 randomly selected
radiographs as well.

The radiographs were prepared to improve the performance of the algorithm. The
pipeline consisted of an initial histogram equalization, applied to all images to improve
the contrast; then, intensity values were normalized to the range 0-1; and, finally, images
were standardized using the mean and standard deviation of the training partitions to
improve the convergence of the networks during training. The pixel intensity values of the
radiographs were normalized using ImageNet statistics to improve compatibility with the
pre-trained weights of the CNNs.

2.2. System’s pipeline
The development of the classifier algorithm included several concatenated steps
(Figure 1). Initially, the three databases were combined, processed, and divided to train
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16-binary pathology-specific CNN classifications. Once the 16 CNNs were trained, a novel
approach for creating a triage system was implemented. In this step, CNNs’ outcomes
were combined using a referee fully connected neural network that learnt to combine the
predictions of the finding-specific CNNs to obtain the final abnormal probability, herein
defined as ‘referee’ network. An evaluation of the trained models was carried out using the
test set partition of the combined database, which was not used for training and contained
3,400 samples.
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Figure 1. A visual diagram of the system’s pipeline

2.3. Training binary classifiers

The VGG-19 CNN architecture was used to train the 16 finding-specific models (Si-
monyan & Zisserman, 2014) (Figure 2), pre-trained with ImageNet. The output layer was
modified to adapt the CNNs for the binary classification. The architecture was selected
due to the higher dimensionality of its output feature maps if compared with ResNet (He
et al.,, 2015) or DenseNet (Huang et al., 2017).

VGG-19 Convolutional Blocks 2 Neuron Fully Connected
Neural Network

/‘— Probabily of class 0
\\‘—> Probability of class 1

ConvChannels = Conv2D 3x3xChannels with relu activation
MaxPooling = MaxPooling2D 2x2

. 2xConvé4 + MaxPooling

. 2xConv128 + MaxPooling
. 4xConv256 + MaxPooling
. 4xConv512 + MaxPooling
. AveragePooling2D

Figure 2. Architecture of the proposed CNN for finding-specific binary classification

The training process of the 16 CNN models consisted of 8 stages. During the first 7
stages, which lasted 5 epochs each, the convolutional layers were frozen in the odd stages
and unfrozen in the even ones. The loss function used was categorical cross-entropy (CCE).
The learning rate was customized for each stage and each CNN model independently
ranging from 1.00E-08 to 1.00E-03. The image input size was increased along the stages
starting at 3x128x128 until 3x320x320. During the training process data augmentation
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techniques were applied, which consisted of random rotations in the range of [-20, 20]
degrees, zooms in the range [0.95, 1.05] and lighting variations in the range [0%, 10%)].

The 16 finding-specific CNNs were used as feature extractors, providing the probabil-
ity of each finding to be present on the radiograph. Thereafter, images of the normal vs
abnormal partitions were processed by the CNNs to obtain their per-finding probabilities.
These probabilities were then used as an input to the referee network, which was composed
of 3 dense layers of 8, 4 and 2 neurons. The activation functions chosen were ReLU for the
input and hidden layers and SoftMax for the output layer. The model was trained during
200 epochs using a learning rate of 1.00E-03 and CCE as loss function.

The metrics used to evaluate the statistics of the models” performance were obtained
by comparing the predictions of the models and the ground truth on the test set. These
metrics were accuracy, precision, sensitivity, specificity, F1 score, and Area Under the Curve
(AUQ).

The models were trained using an NVIDIA QUADRO GP100 graphic card and an
Intel Xeon SkyLake 6132. The deep learning framework used to train the models was
Pytorch, and additionally the fastai library was used to train de finding specific CNNs.

2.4. Class activation maps

Class activation maps (Zhou et al., 2015) were used to provide information about the
areas that were more influential in the outputs of the CNNSs. A class activation map gets
the discriminative image regions used by a CNN to identify a specific abnormality in the
image. Adding a global average pooling between the convolutional and fully connected
layers of the CNNs was needed to obtain these maps. The global average pooling layer
allowed to directly connect each output feature map (fy) with an output class neuron (c)
through a network weight (w, x). In order to be able to calculate each class activation map
(M) a summatory of the different feature maps weighted by their respective class weight
was performed by means of the following expression:

Me =Y werfy o)
%

Due to the maxpooling layers of the proposed architecture (Simonyan & Zisserman,
2014), the output feature maps were smaller than the input image, therefore the class
activation maps were resized to fit it. Several results of this technique can be seen in Figure
3.

(a) Fibrosis (b) Effusion (c) Mass

Figure 3. Class activation maps correctly overlapped with three different abnormalities. The upper
row shows the input images to the finding-specific classifiers, the lower row represents the output
class activation maps for the detected findings. Where: (a) presents reticular shadowing (fibrosis); (b)
presents accumulation of fluid (pleural effusion); and (c) presents a large pulmonary opacity (Mass).
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3. Results

The different metrics obtained using the 3,400 radiographs test set showed that the
classifiers for the 16 different findings obtained different performances, due to the uneven
size of the training datasets and to the different level of complexity of the visual patterns that
represent the analyzed pathologies. The model trained for hernia classification obtained
the best results with an AUC of 0.99. The different metrics obtained are shown in Table 2.

Table 2. Statistical information (accuracy, precision, sensitivity, specificity, F1 score, AUC) of the
trained models.

Findings Accuracy Precision Sensitivity Specificity F1Score AUC Threshold
Atelectasis 0.82 0.79 0.87 0.77 0.83 0.88 0.40
Cardiomegaly 0.87 0.85 0.89 0.85 0.87 0.96 0.28
Consolidation 0.81 0.77 0.88 0.74 0.82 0.85 0.42
Edema 0.87 0.81 0.96 0.78 0.88 0.93 0.26
Emphysema 0.92 0.90 0.95 0.90 0.93 0.98 0.48
Enlarged Cardiomediastinum 0.76 0.73 0.84 0.69 0.78 0.83 0.54
Fibrosis 0.86 0.80 0.97 0.76 0.88 0.94 0.34
Fracture 0.82 0.78 0.88 0.76 0.83 0.89 0.48
Hernia 0.92 0.88 0.97 0.87 0.92 0.99 0.36
Lung Opacity 0.84 0.87 0.81 0.88 0.84 0.91 0.62
Mass 0.84 0.79 0.93 0.75 0.85 091 0.48
Nodule 0.84 0.85 0.83 0.85 0.84 091 0.20
Pleural Effusion 0.83 0.82 0.85 0.81 0.83 0.89 0.52
Pleural Other 0.85 0.84 0.86 0.84 0.85 091 0.46
Pleural Thickening 0.87 0.85 0.89 0.85 0.87 0.94 0.56
Pneumothorax 0.80 0.79 0.82 0.79 0.81 0.90 0.51
Normal 0.77 0.70 0.97 0.58 0.81 0.94 0.20

The process followed to determine the thresholds that are shown in the Table 2 for the
16 findings was the analysis of the accuracy, sensitivity and specificity obtained using all
thresholds in between 0 and 1 with a step of 0.01. The criteria to select the threshold for all
finding classifiers (except for normal vs abnormal classification) was to choose the point
closest to the maximum accuracy value that presented a sensitivity higher than 0.80. The
criteria to select the normal vs abnormal threshold was to choose a point with a sensitivity
higher than 0.95 to reduce false negatives.

4. Discussion

This research proposes a novel approach for the automatic classification of chest
radiographs based on a combination of CNNs by means of a referee neural network. The
developed solution detects abnormal radiographs. This classification aims to accelerate the
task of reporting plain radiographs, avoiding delays in diagnosis and improving patients’
outcomes. This prioritization of reports based on the probability of abnormal findings will
help radiologists focusing on those radiographs more likely of being abnormal, helping to
facilitate the radiologists’ recognition of abnormalities and avoiding medico-legal problems
related to false results. Therefore, this tool will help to decrease the time to report abnormal
radiographs. Although not proven, it is important to highlight that this classifier will adjust
the radiologists’ efforts towards a more efficient environment. The advantages of using a
chest X-ray classifier in clinical practice were previously demonstrated by implementing
an Al system to predict the clinical priority of radiographs, which reduced the average
reporting delay from 11 to 3 days for critical imaging findings and from 8 to 4 days for
urgent imaging findings. The Al system utilized in the mentioned study was trained with
a database of 470,388 adult chest radiographs which is not public as of now, therefore direct
comparisons with this work are not possible (Annarumma et al., 2019).

Recent advancements in large public databases and DL have enabled the development
of algorithms to help radiologists to evaluate plain X-rays. The publicly available imaging
datasets ChestX-ray14 (Wang et al., 2017), CheXpert (Irvin et al., 2017) and PadChest
(Bustos et al., 2020), which include a large number of chest radiographs labeled using NLP
radiology reports, allowed to carry out this study.
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The outcomes from this research are compared with three recent studies (Table 4),
even though direct comparisons are not possible because the proposed work is trained and
tested with a combination of three datasets and the results of the studies evaluated are
obtained using ChestX-ray14 exclusively.

(Yao et al., 2017) developed a statistical two-stage neural network model that joins a
compactly connected image encoder with a recurrent neural network decoder in order to
make more accurate predictions. However, our chest X-ray classifier based on CNNs had
better outcomes, outperforming (Yao et al., 2017) on all the diagnosis.

(Rajpurkar, 2017) published and developed an algorithm, called CheXNet, to detect
pneumonia from radiographs. The proposed methodology was based in a very deep learn-
ing CNN (121 layers) for multi-class classification, previously trained with the ImageNet
dataset and fine-tuned with ChestX-ray14 dataset afterwards. The authors concluded that
CheXNet surpassed radiologist performance in detecting pneumonia when evaluating
radiographs. This conclusion proves that technology could have similar performance as
humans. In comparison, our algorithm performs better than CheXNet in the classification
of all the evaluated findings. To be properly compared, both algorithms have to be val-
idated with the same external unseen database. The task for which CheXNet is used is
not oriented to detect alterations and assist radiologists on prioritizing abnormal cases but
to depict pneumonia, not covering other usual clinical conditions in daily practice. The
classifier presented in this study prioritizes the abnormal radiographs to be reported by
radiologists, maximizing efficiency, helping in diagnosis and improving patient outcomes.

(Allaouzi & Ben Ahmed, 2019) published a comparison of different methodologies
to tackle the complexity of the multi-label nature of chest X-ray classification since label
imbalance and inter-dependence increase significantly the complexity of this tasks. In this
study binary relevance, label powerset and classifier chain approaches were evaluated on
ChestX-ray14 and CheXpert databases, achieving binary relevance the best average AUC
among the different findings. Our method performs equally or better on 10 of 14 findings
that could be compared.

Table 3. Comparison of the results obtained with our method and some prior works.

AUC (Yao et al,, 2017) (Rajpurkar et al., 2017) (Allaouzi & Ben Ahmed, 2019) Ours
Atelectasis 0.77 0.81 0.86 0.88
Cardiomegaly 0.90 0.93 0.96 0.96
Consolidation 0.79 0.79 0.85 0.85
Edema 0.88 0.89 0.93 0.93
Emphysema 0.83 0.94 0.94 0.98
Enlarged Cardiomediastinum - - - 0.83
Fibrosis 0.77 0.81 0.87 0.94
Fracture - - - 0.89
Hernia 0.91 0.92 0.99 0.99

Lung Opacity - - - 0.91
Mass 0.79 0.87 0.91 0.91
Nodule 0.72 0.78 0.81 0.91
Pleural Effusion 0.86 0.86 0.91 0.89
Pleural Other - - - 0.92
Pleural Thickening 0.77 0.81 0.85 0.94
Pneumothorax 0.77 0.81 0.85 0.90

Focusing on normal vs abnormal classification, (Hwang et al., 2019) trained a CNN
using a total of 87,696 cases (53,621 normal and 34,074 abnormal). In a validation with an
external database of a 1,015 (486 normal and 529 abnormal) the system presented an AUC
of 0.98 for normal vs abnormal classification which is superior to the AUC of 0.94 obtained
by the proposed system, which may be due to their system just focuses on four types of
image findings to consider an image abnormal: pulmonary malignant neoplasms, active
tuberculosis, pneumonia and pneumothorax. On the other hand, our system takes into
consideration 16 different findings which increases the variability of the task to be solved.

This study had some limitations that must be considered. First, radiographs” labels of
the three datasets were obtained using NLP techniques from radiological reports. Future
studies could be based on prospectively annotated chest X-ray with the use of structured
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reporting techniques implemented in clinical routine. The reported performance of this
methodology in the case of ChesX-rayl4 was an overall F1 score of 0.90, therefore this
caused that not all radiographs were correctly labelled (Wang et al., 2017). In DL the quality
of the dataset is fundamental to obtain robust models, labelling errors could worsen the
results offered by the trained models. Also, images were resized to 320x320 pixels to be
processed by the CNNs in order to create faster classifiers that do not need high computing
power hardware. Resizing the images might have an impact on the interpretation of the
image as resolution and information is adjusted, especially in pathologies that present
subtle changes in the radiographs such as small nodules and edema. Even more, this
research was trained with posterior-anterior chest X-rays, what can be considered a limited
approach as lateral views might be also obtained when examining thoracic structures
to provide an improved report, even though these views do not increase the diagnosis
accuracy for some pathologies (Kluthke et al., 2016). Finally, due to the large class imbalance
of the dataset, the 16-binary classification CNNs have been trained with different numbers
of dataset samples. As a consequence, some classifiers are more robust than others. This is
the most important challenge to undertake to further refine the performance of the system,
despite it is hard to solve due to the varied occurrence of the different pathologies.

Future work could be focused at improving these results by training CNNs with
higher or even native spatial resolutions of input radiographs, better quality and larger
datasets, and with more sources of information like lateral radiographs and clinical history.

In summary, a classifier of normal vs abnormal chest radiographs using a CNN based
methodology that extracts patterns related with different radiological findings has been
developed to solve a clinical challenge. The study validates the feasibility of pretrained
and fine-tuned deep CNN as an automated imaging feature extractor to train classifiers for
radiology diagnosis. The positive results demonstrate both the viability and effectiveness
of the novel approach of using a referee neural network to ensemble a group of binary
CNNs trained with balanced datasets.
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Abbreviations

The following abbreviations are used in this manuscript:

CNN  Convolutional Neural Network
AUC  Area Under the Curve

CAD  Computer-Aided Diagnosis

DL Deep Learning

GPU  Graphical Processing Unit

SGD  Stochastic Gradient Descent
CCE  Categorical Cross-Entropy
NIH  National Institute of Health
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