
The impact of local vaccine coverage and recent incidence 1 

on measles transmission in France between 2009 and 2018 2 

Authors: 3 

Alexis Robert1,2*, Adam J. Kucharski1,2, Sebastian Funk1,2 4 

Affiliations: 5 

1. Centre for the Mathematical Modelling of Infectious Diseases, London School of Hygiene & Tropical 6 

Medicine, Keppel Street, London, UK 7 

2. Department of Infectious Disease Epidemiology, London School of Hygiene & Tropical Medicine, 8 

Keppel Street, London, UK 9 

 10 

*Corresponding author 11 

E-mail:alexis.robert@lshtm.ac.uk   12 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 1, 2021. ; https://doi.org/10.1101/2021.05.31.21257977doi: medRxiv preprint 

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

https://doi.org/10.1101/2021.05.31.21257977
http://creativecommons.org/licenses/by/4.0/


Abstract 13 

Background 14 

Despite high levels of vaccine coverage, sub-national heterogeneity in immunity to measles can create 15 

pockets of susceptibility, which are hard to detect and may result in long-lasting outbreaks. The 16 

elimination status defined by the World Health Organization aims to identify countries where the virus 17 

is no longer circulating and can be verified after 36 months of interrupted transmission. However, since 18 

2018, numerous countries have lost their elimination status soon after reaching it, showing that the 19 

indicators used to define elimination may not be predictive of lower risks of outbreaks.  20 

Methods and Findings 21 

We quantified the impact of local vaccine coverage and recent levels of incidence on the dynamics of 22 

measles in each French department between 2009 and 2018, using mathematical models based on the 23 

‘Epidemic-Endemic’ regression framework. High values of local vaccine coverage were associated with 24 

fewer imported cases and lower risks of local transmissions. Regions that had recently reported high 25 

levels of incidence were also at a lower risk of local transmission, potentially due to additional immunity 26 

accumulated during these recent outbreaks. Therefore, all else being equal, the risk of local 27 

transmission was not lower in areas fulfilling the elimination criteria (i.e., low recent incidence). After 28 

fitting the models using daily case counts, we used the parameters’ estimates to simulate the effect of 29 

variations in the vaccine coverage and recent incidence on future transmission. A decrease of 3% in the 30 

three-year average vaccine uptake led to a five-fold increase in the number of cases simulated in a year 31 

on average.  32 

Conclusions 33 

Spatiotemporal variation in vaccine coverage because of disruption of routine immunisation 34 

programmes, or lower trust in vaccines, can lead to large increases in both local and cross regional 35 

transmission. The association found between local vaccine coverage and incidence suggests that, 36 

although regional vaccine uptake can be hard to collect and unreliable because of population 37 

movements, it can provide insights into the risks of imminent outbreak. Periods of low local measles 38 

incidence were not indicative of a decrease in the risks of local transmission. Therefore, the incidence 39 

indicator used to define the elimination status was not consistently associated with lower risks of 40 

measles outbreak in France. More detailed models of local immunity levels or subnational 41 

seroprevalence studies may yield better estimates of local risk of measles outbreaks.  42 
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Introduction 43 

Immunity against infectious diseases accumulates following infection and, if a vaccine is available, 44 

routine immunisation programs and vaccination campaigns. Measles is highly infectious and can cause 45 

large outbreaks in populations with low immunity [1,2]. Therefore, high levels of vaccine coverage are 46 

required to minimise the risks of outbreaks [3]. Furthermore, vaccine uptake must be homogeneously 47 

high across the territory to avoid local transmission sustained by regional discrepancies [4,5]. The large-48 

scale implementation of routine immunisation programs led to a drastic reduction in measles cases 49 

worldwide, and measles was targeted for elimination in five World Health Organization (WHO) Regions 50 

by 2020 under the Global Vaccine Action Plan 2011-2020 [6].  51 

Elimination status, as defined by the WHO, refers to “the absence of endemic measles transmission for 52 

≥12 months in the presence of a well-performing surveillance system” in a given country or region, and 53 

is verified “after 36 months of interrupted endemic measles virus transmission”[7].  Although imported 54 

cases, or cases directly related to importations could still be expected, there should be no continuous 55 

transmission persisting over a long period of time in a region where measles was eliminated. A given 56 

WHO region can declare measles eliminated when all countries in the region document interruption of 57 

endemic transmission for more than 36 months.  58 

Recently, several countries had their elimination status revoked following large outbreaks less than five 59 

years after it was verified. For instance, the United Kingdom achieved elimination in 2017, and lost the 60 

status in 2019 along with Albania, Czechia, Greece, Venezuela, and Brazil [8,9]. In these countries, 61 

interruption of transmission during a few years was not indicative of reduced risks of major outbreaks. 62 

Such occurrences can be explained by several factors, such as a replenishment of susceptible individuals 63 

after years without transmission, or importations of cases into subnational areas with lower levels of 64 

immunity caused by heterogeneity in vaccine coverage [10–13]. The number and geographical 65 

distribution of the susceptible individuals is not routinely monitored in most countries given the 66 

perceived cost and logistical challenges of large serological surveys, yet it is a main predictor of outbreak 67 

risk [3]. Local values of vaccine coverage can be an alternative measure of heterogeneity, but they are 68 

not always available and can be outdated because of the mobility between regions. Furthermore, they 69 

only describe vaccine-induced immunity, and therefore ignore the immunity caused by previous 70 

outbreaks. In this study, we aim to i) estimate the impact of recent local transmission and local vaccine 71 

coverage on the current risk of outbreaks, and the changes in transmission dynamics that would results 72 

from variations in these factors, and ii) identify the areas most at-risk for local transmission using France 73 

as a case study. 74 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 1, 2021. ; https://doi.org/10.1101/2021.05.31.21257977doi: medRxiv preprint 

https://doi.org/10.1101/2021.05.31.21257977
http://creativecommons.org/licenses/by/4.0/


To do so, we implemented an Epidemic-Endemic time-series model using hhh4, a framework developed 75 

by Held, Höhle and Hofmann to study the separate impact of covariates on importation, cross-regional 76 

transmission and local transmissions on aggregated case counts [14,15]. We adapted this framework 77 

to daily case counts and applied it to the daily number of measles cases per department (NUTS3 levels) 78 

in France reported to the European Center for Disease Prevention and Control (ECDC) between January 79 

2009 and December 2018. We computed the average values of vaccine uptake and the number of cases 80 

per department in the past three years to mimic the timeframe used to define the elimination status, 81 

and modelled their impact on the local risks of outbreaks. 82 

Methods 83 

Description of the hhh4 framework 84 

We used the modelling framework implemented in the “hhh4” model, which is part of the R package 85 

“surveillance”[15], to analyse infectious disease case counts. All the notations are defined in Table 1. 86 

The expected number of cases (𝜇𝑖,𝑡) reported in the region 𝑖 at time 𝑡 depends on three sources of 87 

transmission (called “components”):  88 

i. The autoregressive component (𝜆𝑖,𝑡) represents the impact of 𝑌𝑖,𝑡−1, the number of cases in 𝑖 89 

at the previous time step, on the number of cases in 𝑖 at 𝑡. The number of new cases expected 90 

from the autoregressive component is the product of predictors 𝜆𝑖,𝑡 and 𝑌𝑖,𝑡−1. A high value of 91 

𝜆𝑖,𝑡 indicates that, if there are cases in 𝑖, there is potential for high transmission levels. On the 92 

other hand, if 𝜆𝑖,𝑡 is low, cases in 𝑖 are unlikely to lead to much local transmission. 93 

ii. The neighbourhood component (𝜙𝑖,𝑡) represents the impact of 𝑌𝑗,𝑡−1, the number of cases 94 

reported in regions around 𝑖 at the previous time step, on the number of cases in 𝑖 at 𝑡. The 95 

exact impact of cases in these regions on cases in 𝑖 is determined by a distance matrix 𝜔 which 96 

quantifies the connectivity between the different regions. If 𝜙𝑖,𝑡 is high, cases in regions around 97 

𝑖 are more likely to cause new cases in 𝑖, whereas a low value of 𝜙𝑖,𝑡 indicates that cross 98 

regional transmissions towards 𝑖 are less likely. 99 

iii. The endemic component (𝜈𝑖,𝑡) represents the background number of new cases occurring in 100 

region 𝑖, regardless of the current number of cases in 𝑖, or in the regions around 𝑖. If 𝜈𝑖,𝑡 is high, 101 

new cases in 𝑖 are common, regardless of the number of cases in or around 𝑖 at the previous 102 

time step. Since the endemic component does not depend on 𝑌𝑡−1, it represents the 103 

background importations that cannot be linked to the mechanistic components. Therefore, 104 

these cases either correspond to importations from outside the modelled area (France in our 105 

case), or cases that are not otherwise predicted by the other two components.  106 
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The full equation for the expected number of cases in region 𝑖 at time 𝑡 is: 107 

𝜇𝑖,𝑡 = 𝜈𝑖,𝑡 + 𝜆𝑖,𝑡 ∗ 𝑌𝑖,𝑡−1 + ϕi,t ∗  ∑ (𝜔𝑗𝑖 ∗ 𝑌𝑗,𝑡−1)𝑗≠𝑖    (1) 108 

The predictors 𝜆𝑖,𝑡, 𝜙𝑖,𝑡 and 𝜈𝑖,𝑡 are independently impacted by different covariates, i.e., a covariate 109 

may be associated with a reduction of importations, but have little impact on the spread of the virus 110 

within the region. We assume that 𝑌𝑖,𝑡, the number of observed cases at 𝑡 in 𝑖, follows a negative 111 

binomial distribution to allow for overdispersion [16]. The overdispersion parameter 𝜓 is estimated. 112 

The predictors 𝜆𝑖,𝑡, 𝜙𝑖,𝑡 and 𝜈𝑖,𝑡 are estimated using log-linear regressions. For each predictor, we 113 

estimate: i) The intercept 𝛼 (identical across spatial units), and ii) the vector of coefficients 𝛽 associated 114 

with 𝑧𝑖,𝑡 the vector of covariates at 𝑡 in 𝑖 included in each component. 115 

𝑙𝑜𝑔(𝜆𝑖,𝑡) = 𝛼(𝜆) + 𝛽(𝜆) ∗ 𝑧𝑖𝑡
(𝜆)

     (2) 116 

𝑙𝑜𝑔(𝜙𝑖,𝑡) = 𝛼(𝜙) + 𝛽(𝜙) ∗ 𝑧𝑖𝑡
(𝜙)

     (3) 117 

𝑙𝑜𝑔(𝜈𝑖,𝑡) = 𝛼(𝜈) + 𝛽(𝜈) ∗ 𝑧𝑖𝑡
(𝜈)

     (4) 118 

Table 1: Table of notations of all variables and distributions defined in the methods. 119 

Parameter Definition 

𝑖, 𝑗 Regions 

𝑡 Time 

𝑌𝑖,𝑡 Number of cases reported in the region 𝑖 at time 𝑡 

𝑌𝑖,𝑡
′  Potential for transmission in the region 𝑖 at time 𝑡 

𝜇𝑖,𝑡 Average number of cases predicted in the region 𝑖 at time 𝑡 

𝜆 Autoregressive predictor 

𝜙 Neighbourhood predictor 

𝜈 Endemic predictor 

𝜔 Connectivity matrix 

 𝛼 Intercept 

𝛽 Vector of coefficients 

𝑧 Matrix of covariates 

𝑓(𝑡) Distribution of the serial interval  

𝑚𝑖𝑡 Number of inhabitants in the region 𝑖 at time 𝑡 

𝑑𝑖𝑗  Distance between regions 𝑖 and 𝑗 

𝛾, 𝛿, 𝜖 Parameters of the exponential gravity model 
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𝑢𝑖𝑡 Average vaccine coverage in the region 𝑖 at time 𝑡 

𝑛𝑖𝑡 Recent incidence per million in the region 𝑖 at time 𝑡 

𝑁𝑖𝑡  Category of recent incidence in the region 𝑖 at time 𝑡 

𝑠𝑖𝑡 Surface area of the region 𝑖 at time 𝑡 

Data 120 

The observed case counts 𝑌𝑖,𝑡 was computed from 14,461 cases (10,988 confirmed and 3,473 probable 121 

cases) routinely collected in metropolitan France, and reported to the ECDC between January 2009 and 122 

December 2018 (Figure 1A). This data was retrieved on The European Surveillance System (TESSy) on 123 

22 January 2019. The cases were stratified by the metropolitan department they were reported in. The 124 

department correspond to French NUTS3 regions. We excluded three cases where this information was 125 

not available. We used the date of symptom onset reported for each case to compute the daily number 126 

of cases from 2009 to 2018 per department. 127 

 128 

Figure 1: Panel A: Daily number of cases reported in France between 1st January 2009 and 30th November 2018. Panel B: 129 
Distribution of the composite serial interval used in the model. The different colours of the curve correspond to the three 130 
scenarios used to compute the distribution of the serial interval (orange: serial interval when missing ancestor; red: serial 131 
interval without unreported case, brown: serial interval when the case between the two reported cases was missing). Panel C: 132 
Transmission potential, which was computed by convolving the number of cases in the last 30 days with the composite serial 133 
interval. 134 

Adaptation of hhh4 to daily case counts 135 

In hhh4, the average number of new cases stemming from the autoregressive and neighbourhood 136 

components depends on the number of cases at the previous time step. Therefore, if we use daily case 137 

counts, the number of cases at 𝑡 is only impacted by the number of cases the day before. In reality, 138 

however, the serial interval of measles is estimated to be 11 days on average [17]. Previous studies 139 

using ℎℎℎ4 relied on temporally aggregated case counts, which partially solved this problem: if the time 140 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 1, 2021. ; https://doi.org/10.1101/2021.05.31.21257977doi: medRxiv preprint 

https://doi.org/10.1101/2021.05.31.21257977
http://creativecommons.org/licenses/by/4.0/


step is close to the average serial interval, cases of the same generation of transmission can be assumed 141 

to be roughly grouped together in the same time point [18]. Nevertheless, studying weekly (or 142 

fortnightly) aggregated cases counts does not reflect the distribution of the serial interval (i.e., it ignores 143 

overlapping generations of transmission because of shorter or longer delays between primary and 144 

secondary cases). This can lead to directly connected cases being grouped in the same time step, or 145 

separated by more than one time step. This aggregation also ignores the potential for unreported cases, 146 

which may lead to cases causing transmission two to three weeks after their onset date via an 147 

intermediate, unobserved case. Finally, the starting date of aggregation influences how cases are 148 

grouped, which can lead to discrepancies in the parameter estimates.  149 

Recent developments in the surveillance package included weight estimation to represent the relative 150 

impact of previous time steps on the number of cases at 𝑡 [19]. Since we are using daily case counts, 151 

we set the weights of the different time steps from the distribution of the serial interval. We computed  152 

𝑌′𝑖𝑡, the transmission potential for each department and time step, by multiplying the number of recent 153 

cases by the distribution of the serial interval 𝑓(𝑡): 𝑌𝑖𝑡
′ = ∑ 𝑌𝑖,𝑡−𝑘 ∗ 𝑓(𝑘)50

𝑘=1 . Only a subset of measles 154 

cases are reported to the surveillance system [20], therefore we accounted for the risks of unreported 155 

cases by computing a composite serial interval from three different transmission scenarios (Figure 1B): 156 

1- In case of direct transmission between two cases 𝑖 and 𝑗, the number of days between the two 157 

cases 𝑓1(𝑡) follows a Normal distribution truncated at 0: 𝑓1(𝑡)~𝑁(11.7, 2) [17].  158 

2- In case of unreported cases between 𝑖 and 𝑗, the number of days between the two cases 𝑓2(𝑡) 159 

follows a Normal distribution truncated at 0: 𝑓2(𝑡)~𝑁(23.4, √8). This distribution corresponds 160 

to the convolution of 𝑓1(𝑡) with itself. 161 

3- If 𝑖 and 𝑗 share the same unreported index case, the number of days between 𝑖 and 𝑗 follows a 162 

half-Normal distribution (excluding 0) of standard deviation √8 days. This distribution 163 

corresponds to the distribution of the difference of 𝑓1(𝑡) with itself, excluding values below 1. 164 

We added this last scenario to account for multiple concurrent importations stemming from 165 

an unreported infector. 166 

We considered that 50% of the composite serial interval reflected direct transmission (scenario 1, 167 

without missing generations between cases), and 50% came from the two scenarios with unreported 168 

cases (scenarios 2 and 3). The distribution of the composite serial interval is shown in Figure 1B. We ran 169 

sensitivity analysis to estimate the parameters of the model using composite serial intervals computed 170 

with different proportions of direct transmission, and observed it had little influence on the estimation 171 

of each parameter (Supplement Section 1).  172 
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Connectivity between departments 173 

In the hhh4 framework, the average number of cases caused in the department 𝑖 at time 𝑡 by cases 174 

from another department 𝑗 is quantified by the neighbourhood component. It is equal to ϕi,t ∗ 𝜔𝑗𝑖 ∗175 

𝑌𝑗,𝑡−1 (Equation 1). Therefore, the number of cases caused by cases from 𝑗 in 𝑖 in hhh4 is influenced by 176 

three factors:  177 

• The susceptibility of the department 𝑖, quantified by the neighbourhood predictor ϕi,t, defined 178 

as 𝑙𝑜𝑔(𝜙𝑖,𝑡) = 𝛼(𝜙) + 𝛽(𝜙) ∗ 𝑧𝑖𝑡
(𝜙)

. 179 

• The number of connections from 𝑗 to 𝑖, calculated using an exponential gravity model [21], 180 

whereby the number of connections between 𝑖 and 𝑗 is proportional to the product of the 181 

number of inhabitants in the department of origin 𝑚𝑗, the department of destination 𝑚𝑖 and 182 

an exponential decrease in the distance between 𝑖 and 𝑗 𝑑𝑗𝑖. Therefore, the number of 183 

connections from 𝑗 to 𝑖 was calculated as 𝑤𝑗𝑖 = e−𝛿𝑑𝑗𝑖 𝑚𝑖𝑡
𝛾

 𝑚𝑗𝑡
𝜆  .  184 

• The proportion of the population in 𝑗 that is infectious. 185 

Therefore, the average number of cases expected from department 𝑗 to department 𝑖 at 𝑡 can be 186 

written as the product of these three factors: 187 

𝑌𝑗𝑖,𝑡 = exp (𝛼(𝜙) + 𝛽(𝜙) ∗ 𝑧𝑖𝑡
(𝜙)

) ∗  e−𝛿𝑑𝑗𝑖 𝑚𝑖𝑡
𝜖  𝑚𝑗𝑡

𝛾
 ∗  

𝑌𝑗,𝑡−1

𝑚𝑗𝑡
188 

= exp (𝛼(𝜙) + 𝛽(𝜙) ∗ 𝑧𝑖𝑡
(𝜙)

∗ 𝜖 ∗ log(𝑚𝑖𝑡)) ∗  
 e−𝛿𝑑𝑗𝑖  𝑚𝑗𝑡

𝛾
 

𝑚𝑗𝑡
∗ 𝑌𝑗,𝑡−1 189 

Therefore, the log-population log (𝑚𝑖𝑡) was added as a covariate of the predictor of the 190 

neighbourhood component 𝜙. The number of inhabitants in each French department between 2009 191 

and 2018 was taken from the INSEE website [22]. 192 

We implemented two models with different methods to compute the distance between departments 193 

𝑑𝑗𝑖.  194 

1. In Model 1, every department can be connected to each other, therefore only importations 195 

coming from outside the departments included in the study fall into the endemic component. 196 

The distance matrix was computed using the distance between the population centroids of 197 

each department, which were calculated using the 1𝑘𝑚2 European Grid dataset [23]. This 198 

dataset contains the number of inhabitants in each grid cell covering the country (resolution 199 

1km). We computed the weighted population centre in each department using the R function 200 

𝑧𝑜𝑛𝑎𝑙 from the package raster[24] and calculated the distance between population centres.  201 
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𝑌𝑗𝑖,𝑡 = 𝜙𝑖𝑡 ∗ e−𝛿𝑑𝑗𝑖 ∗
𝑚𝑗𝑡

𝛾

𝑚𝑗𝑡
∗ Yj,t−1  202 

2. In Model 2, the neighbourhood component only takes into account transmission between 203 

neighbouring departments, assuming that cross-regional transmissions between non-204 

neighbouring departments would be captured by the baseline number of daily importations 205 

(i.e. the endemic component): 206 

𝑌𝑗𝑖,𝑡 = {𝜙𝑖𝑡 ∗
𝑚𝑗𝑡

𝛾

𝑚𝑗𝑡
∗ Yj,t−1 if 𝑖 and 𝑗 share a border

0 otherwise

 207 

Therefore, the neighbourhood component in Model 1 includes both the neighbourhood component 208 

and part of the endemic transmission in Model 2. 209 

Covariates 210 

Different covariates can be added in each component of the hhh4 framework [25]. We implemented 211 

the same set of covariates in the two models. The two covariates of interest were the impact of vaccine 212 

coverage and the category of incidence in each department in the past three years. We chose this 213 

timeframe in order to match the requirements of the elimination status assessment. We also included 214 

the number of inhabitants, the surface area of each department, and the seasonality as control 215 

variables, as explained below: 216 

Vaccine coverage 217 

For each department 𝑖 and time step 𝑡, we computed 𝑢𝑖,𝑡, the average proportion unvaccinated in the 218 

department 𝑖 over the 3 years prior to 𝑡 according to local coverage reports. We averaged over the past 219 

three years in order to use the same timeframe as the elimination status assessment. We used the 220 

yearly first dose uptake among 2-year-old children in each French department between 2006 and 2017. 221 

This data is publicly available on the website Santé Publique France [26–28]. The uptake of the second 222 

dose was not reported before 2010, and many departments had missing entries after 2010. Therefore, 223 

only the local coverage of the first dose was used in the model.  224 

Since 26% of the entries in the coverage dataset were missing, we ran a beta mixed model to infer the 225 

missing values. We used the time and squared time (in years) as covariates, and random effects 226 

stratified by department. We used the average prediction to infer the missing values from the fitted 227 

model and get the complete vaccine coverage dataset. More details on the regression, and the 228 

sensitivity analyses that were run are presented in the Appendix (Supplement Section 2). All values of 229 
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coverage in 2009 were missing, and were not imputed; we computed the average vaccine coverage in 230 

2010, 2011, and 2012 using only two of the three previous years.  231 

Adding the log-proportion of unvaccinated to the model was the most appropriate approach, since it 232 

allows the rate of disease spread (i.e. the value of the predictors 𝜆, 𝜈, and 𝜙) to be proportional to the 233 

density of susceptibles [25]. Therefore, we calculated the average log-proportion of unvaccinated in 234 

the three years before 𝑡 and added it as a covariate in all three components.  235 

Impact of recent incidence  236 

This covariate quantifies the impact of past outbreaks on current transmission. Departments are eligible 237 

for WHO certification of elimination status if they have maintained low levels of transmission over the 238 

past three years [7]. Therefore, we computed 𝑛𝑖,𝑡, the number of cases per million reported between 239 

a month and three years before 𝑡 in 𝑖. We excluded cases reported in the last month since recent cases 240 

may be directly linked to current transmission.   241 

𝑛𝑖,𝑡 =  1,000,000 ∗ ∑
𝑌𝑖𝑡

𝑚𝑖𝑡

𝑇<𝑡−365∗3

𝑇>(𝑡−30)

 242 

We aggregated 𝑛𝑖,𝑡 in three categories: i) 𝑁𝑖,𝑡
(0)

= {
1 𝑖𝑓 𝑛𝑖,𝑡 < 10 

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
: very limited transmission in recent 243 

years, department potentially eligible for elimination (30% of entries) ; ii)𝑁𝑖,𝑡
(1)

=244 

{
1 𝑖𝑓 10 ≤ 𝑛𝑖,𝑡 < 45 

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
: Moderate transmission in recent years (36% of entries); iii) 𝑁𝑖,𝑡

(2)
=245 

{
1 𝑖𝑓 𝑛𝑖,𝑡 ≥ 45 

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
: major outbreak reported in the department in recent years. The threshold of 45 cases 246 

per million corresponds to the last tercile of 𝑛𝑖,𝑡, hence  33% of 𝑛𝑖,𝑡 fall into this last category.  247 

Computing the level of recent incidence required the number of cases per department in the past three 248 

years. Therefore, since this analysis integrates case counts data from 2009, we needed to compute the 249 

incidence in each department between 2006 and 2008. Less than 50 cases were reported in France per 250 

year in 2006 and 2007 [29], therefore we considered their contribution to the recent level of incidence 251 

per department was null. On the other hand, 597 measles cases were reported to the ECDC in France 252 

in 2008, but were not stratified by department. Therefore, we used the number of cases reported per 253 

department in 2008 on Sante-Publique-France (597 cases overall, mostly reported in the second half of 254 

2008 [30]) and integrated them in the computation of 𝑁𝑖,𝑡 for 𝑡 < 2012. 255 

The level of recent incidence was a covariate in all three components.  256 
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Number of inhabitants and surface area 257 

In the subsection “Connectivity between departments”, we discussed the impact of the number of 258 

inhabitants on the number of movements between departments. Furthermore, several studies have  259 

indicated a potential association between the population density and the number of secondary 260 

transmissions [31–33]. Therefore, we controlled for the impact of the number of inhabitants in each 261 

department, and the surface area (i.e., the geographical size) on the number of local transmissions.  262 

The log-number of inhabitants  log (𝑚𝑖,𝑡) in the department 𝑖 at time 𝑡 was added as a covariate in all 263 

three components. The log-surface of the department log (𝑠𝑖,𝑡) was added as a covariate in the 264 

autoregressive component. 265 

Seasonality 266 

We control for the impact of the seasonality of measles outbreaks in France on transmission by adding 267 

two covariates (sine-cosine) to all three components. 268 

Full model equations for predictors 269 

The covariates are all integrated in the covariate vectors in the equations 2, 3 and 4, yielding: 270 

Autoregressive predictor: 𝛽(𝜆)𝑧𝑖𝑡
(𝜆)

= 𝛽𝑢
(𝜆)

𝑙𝑜𝑔(𝑢𝑖,𝑡) + 𝛽
𝑁(1)
(𝜆)

𝑁𝑖,𝑡
(1)

+ 𝛽
𝑁(2)
(𝜆)

𝑁𝑖,𝑡
(2)

+ 𝛽𝑚
(𝜆)

log (𝑚𝑖,𝑡) +271 

𝛽𝑠
(𝜆)

log (𝑠𝑖,𝑡) + 𝛽𝑐𝑜𝑠
(𝜆)

cos (
2𝜋𝑡

365
) + 𝛽𝑠𝑖𝑛

(𝜆)
sin (

2𝜋𝑡

365
) 272 

Neighbourhood predictor: 𝛽(𝜙)𝑧𝑖𝑡
(𝜙)

= 𝛽𝑢
(𝜙)

𝑙𝑜𝑔(𝑢𝑖,𝑡) + 𝛽
𝑁(1)

(𝜙)
𝑁𝑖,𝑡

(1)
+  𝛽

𝑁(2)

(𝜙)
𝑁𝑖,𝑡

(2)
+ 𝛽𝑚

(𝜙)
log (𝑚𝑖,𝑡) +273 

𝛽𝑐𝑜𝑠
(𝜙)

cos (
2𝜋𝑡

365
) + 𝛽𝑠𝑖𝑛

(𝜙)
sin (

2𝜋𝑡

365
) 274 

Endemic predictor: 𝛽(𝜈)𝑧𝑖𝑡
(𝜈)

= 𝛽𝑢
(𝜈)

𝑙𝑜𝑔(𝑢𝑖,𝑡) + 𝛽
𝑁(1)
(𝜈)

𝑁𝑖,𝑡
(1)

+  𝛽
𝑁(2)
(𝜈)

𝑁𝑖,𝑡
(2)

+ 𝛽𝑚
(𝜈)

log (𝑚𝑖,𝑡) +275 

𝛽𝑐𝑜𝑠
(𝜈)

cos (
2𝜋𝑡

365
) + 𝛽𝑠𝑖𝑛

(𝜈)
sin (

2𝜋𝑡

365
).  276 

Model calibration 277 

A model is deemed well-calibrated if it is able to correctly identify its own uncertainty in making 278 

predictions [34]. The most straightforward method to evaluate whether ℎℎℎ4 models are well-279 

calibrated is to generate a one-step-ahead forecast over a chosen test period and compare them with 280 

the data [15]. Since we use daily case counts, this method would only assess the ability of the models 281 

to capture the number of cases on the next day. We explored the calibration of our models several days 282 

ahead. To do so, we selected the last two years of data as the test period, fit the model up to each day, 283 

and simulated the number of cases over the next 3, 7, 10 and 14 days for each day of the test period in 284 

each department. For each date, we ran at least 100,000 simulations. If the number of cases observed 285 

in the data had not been generated in 100,000 simulations, we ran simulations until it was reached.  286 
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From these simulations, we generated the predictive probability distribution at each time step in each 287 

department. In a model with perfect calibration, the actual number of cases follows the predictive 288 

probability distribution (𝜇𝑖𝑡~𝑃𝑖𝑡 for all predictive distributions 𝑃𝑖𝑡), i.e., the probability integral 289 

transform (PIT) histogram is uniform. We computed the PIT histograms in both models for predictions 290 

over 3, 7, 10, and 14 days. The PIT histograms were computed using a non-randomised yet uniform 291 

version of the PIT histogram correcting for the use of discrete values described in Czado et al [35] and 292 

implemented in hhh4. 293 

The PIT histograms were used to estimate whether the short-term forecasts were in line with the data, 294 

and whether the models were consistently missing some scenarios of transmission.  295 

Simulation study 296 

In order to highlight the impact of variations in the local vaccine coverage or the level of recent 297 

transmission on the risks of outbreaks, we generated simulations of the number of cases in France 298 

across one year under different conditions. To compute these simulations, we used the last values of 299 

average vaccine coverage (the average was computed from the values in 2015, 2016, and 2017) and 300 

the levels of recent incidence in mid-2018, and simulated the daily number of cases between the 1st of 301 

August 2018 and the 31st of December 2019. We started the simulations during the period of the year 302 

associated with the lowest number of cases (i.e., on the 1st of August), in order to avoid biases. Indeed, 303 

if we had used the last three months of data (until November 2018), some departments may have been 304 

repeatedly associated with higher numbers of cases in our simulations, not because they are more at 305 

risk of importation or transmission, but because there had been cases reported in these departments 306 

at the beginning of the epidemic year. We were only interested in highlighting the impact of variations 307 

in coverage and recent transmission, rather than predicting the level of transmission for the entire year 308 

of 2019. 309 

We generated 100 samples of the regression coefficients using the variance-covariance matrix and 310 

assumed they followed a multivariate normal distribution. For each sample, we computed the values 311 

of the three predictors between the 1st of August 2018 and the 31st of December 2019, and simulated 312 

the daily number of cases in each department across the year. We ran 100 simulations per sample (i.e. 313 

10,000 simulations were generated per scenario).  314 

We studied four scenarios: i) Using the latest local values of coverage (averaged over the past three 315 

years), population and category of recent incidence, ii) Increasing the vaccination coverage in each 316 

department by three percent, iii) Decreasing the vaccination coverage in each department by three 317 

percent, and iv) setting the recent incidence in each department to minimal levels (i.e. conditions 318 

fulfilling the WHO elimination status requirements).  319 
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Finally, since tourism and local events can lead to mass gatherings and trigger repeated importations 320 

independent of parameters included in the model [36,37], we studied the impact of repeated local 321 

importations of cases into specific departments. To do so, we simulated one year of transmission (i.e., 322 

until the end of 2019) following the importations of 10 cases in a given department in December 2018. 323 

In these simulations, we did not allow for any other baseline importations throughout the year, in order 324 

to assess the potential for geographical spread throughout the country after importation in one 325 

department.  326 

Results 327 

Impact of the covariates on each component 328 

The parameter estimates obtained in both models are shown in Figure 2. Values above 0 show 329 

aggravating effects associated with an increase in the number of expected cases at the next time step. 330 

For both models, departments with a high proportion unvaccinated in the past three years were 331 

associated with a higher number of expected cases in the autoregressive (Model 1:  0.14 [0.03 - 0.24] ; 332 

Model 2: 0.19 [0.09 - 0.29]) and the endemic component (Model 1:  0.37 [-0.17 - 0.91] ; Model 2: 0.48 333 

[0.17 - 0.80]). This indicates that these departments were at higher risks of background importations, 334 

and secondary transmission upon importation. In both components, the effect of vaccination was 335 

slightly stronger in Model 2, where cross-regional transmission is restricted to neighbouring 336 

departments, than in Model 1, where cross-regional transmission can happen between all 337 

departments, although the confidence intervals overlapped. In Model 1, the proportion unvaccinated 338 

also had an aggravating effect on the number of cross-departmental transmissions (0.47 [0.23 - 0.71]), 339 

whereas in Model 2 there was no clear association between the proportion unvaccinated and an 340 

increase in cross-regional transmission (-0.02 [-0.29 - 0.25]). The differences between the models’ 341 

coefficients were due to the cross-regional transmission in Model 1 corresponding to both the 342 

neighbourhood component and some of the endemic transmission in Model 2.  343 

The association between the level of incidence over the past three years (parameters: 𝑖𝑚𝑚𝑢𝑛 1 and 344 

𝑖𝑚𝑚𝑢𝑛 2 in Figure 2) and the components of transmission was similar in both models. In the auto-345 

regressive component, departments that reported high incidence over the past three years (𝑖𝑚𝑚𝑢𝑛 2) 346 

were associated with fewer secondary cases per case in the department (Model 1: -0.15 [-0.23 - -0.08]; 347 

Model 2: -0.13 [-0.20 - -0.06]). This could be linked to outbreak-induced immunity causing a depletion 348 

of susceptibles in departments where incidence was high over the past few years. On the other hand, 349 

the parameters associated with 𝑖𝑚𝑚𝑢𝑛 2 were above 0 in the neighbourhood and endemic 350 

components, which indicates that departments with high incidence in the past three years were more 351 

at risk of cross-regional transmission and background importations (Model 1: Endemic 0.89 [0.50 – 352 
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1.27]; Neighbourhood: 0.25 [0.09 – 0.41]; Model 2: Endemic 0.67 [0.46 – 0.89]; Neighbourhood: 0.31 353 

[0.11 – 0.51]). The parameter 𝑖𝑚𝑚𝑢𝑛 1 was only significantly different from 0 in the endemic 354 

component (Model 1: 0.66 [0.22 – 1.10]; Model 2: 0.57 [0.34 – 0.80]), meaning departments that 355 

recently reported moderate levels of transmission were associated with more background 356 

importations, but no difference was noticeable in cross-regional or within-region transmission.  357 

The other covariates included in the model showed that the number of inhabitants in a department 358 

had an important impact on both the endemic and neighbourhood components: departments with 359 

more individuals were more likely to report background importations and cross-regional transmission.  360 

On the other hand, the population and the surface area of the departments had no impact on the 361 

autoregressive component. We also observed a strong impact of seasonality on the three components 362 

(Figure 2). Indeed, the peak values of the predictors were 20 to 37% higher than the average value in 363 

all components of transmission (Supplement Section 3). The peak of the autoregressive component 364 

was in February for both models, the endemic peak was in May for Model 1 (April in Model 2), whereas 365 

the neighbourhood component peaked in December in Model 1 (March in Model 2).  366 

 367 

Figure 2: Estimates of the parameters in each component of Model 1 (blue) and Model 2 (purple): Panel A: Autoregressive 368 
component; Panel B: Neighbourhood component; Panel C: Endemic component; Panel D: Other coefficients. The y-axis. 𝑢𝑛𝑣𝑎𝑥 369 
corresponds to the effect of  𝑢𝑖,𝑡, the mean proportion unvaccinated over the three years before 𝑡 in 𝑖; 𝑖𝑛𝑐𝑖𝑑1 and 𝑖𝑛𝑐𝑖𝑑2 370 
correspond to the effect of 𝑁𝑖,𝑡

1  and 𝑁𝑖,𝑡
2  the category of incidence in the three years before 𝑡 in 𝑖; 𝑝𝑜𝑝 corresponds to the effect 371 

of 𝑚𝑖,𝑡 the number of inhabitants at 𝑡 in 𝑖; 𝑎𝑟𝑒𝑎 corresponds to the effect of the surface; 𝑠𝑖𝑛 and 𝑐𝑜𝑠 correspond to the effects 372 
of seasonality; 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 and 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 correspond to the spatial parameters of the connectivity matrix 𝑤 (𝛿 and 𝛾); 373 
𝑜𝑣𝑒𝑟𝑑𝑖𝑠𝑝 is the estimate of the log-overdispersion parameter in the negative binomial distribution of 𝑌𝑖,𝑡. Dots show the mean 374 
values associated with the parameters; arrows show the 95% Confidence interval. Note different y-axes between graphs. 375 

Using the mean parameter estimates, and the latest values of vaccination coverage, incidence, and 376 

number of inhabitants per department, we computed the local predictors 𝜙𝑖, 𝜆𝑖, and 𝜈𝑖 in both models 377 

to highlight the spatial heterogeneity of the transmission risks (Figure 3). The predictors were computed 378 
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ignoring the impact of seasonality, which does not change the geographic distribution of risks since it 379 

is not region-dependent in the models. Therefore, the maps correspond to the average local value of 380 

the predictors the year following the last data entry (i.e. the 30th of November 2018). The geographic 381 

distributions of the autoregressive predictor are similar in Model 1 and Model 2. This indicates that the 382 

same departments were classified as having higher risks of local transmission in both models. Areas 383 

with lower values of vaccine uptake such as the South East and South West of France were associated 384 

with higher risks of secondary transmission. Indeed, the highest values of within-region transmission 385 

were reported in Bouches-du-Rhône and Var (in the South East of France). Populous departments in 386 

the North of France were also at risk of secondary transmission despite higher vaccination coverage.  387 

As expected, the overall number of baseline importations in Model 1 was lower than in Model 2, which 388 

was compensated by a higher number of cross-regional transmissions (Figure 3). This shows that some 389 

of the cases that could not be linked to local transmission, or transmission between neighbouring 390 

departments in Model 2, were classified as cross-regional transmissions in Model 1, which would 391 

indicate long-distance transmission events. In both models, departments with a higher number of 392 

inhabitants were most at-risk of cross-regional and baseline importations, which corresponds to the 393 

strong association between the number of inhabitants and the endemic and neighbourhood 394 

components highlighted in Figure 2. Departments like Bouches-du-Rhône that combine a high number 395 

of inhabitants with low vaccine coverage were associated with the highest number of baseline and 396 

cross-regional importations in both models.  The variations in the autoregressive component were 397 

smaller than in the importation-related components: For instance, the highest autoregressive predictor 398 

value (Var: 0.81 [0.74 - 0.88]) was 35% higher than the lowest value (Lozère: 0.60 [0.53 – 0.66]) in Model 399 

1, whereas the number of baseline importations in Bouches-du-Rhônes was more than 100 times above 400 

the number of importations in Lozère (South of France). This can be explained by the coefficients of the 401 

autoregressive components being much closer to 0 than the most extreme coefficients in the 402 

importation-related components (Figure 2). 403 
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 404 

Figure 3: Average values of the endemic, neighbourhood, and autoregressive predictors per department in Model 1 (upper row) 405 
and Model 2 (lower row) over the year 2019. Since the absolute values are expected to vary over the year because of seasonality, 406 
the panels show the relative geographical heterogeneity. The endemic predictor corresponds to the number of importations 407 
per day per department, whereas the autoregressive predictor corresponds to the number of secondary cases per case in each 408 
department. The absolute value of the neighbourhood predictor is harder to interpret directly since it is multiplied by the 409 
connectivity matrix in the equation. Higher values were associated with departments with higher risks of observing cases 410 
following population movements. 411 

Model fit and calibration 412 

The daily and weekly fits of Model 1 and Model 2 indicate that they were able to match the transmission 413 

dynamics observed in France between 2009 and 2017, despite wide variations in the annual number of 414 

cases (Figure 4 Panel A and B, Supplement Section 4). In years where active transmission was reported, 415 

most of the cases stemmed from the autoregressive component, indicating that the local outbreaks 416 

were sustained by transmission within the departments. Indeed, across all years, the autoregressive 417 

component accounted for 72.9% of the cases, whereas 23.7% of the cases came from cross-regional 418 

transmission, and 3.4% from the endemic component (Supplement Figure S12).  This shows that in 419 

Model 1, 97.6% of the cases were explained by the transmission stemming from other cases reported 420 

in the dataset (93.2% in Model 2). The endemic component described the minority of isolated cases 421 

that could not be linked to any concurrent transmission cluster. Therefore, these cases would be more 422 

likely to be reported at times of low national levels of transmission when no other case could be linked 423 

to them, which explains the shift in seasonality of the endemic component observed in Figure 2 and 424 

Supplement Section 3. 425 

In order to visually assess the calibration of the model, and its ability to provide reliable short-term 426 

predictions for the number of cases per department, we generated PIT histograms showing the 427 
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probability integral transform obtained when forecasting the number of cases 3, 7, 10, and 14 days 428 

ahead (Figure 4, Panels C to F). The PIT histogram is uniform for predictions 3 and 7 days ahead (all 429 

groups are above 0.9 and below 1.1), which shows the number of occurrences where the predictions 430 

of the model did not capture the number of cases one week ahead was not higher than expected under 431 

a uniform distribution. As we increased the number of days of forecast, there were more occurrences 432 

of the model mis-predicting the number of cases to come. Indeed, the U-shape observed in Panel F of 433 

Figure 4 indicates the model was less capable of identifying extreme events two weeks in advance. The 434 

calibration study indicated that Model 2 was more prone to under-estimating the number of cases than 435 

Model 1, and showed signs of bias for the 7, 10, and 14-day predictions (Supplement Section 4). The 436 

national number of cases predicted by Model 1 and Model 2 were similar, and match the data for 437 

predictions 7 days ahead (Supplement Figure S11). The AIC scores and the calibration study indicated 438 

Model 1 was able to fit the data better than Model 2 and was better calibrated. The rest of the Results 439 

section therefore focuses on the conclusions reached using Model 1. The equivalent analysis run on 440 

Model 2 is presented in the Supplementary Section 4. 441 

 442 

Figure 4: Panel A and B:  Daily and weekly fit between the data and Model 1. The inferred number of cases is split among the 443 
three components of the model. Panel C to F: PIT histograms of Model 1, generated respectively for predictions 3, 7, 10, and 444 
14 days ahead. 445 

Impact of vaccination and recent incidence on onwards transmission 446 

In order to illustrate the impact of recent outbreaks and variations in vaccine coverage on the 447 

transmission dynamics in France, we generated 10,000 simulations and computed the number of cases 448 

per department in 2019. We ran the simulation from August 2018 (during the historically low 449 
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transmission season), until 31st December 2019. We generated four sets of simulations under different 450 

initial conditions: using the last measures of average local vaccine coverage, category of recent 451 

incidence, and number of inhabitants; increasing or decreasing the vaccine coverage by three percent, 452 

and setting the category of recent incidence to 0 in each department. 453 

Under the latest measures of coverage and incidence, the simulated outbreaks display a wide variation 454 

in the number of cases in 2019 (minimum 100 cases, median 1,100 cases, maximum 11,100 cases).  455 

Active transmission was generated in a wide range of departments. Indeed, across the simulation set, 456 

44 of the 94 French departments reported more than 10 cases in at least 25% of the simulations. There 457 

was noteworthy spatial heterogeneity in the levels of incidence. Indeed, in 12 departments, there was 458 

no case generated in more than half of the simulations (Figure 5, top right panel). The departments 459 

most vulnerable to active transmissions were highly populated urban areas, such as Paris, the Bouches-460 

du-Rhône, and the North of France. Because they are highly populated, these departments were 461 

susceptible to repeated importations (they reported at least 1 case in more than 95% of the 462 

simulations), which could then cause large transmission clusters. This was especially evident in the 463 

South-East of France, where we highlighted that the number of secondary cases per case in the 464 

department was among the highest in the country (Figure 3 and Figure 5). Numerous departments 465 

were affected by large outbreaks in a subset of the simulated datasets: 27 departments reported more 466 

than 50 cases in at least 5% of the simulations (Figure 5). Further, at least one major outbreak was 467 

generated in the majority of the simulations: in 55% of the simulations, one department reported more 468 

than 100 cases (the most commonly affected department were Paris and its surroundings, the Nord, 469 

and Bouches-du-Rhône). 470 

Decreasing the average three-year vaccine coverage by three percent led to an important increase in 471 

the number of cases per outbreak (median 4,900 cases, more than 95% of the simulations resulted in 472 

more than 1,000 cases). This was first due to an increase in importations and cross-regional 473 

transmission: all 94 departments had at least one case in more than half of the simulations, 77 in at 474 

least 90% of the simulations. Furthermore, the decrease in vaccination coverage resulted in higher 475 

chances of uncontrolled transmissions in many departments (Figure 5, third row). On the other hand, 476 

increasing the vaccine coverage by three percent caused an important drop in the number of cases 477 

(median 605 cases, 80% of the simulations generated less than 1,000 cases), caused by both a decrease 478 

in the number of importations, and in the potential for secondary transmission following importations. 479 

Although outbreaks were still punctually generated, these events are much rarer than in the other two 480 

simulation sets: in 25.8% of the simulations, at least one department generated more than 100 cases 481 

(54.1% with the baseline scenario, 95.4% when we reduced the local vaccine coverage). 482 
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Finally, setting the local recent incidence to the minimum level in each department, which would fulfil 483 

the elimination guidelines, had two opposite effects: it led to a decrease in the number of importations 484 

and cross-regional transmission, and an increase in the number of infections within each department 485 

(Figure 2). In this simulation set, the number of departments where no cases were generated in more 486 

than half of the simulations was similar to when the vaccine coverage was increased (24 departments 487 

in this simulation set, 29 when the vaccine coverage was increased, Figure 5), which shows the 488 

reduction in the number of cross-regional transmission and background importations. Conversely, the 489 

number of large outbreaks was only marginally inferior to the reference simulation set: in 44% of the 490 

simulations, there were more than 100 cases generated in at least one department (54% in the 491 

reference dataset). The geographical distribution of the risks of large outbreaks was almost identical to 492 

the reference simulation set (Figure 5). Therefore, although the number of importations was reduced, 493 

changing the level of recent incidence did not have a clear impact on the risks of active transmission. 494 

More departments became vulnerable to secondary transmission, and despite importations in these 495 

departments being rarer, they were more likely to lead to large outbreaks when they happened. The 496 

two opposing effects recent incidence had on importation and transmission therefore created a 497 

different dynamic of transmission observed in the simulation set, without strongly reducing the risks of 498 

outbreaks. 499 

Each of these simulation sets highlighted the wide range of scenarios that could be generated using the 500 

parameter distributions inferred by our model. In order to gain more understanding on the spatial 501 

spread and consequences of importations, we then explored the impact of localised repeated 502 

importations on overall transmission. 503 
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 504 

Figure 5: Percentage of simulations where the number of cases reported in each department in 2019 was at least 1, 10, and 50 505 
cases for each scenario using parameter estimates from Model 1. Each row corresponds to a different scenario: i) Reference, 506 
ii) Minimum level of recent incidence in each department, iii) Local vaccine coverage decreased by three percent in each 507 
department, iv) Local vaccine coverage increased by three percent in each department. 508 

Impact of local clusters of transmission 509 

Since the endemic component, which can be interpreted as external importations, represented a 510 

minority of the cases in our model (Supplement Figure S12), repeated importations in a given 511 

department over a short timespan rarely occurred in the simulations. Furthermore, due to the 512 

seasonality of the endemic component, fewer importations are generated early in December to 513 

February, which corresponds to the peak period of the other components, and would therefore be 514 

more likely to cause secondary transmissions (Supplement Section 3). We simulated one year of 515 

transmission following ten importations in December 2018 to illustrate: i) the potential for local 516 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 1, 2021. ; https://doi.org/10.1101/2021.05.31.21257977doi: medRxiv preprint 

https://doi.org/10.1101/2021.05.31.21257977
http://creativecommons.org/licenses/by/4.0/


outbreaks, and ii) the spatial spread of transmission following repeated local importations. We selected 517 

four departments to compare the impact of repeated importations in a range of settings: Paris (many 518 

inhabitants, 91% vaccine coverage, surrounded by urban areas), Bouches-du-Rhône (many inhabitants, 519 

84% vaccine coverage), Haute Garonne (many inhabitants, 91% vaccine coverage but high levels of 520 

recent incidence, surrounded by rural areas with lower vaccine coverage), and Gers (Rural area, 79% 521 

vaccine coverage) (Figure 6).  522 

Firstly, major local outbreaks in the department of importation were generated in all four simulation 523 

sets, and especially in Paris and Bouches-du-Rhône, where the proportion of simulations that yielded 524 

more than 100 subsequent cases in the department was 40% and 39%, respectively. In the Bouches-525 

du-Rhône, large outbreaks were mostly due to the low vaccination coverage, whereas in Paris, 526 

outbreaks were mostly linked to the connectivity to nearby areas and the high number of inhabitants, 527 

which meant the department was likely to attract cross-regional transmissions. Major local outbreaks 528 

were rarer in the other two scenarios (9% of simulations above 100 in Haute Garonne, 10% in Gers). 529 

The lower proportion of large outbreaks resulted from different factors: recent large outbreaks in Haute 530 

Garonne reduced the autoregressive predictor, lowering the number of secondary cases per case 531 

imported; whereas since Gers is a rural department, with a low number of inhabitants, almost all the 532 

local cases were due to local transmission (auto-regressive component), with very few cross-regional 533 

transmissions into Gers. 534 

Conversely, the simulations where cases were imported in Gers yielded the largest spatial spread 535 

throughout the country: the median number of departments that reported at least 1 case was 53 (16 536 

when the importations were generated in Haute Garonne; 15 in Bouches-du-Rhône; 39 in Paris). As 537 

stated in the method, the number of cross-regional transmissions is the product of the predictor and 538 

the connectivity matrix, divided by the number of inhabitants in the department of origin, to represent 539 

that only a fraction of commuters will be infected. Therefore, populous areas are more likely to attract 540 

cross-regional transmissions, whereas more rural departments are more likely to seed outbreaks in 541 

other areas. The relatively high spatial spread when cases were imported in Paris is due to the short 542 

distance between Paris and its suburbs, which is then more likely to cause cross-regional transmission 543 

in the northern departments. Despite the cross-regional spread observed in both of these simulations 544 

sets, outbreaks remained local, and occurrences of nation-wide outbreaks were almost null. The 545 

departments most at risk of outbreak following cross-regional spread were some of the direct 546 

neighbours of the department of importations, or the large urban areas (Figure 6). To further explore 547 

this, we ran the same simulations decreasing the vaccine coverage by three percent, which greatly 548 

increased the number of departments exposed in each simulation set, and increased the risk of local 549 

transmission (Supplement Section 6). Therefore, although repeated importations could cause active 550 
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transmission in and around the departments of importation, the current values of vaccine coverage and 551 

the seasonality of transmission were able to prevent nationwide transmission.  552 

 553 

Figure 6: Percentage of simulations where the number of cases reported in each department in 2019 was at least 1, 10, and 50 554 
cases following the importations of ten cases in December 2018, and using the parameter estimates from Model 1. For each 555 
row, the department of importation is indicated by a black dot. 556 

Discussion 557 

This analysis explored which local factors were associated with high risks of transmission in France over 558 

the last decade. Since 2017, immunity gaps, caused by failures to vaccinate, have been linked to a 559 

resurgence of measles in all WHO regions [38]. In countries near-elimination, large outbreaks have been 560 

linked to heterogeneity in the levels of immunity, with pockets of susceptibles fuelling punctual 561 

outbreaks despite high national vaccine uptake [1,2,4,25]. Our study showed that local values of vaccine 562 
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coverage were linked to lower transmission, whereas lower levels of recent incidence were not 563 

associated with lower risks of local transmission. Furthermore, we highlighted that a drop of 3% in the 564 

three-year vaccine coverage triggered a five-fold increase in the number of cases simulated in a year. 565 

The fact that higher vaccine coverage was associated with a lower number of secondary cases is 566 

consistent with prior expectations, and would confirm that the local values of first dose vaccine 567 

coverage are a good indicator of the actual immunity in the population and risks of future transmission. 568 

Reporting accurate values of local vaccine coverage is challenging, for instance because the vaccination 569 

status of people moving regions can be hard to track and lead to measurement errors. Furthermore, 570 

we did not have access to complete data on the coverage of the second MMR dose, which would be a 571 

better indicator of vulnerable areas. Therefore, detecting the association between recent vaccine 572 

uptake and incidence is encouraging. The impact of local vaccination coverage on transmission may 573 

also be muddled by sub-regional vaccine heterogeneity. For instance, pockets of susceptibles within a 574 

region, i.e. areas within the region where the vaccine coverage is substantially lower than the regional 575 

average, may be at high risk of transmission and would not be observable in regional coverage [39]. 576 

This phenomenon can only be hypothesised here, and could be explored using local data on incidence 577 

and vaccine uptake at a sub-regional scale.  578 

Variations in vaccine coverage had a noticeable impact on the number of cases generated in the 579 

simulation study. We showed the effects of a three percent increase and decrease of the three-year 580 

average vaccine coverage on the number of cases, which highlighted the risks of uncontrolled 581 

transmission in the event of a decrease of vaccine-induced protection. Events such as the disruption 582 

caused by the SARS-COV-19 pandemic on routine measles vaccination campaigns could therefore highly 583 

increase the risks of uncontrolled measles transmission in the years to come [40,41].  584 

The departments that reported few cases per million in the past three years were associated with 585 

higher risks of local transmission (autoregressive component). Therefore, according to our model, 586 

regions eligible for elimination status were not associated with lower risks of onwards transmission. 587 

Conversely, high levels of recent transmission were associated with a lower number of cross-regional 588 

transmissions and importations, although we cannot methodologically establish the causality of this 589 

association. The impact on the simulation study was clear: when we set the category of recent incidence 590 

to the lowest level, departments were less exposed to cases, and spatial spread was rarer, whilst there 591 

was little change in the risks of major outbreaks. The simulations showed an ‘all-or-nothing’ situation: 592 

departments tended to report very few to no cases, whilst also being more likely to be affected by 593 

outbreaks. These results would indicate that looking into the level of incidence to quantify the future 594 
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risks of outbreaks can be deceptive, and importations in a department with low recent incidence would 595 

result in large transmission clusters. 596 

We proposed a new framing of the Epidemic-Endemic model implemented in hhh4 by adapting it to 597 

daily count data using the distribution of the serial interval to compute the local transmission potential. 598 

Using daily case counts allowed us to avoid biases associated with aggregated case counts, such as the 599 

influence of the arbitrary aggregation date, by accounting for the impact of variation in the serial 600 

intervals. We also accounted for the risks of unreported cases by computing a composite multimodal 601 

serial interval, thus allowing for transmission with a missing generation, or an unreported ancestor. The 602 

model was able to capture the dynamic of transmission better than the 10-day aggregated model, as 603 

shown by the calibration study (Supplement Section 7). Nevertheless, our framing of the hhh4 model 604 

introduced new biases: we used a distribution of the serial interval based on previous studies rather 605 

than estimating the weights during the fitting procedure and set the proportion of missing generations 606 

in the composite serial interval. We explored the impact of the proportion of missing generations by 607 

fitting the model with different composite serial intervals and concluded that the impact of each 608 

covariate was robust to these changes (Supplement Section 1). We also integrated a potential day-of-609 

the-week effect, and observed that although it had an impact on the auto-regressive component, it did 610 

not change the estimates of the other parameters, and therefore did not change the conclusions of the 611 

study (Supplement Section 8).  612 

Using the hhh4 model allowed us to analyse the different impact of various covariates on local and 613 

cross-regional transmission, and background importation of cases. According to the models we 614 

implemented, an overwhelming majority (>90%) of the transmission came from the cross-regional and 615 

local components of the regression. This indicates that in the models, the endemic component only 616 

corresponds to rare background cases that could not be linked to concurrent transmission events. This 617 

could point towards model misspecifications, for example, connecting unrelated importations to 618 

concurrent local transmission. Since endemic transmission tends to refer to cases otherwise 619 

unexplained by the mechanistic components, the seasonality of the endemic component is decoupled 620 

from the other components, i.e. endemic cases are likely when local and cross-regional transmission 621 

are lower.  622 

Since the endemic component accounted for such a small minority of the cases, group importations of 623 

cases in a given department were rarely observed in the simulations. However, tourism, and local 624 

events lead to large gatherings and can increase the risks of group importations in a limited period of 625 

time [36,37]. We simulated the spatial spread following repeated importations in a given department, 626 

and highlighted that although large outbreaks in the department of importations were common, 627 
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nation-wide transmission following these importations was very rare. Only the departments where all 628 

cases had been imported, and its neighbours, were at risk of uncontrolled outbreaks. Decreasing the 629 

level of vaccination by three percent was associated with a large increase in the level of exposure of all 630 

departments, and in the number of departments where large outbreaks were generated (Supplement 631 

Section 6 and 7). The high levels of transmission observed in recent years in France suggest that 632 

importations are frequent, and even a small drop in vaccination could dramatically increase measles 633 

transmission in the country. 634 

Furthermore, since the number of inhabitants was strongly associated with risks of background 635 

importations, most of the endemic importations were reported in urban areas, where the risks of 636 

exportations were lower. This could explain the discrepancies between the distribution of the number 637 

of cases in the simulations (Figure 5, top row), and the actual number of cases reported in France in 638 

2019 [42]. Active transmission was reported in a number of rural areas, notably in the South West of 639 

France, and in Savoie (East). This could be due to importations and cross-regional transmission that are 640 

under-estimated by our model. Although the model captured the dynamics seen in the data, the 641 

calibration study showed it was only able to predict short-term transmission up to one week. The PIT 642 

histogram associated to the 14-day calibration displayed signs of bias, which shows that the model was 643 

not able to consistently predict variations in the future number of cases in the next two weeks. We 644 

identify several factors that could explain the discrepancies observed for longer term predictions: i) the 645 

indicator of local immunity we used was flawed: two-dose coverage would be a better indicator of the 646 

proportion of the population that is protected; ii) The sub-regional heterogeneity in coverage and past 647 

incidence within the department that could be concealed by NUTS3 aggregated data: because of social 648 

groups that rarely mix with one another, or large NUTS regions, large outbreaks in a given community 649 

would not be a good indicator of the overall level of immunity in a region. Nevertheless, we believe that 650 

the results obtained using limited publicly available covariates are encouraging and we intend to apply 651 

this method using more complete data.  652 

We identified a number of limitations of this study that have not yet been mentioned: Firstly, potential 653 

reactive control measures in case of high transmission were not accounted for. It is likely that if the 654 

level of incidence was increasing over a short period of time, control measures would be implemented 655 

and the behaviour of the individuals may change (e.g. school closures, catch-up vaccination campaigns). 656 

This could impact the number of expected cases after a certain threshold is passed, and impact the 657 

dynamics in the simulated outbreaks. Secondly, we did not include information on the age or genotype 658 

of the cases. Therefore, unrelated importations in successive time-steps in a given region may be 659 

considered as linked by our model, whereas they should be separated. Further development of this 660 

method could focus on taking this aspect into account, in order to give information on the number of 661 
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independent concurrent chains. Thirdly, since this is not a transmission model, some extreme values 662 

could trigger unlikely behaviour. For instance, if the vaccination rate would be 100%, we would still 663 

expect sporadic transmission. Although this would not be entirely implausible given that only the 664 

vaccination coverage in the past three years was taken into account in the models (i.e. even if it was 665 

100% coverage, there could be susceptible individuals in different age groups). Finally, the impact of 666 

the different covariates on the number of cases was constant through time. For instance, the impact of 667 

seasonality may depend on factors such as the weather which may vary each year, which would not be 668 

accounted for in the model we developed. 669 

We used variables collected in a wide range of settings (regional vaccine coverage, incidence, number 670 

of inhabitants, surface), therefore this analysis can be reproduced in other countries to analyse the 671 

potential for local transmission as well as the impact of recent incidence and vaccine-induced immunity. 672 

Since the case counts data are not publicly available, we share the code used to generate the analysis 673 

applied to a simulated dataset on a Github repository: (https://github.com/alxsrobert/measles-674 

regional-transmission).  675 

Data availability 676 

The daily case counts data came from the European Surveillance System – TESSy, provided by Santé 677 

Publique France and released by ECDC. The data cannot be shared publicly. To make this study as 678 

reproducible as possible, we generated simulated case counts in France over the same timespan as the 679 

main analysis. The code used to generate the simulated dataset, and all the figures presented in the 680 

paper is shared in a Github repository (https://github.com/alxsrobert/measles-regional-transmission). 681 

This repository also contains the publicly available covariates used in the model (local vaccine coverage, 682 

number of inhabitants, surface, distance between departments). 683 
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