
 
Containing the Spread of Infectious Disease on College Campuses 

Mirai Shah1, Gabrielle Ferra2, Susan Fitzgerald3, Paul J. Barreira4, Pardis C. Sabeti5,6,7,8, Andres 
Colubri5,6,7,9* 

 
1 Harvard College, Cambridge, MA, USA 
2 Brown University, Providence, RI, USA 
3 Harvard University Health Services, Cambridge, MA, USA 
4 Harvard Medical School, Boston, MA, USA 
5 Harvard University, Department of Organismic and Evolutionary Biology, Cambridge, MA, USA 
6 Broad Institute of MIT and Harvard, Cambridge, MA, USA 
7 Howard Hughes Medical Institute, Chevy Chase, MD, USA 
8 Harvard School of Public Health, Boston, MA, USA 
9 University of Massachusetts Medical School, Worcester, MA, USA 
 
 
* Corresponding author: andres.colubri@umassmed.edu 
 
 
 

Abstract 
 
College campuses are highly vulnerable to infectious disease outbreaks, and there is a pressing 
need to develop better strategies to mitigate their size and duration, particularly as educational 
institutions around the world reopen to in-person instruction during the COVID-19 pandemic. 
Towards addressing this need, we applied a stochastic compartmental model to quantify the impact 
of university-level responses to past mumps outbreaks in college campuses and used it to 
determine which control interventions are most effective. Mumps is a very relevant disease in such 
settings, given its airborne mode of transmission, high infectivity, and recurrence of outbreaks 
despite availability of a vaccine. Our model allows for stochastic variation in small populations, 
missing or unobserved case data, and changes in disease transmission rates post-intervention. We 
tested the model and assessed various interventions using data from the 2014 and 2016 mumps 
outbreaks at Ohio State University and Harvard University, respectively. Our results suggest that 
in order to decrease infectious disease incidence on their campuses, universities should apply 
diagnostic protocols that address false negatives from molecular tests, stricter quarantine policies, 
and effective awareness campaigns among their students and staff. However, one needs to be 
careful about the assumptions implicit in the model to ensure that the estimated parameters have a 
reasonable interpretation. This modeling approach could be applied to data from other outbreaks 
in college campuses and similar small-population settings. 
 
Keywords: Infectious disease, mumps outbreak, college campus, stochastic SEIR model, public 
health intervention, Harvard University, Ohio State University  
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1 INTRODUCTION 1 

College campuses provide ideal breeding grounds for infectious disease. Students live in close 2 

quarters, pack into lecture halls, share food and drinks in the dining areas, and engage in intimate 3 

contact. Outbreaks in these settings can spread very quickly. Indeed, a meningitis outbreak took 4 

place at Princeton University in March 2014, eventually claiming the life of one student. The 5 

Centers for Disease Control and Prevention (CDC) reported the attack rate of the disease on 6 

Princeton’s campus to be 134 per 100,000 students – 1,400 times greater than the national average 7 

(1). Recent COVID-19 spread in educational settings (2) forced school closures around the world 8 

(3), and motivated the design and implementation of plans for safe reopening (4, 5). 9 

A recent string of outbreaks on college campuses involves mumps, once a common 10 

childhood viral disease. After introduction of the measles-mumps-rubella (MMR) vaccine in 1977 11 

and the two-dose MMR vaccination program in 1989, the number of mumps cases in the US 12 

plummeted by 2005. But, despite a vaccinated population, there has been a recent resurgence of 13 

mumps, with a steep jump from 229 cases in 2012 to 5833 cases in 2016 (6). Although a typically 14 

mild disease in children, up to 10% of mumps infections acquired after puberty can cause severe 15 

complications, including orchitis, meningitis, and deafness. Furthermore, a majority of recent 16 

mumps cases have occurred in young adults who had received the recommended two MMR doses. 17 

This suggests that vaccine-derived immunity wanes over time, unlike natural immunity – 18 

protection acquired from contracting the disease – which is permanent. Lewnard and Grad estimate 19 

that 33.8% of young adults (ages 20 to 24) were susceptible to mumps in 1990, in contrast to the 20 

52.8% susceptible in 2006, as vaccinations have replaced contraction as the source of immunity 21 

(7). The temporary immunity from vaccines strengthens the argument for strict containment as a 22 

critical line of defense amidst an outbreak. In the case of COVID-19, even with the availability of 23 
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several vaccines (8), the challenges associated with their wide and quick distribution (9), the 24 

substantial asymptomatic and pre-symptomatic transmission of the disease (10), and the possibility 25 

of new viral strains with higher transmissibility (11) provide further support for such approaches. 26 

The spread of mumps at Harvard University in 2016, and extensive public health measures 27 

and documentation, presents an opportunity to closely examine an outbreak on a college campus. 28 

Between January 1 and August 31, 2016, 210 confirmed mumps cases were identified in the 29 

Greater Boston area, with most detected at Harvard University. Mumps is a highly contagious 30 

disease with the potential to travel quickly and pervasively on a crowded college campus. Some 31 

of the most notable mumps outbreaks on college campuses occurred in Iowa (12), Indiana (13), 32 

and Ohio (14). But, whereas mumps spread rapidly at Ohio State University (OSU) in 2014 and 33 

the University of Iowa in 2006 and 2016, Harvard employed a number of interventions that may 34 

have helped mitigate spread of the disease and contain it over just a few months (15). The 35 

possibility of distinct viral strains resulting in different outbreak dynamics between schools can be 36 

safely dismissed, as it was shown by application of genetic epidemiology methods (16) that all 37 

mumps outbreaks in the US since at least 2006 have been likely caused by the same mumps lineage, 38 

mumps virus genotype G. 39 

The successful containment at Harvard motivates us to explore varied intervention 40 

strategies, given the relative costs of prevention. Even if the use of a booster MMR vaccination is 41 

proven theoretically to reduce infection and thus potentially prevent outbreaks (7, 12), it is unlikely 42 

that universities with limited resources will proactively invest in a third dose. A rough cost analysis 43 

conducted by Harvard University Health Services (HUHS) showed that, while the total mumps 44 

care expenses for Harvard was approximately $75,000, the cost of providing a third MMR dose to 45 

every member of the Harvard community (at $83 per vaccination) was $1.7 million (17). Therefore, 46 
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at least in the short term, a third MMR dose cannot be the only answer to handling mumps 47 

outbreaks; we must consider more immediate solutions and interventions.  48 

In order to understand the effectiveness of interventions aimed at containing mumps 49 

outbreaks on a college campus, we constructed an epidemiological model to simulate the dynamics 50 

of mumps on such a population and quantify the impact of various interventions. This modeling 51 

can be challenging because the number of susceptible students in a college is small compared with 52 

population-wide studies, parameters characterizing the interventions are not known, and data is 53 

partially observed. Deterministic models are only appropriate when the populations of the 54 

compartments are sufficiently large (18). We adopt a modified stochastic susceptible-exposed-55 

infectious-recovered (SEIR) model presented to addresses these issues. We developed this model 56 

within the framework of a Partially Observed Markov Process (POMP), which has been applied 57 

to introduce structural stochasticity into epidemic models (19). The stochastic nature of the model 58 

allows for variability from elements that are not explicitly included, such as class schedules and 59 

campus layouts. This model also allows to easily quantify time-varying interventions after fitting 60 

the parameters to the observed data, by running simulations under alternative scenarios.  61 

We fit model parameters on case data for Harvard’s 2016 mumps outbreak provided by the 62 

Massachusetts Department of Public Health (MDPH). We compared it to data from OSU, one of 63 

the few universities that had extensive publicly available data through the CDC.  64 

In applying our model, we found that each of the interventions employed by HUHS -- email 65 

awareness campaigns, more aggressive diagnoses where clinical symptoms alone were enough to 66 

result in quarantine, and strict isolation of suspected cases -- were crucial in reducing the size and 67 

duration of the outbreak. In particular, Harvard’s policies drastically increased the reporting rate 68 

of infection and shortened the time a person remains infectious in a susceptible population, relative 69 
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to the baseline. As a result, one mumps case at Harvard infected less than two susceptible 70 

individuals on average, and much less once aggressive diagnosis was in place, compared to cases 71 

at non-residential schools like OSU, in which one mumps case infected an average of six 72 

susceptible individuals. However, the OSU data suggests that self-isolation could be effective, if 73 

adopted rigorously by students. The conclusions from this paper could guide future responses to 74 

infectious disease outbreaks on college campuses. Without effective measures in place, highly 75 

transmissible diseases like mumps, meningitis, and now COVID-19, spread in these environments 76 

at much faster rates than in the overall population and can lead to serious health complications. 77 

Simple interventions that ensure most cases are detected, treated, and separated from susceptible 78 

individuals make a significant difference. 79 

80 
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2. MATERIALS AND METHODS 81 

 82 
2.1 Harvard mumps outbreak  83 

2.1.1 Data 84 

The mumps outbreak at Harvard began in February 2016, when six students reported onset of 85 

parotitis to HUHS. For the next three months, the number of cases continued to rise, until finally 86 

plateauing in late May and early June. There were two waves of the outbreak – one occurring in 87 

the month of March and a larger one occurring in mid-April – totaling 189 confirmed and probable 88 

cases (Figure 1). Confirmed cases are those with a positive laboratory test for mumps virus. 89 

Probable cases are those who either tested positive for the anti-mumps IgM antibody or had an 90 

epidemiologic linkage to another probable or confirmed case (20, 21). The majority of these cases 91 

received the recommended two doses of MMR (22).  92 

We use data provided by MDPH, which documented every mumps case between 2015 and 93 

2017 at schools across Massachusetts (23). This data includes demographics of the patient (gender, 94 

age, county, and institution), symptoms and vaccination status, date they reported their symptoms 95 

and the date of symptom onset, and lag time between the date of symptom onset and admission to 96 

a medical clinic. 97 

 98 

2.1.2 Interventions 99 

Harvard University employed three main interventions: (i) an email awareness campaign, (ii) more 100 

aggressive diagnoses, and (iii) strict isolation of infectious persons.  101 

First, between February and May 2016, HUHS sent six different emails to Harvard students, 102 

employees, and colleagues with information on the gravity of the outbreak, recommendations on 103 

how to prevent transmission, and instructions on how to identify mumps. This raised awareness 104 
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throughout the campus. Particularly at the peak of the outbreak, roommates, resident deans, and 105 

athletic coaches all played essential roles in reporting potential cases of mumps, so that few cases 106 

likely went undetected and untreated by HUHS (20, 21).  107 

Second, Harvard acted vigorously to treat and isolate anyone suspected of mumps 108 

throughout the outbreak. Initially, due to the disease’s non-specific symptoms and less extreme 109 

manifestation in vaccinated people, HUHS used positive mumps PCR tests as a necessary ground 110 

for diagnosis. Later, on recommendation from the MDPH, HUHS stopped automatically ruling out 111 

those with negative PCR results, given that false negatives were quite frequent in vaccinated 112 

individuals and that some individuals reported their infection to the clinic belatedly. Isolation or 113 

detection of the mumps virus is challenging because the of its transient replication and coincident 114 

presence of antibodies (24). In outbreaks among two-dose vaccine recipients, mumps virus was 115 

only detected in samples from approximately 30-35% of case patients if the samples were collected 116 

within the first three days following onset of parotitis (25). Anyone who entered HUHS displaying 117 

clinical symptoms of mumps was now deemed infected and infectious. This change in the 118 

diagnosis protocol took place on April 15, 2016, day 61 of the outbreak (21). 119 

Third and perhaps most notably, Harvard isolated most confirmed or probable cases of 120 

mumps. While many universities simply suggest self-isolation in one’s room or dormitory (which 121 

leaves roommates and friends highly susceptible to the disease), Harvard removed anyone with 122 

clinical symptoms of mumps from the population. Of the 230 total cases at Harvard between 123 

February 2016 and November 2017, 96 were isolated in alternate housing on campus, while 110 124 

were isolated off-site. Although a person remains infectious with mumps for five days, Harvard 125 

isolated patients for six days for additional measure (20).  126 
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Harvard also used a variety of smaller techniques to contain the disease. For instance, water 127 

fountains with a weak upward flow were repaired in late March when it became apparent that 128 

students were directly touching the fountain with their water bottles or mouths (21). In this study, 129 

we only considered the first three larger-scale interventions in our models. Figure 1 shows a 130 

timeline of the interventions as well as periods when the population was fluctuating (such as during 131 

spring and summer break). Around two weeks after HUHS improved its criteria for diagnosis in 132 

mid-April, there was a steep decline in the number of new cases. These interventions were possible 133 

thanks to the ample resources that Harvard has at its disposal, which may not be available at other 134 

universities. Nevertheless, this situation makes Harvard an ideal testing ground for interventions 135 

that could not be deployed elsewhere, at least without solid proof of their efficacy. Thus, we 136 

quantify the effects of the three main interventions (awareness campaign, aggressive diagnoses, 137 

and strict isolation of suspected cases) further in the modeling section of this paper.  138 

 139 

 140 

 141 

 142 

 143 

 144 

 145 

 146 

  147 

 148 

 149 

Figure 1: The daily number of new mumps cases (probable or confirmed) at Harvard and the 
timeline of school vacations and control interventions employed by HUHS between February 
and June 2016. Both probable and confirmed cases display clinical symptoms of mumps, but 
only confirmed cases have a positive PCR result. HUHS sent multiple emails over the course of 
the outbreak, raising awareness about the spread of mumps. Additionally, in mid-April, HUHS 
began more carefully diagnosing mumps, rather than automatically ruling out those with 
negative PCR tests. The isolation policy is not shown because it occurred continuously 
throughout the entire outbreak.  
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2.2 Ohio State University mumps outbreak 150 

2.2.1 Data on the outbreak 151 

In 2014, a large outbreak of mumps occurred in central Ohio, with the majority of cases linked to 152 

OSU in Columbus. The outbreak began in February 2014 and peaked in early April with 96 cases 153 

in one week. By summer and early fall, the number of cases had dramatically dropped and 154 

stabilized (14). We therefore restrict our analysis of the outbreak to the time between Week 1 and 155 

Week 40 of 2014, in which there were a total of 528 cases (Figure 2). We obtained this data from 156 

CDC’s Morbidity and Mortality Weekly Report (26). One drawback of the data is that the cases 157 

are reported weekly, making our analysis and parameter estimations less precise. Furthermore, we 158 

cannot guarantee that all the cases in this dataset are linked to the university itself, but we know 159 

from news reports that most cases in Ohio occurred on campus during the first half of 2014 (14). 160 

The proximity in time to the Harvard outbreak and the differences in response detailed below make 161 

this a good dataset to compare to. 162 

 163 

2.2.2 Characteristics of the response 164 

We were unable to acquire data directly from OSU, and thus the exact timeline and range of 165 

interventions administered over this period are not known. We learned through online searches 166 

that advisories were published by the university, notifying students of the issue and how to prevent 167 

its spread. One notice published by OSU’s medical center reads: “Stay at home for five days after 168 

symptoms (salivary gland swelling) begins (required by Ohio law OAC 3701-3-13, (P)); avoid 169 

school, work, social gatherings, and other public settings” (27). These advisories were distributed 170 

since March 2014 (28), and local news outlets also started reporting the outbreak earlier in the 171 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 31, 2021. ; https://doi.org/10.1101/2020.07.31.20166348doi: medRxiv preprint 

https://doi.org/10.1101/2020.07.31.20166348
http://creativecommons.org/licenses/by-nc-nd/4.0/


10 
 

month (29). It appears, however, that like most affected universities, OSU did not formally isolate 172 

infectious persons. 173 

 174 

 175 

 176 

 177 

2.3 Epidemiological POMP model  178 

The epidemiology of mumps can be captured by a Susceptible-Exposed-Infected-Removed (SEIR) 179 

compartmental model: after exposure, individuals go through a latent non-infectious period, 180 

followed by an infectious phase (30). Infectious individuals are removed from the transmission 181 

process either by recovery or isolation, after which they become immune. Compartmental models 182 

simplify the mathematical modeling of infectious diseases; however, they assume access to fully 183 

observed disease data. In reality, not all mumps cases are reported, and latent mumps carriers 184 

exhibit no symptoms at all. In order to address this issue, our approach integrates a standard SEIR 185 

0
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Outbreak at Ohio State University

Figure 2: Number of weekly mumps cases in Ohio (particularly Ohio State University) between 
January and November 2014. There were 528 cases during this time period, with most occurring 
between Match and July. The dotted line in the last week of March indicates the intervention 
consisting in awareness campaign by OSU, as well as local and national news reports about the 
outbreak. 
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model with a Partially Observed Markov Process (POMP) model (31). This allows us to combine 186 

the simplicity of compartmental models with a probabilistic framework for the underlying 187 

dynamics and the observed data. POMP models require the specification of a process model that 188 

describes stochastic transitions between the (unobserved) states of the system (in this case, the 189 

SEIR compartments), and a measurement model where the distribution of observed data (e.g.: 190 

confirmed cases) is expressed as a function of the unobserved states. The stochasticity introduced 191 

in the SEIR dynamics makes our model better suited to describe small populations, such as college 192 

campuses, where random fluctuations can be significant in relation to the size of the population. 193 

We describe the process and measurement models below. 194 

 195 

2.3.1 Process model 196 

The process model, defined as a stochastic SEIR model, provides the change in true incidence of 197 

mumps at every time point. We add parameters that induce random fluctuations into the population 198 

and change the compartments’ rates of transfer in response to interventions. We do this by using 199 

probabilistic densities for the transition of state variables. Moreover, although disease dynamics 200 

are technically a continuous Markov process, this is computationally complex and inefficient to 201 

model, and so we make discretized approximations by updating the state variables after a time step, 202 

𝛿. Due to the varying granularity of the observed data (daily and weekly), we used two different 203 

time steps: 𝛿! = 2.4	ℎ𝑜𝑢𝑟𝑠 for Harvard and 𝛿" = 12	ℎ𝑜𝑢𝑟𝑠 for OSU. The system of discretized 204 

equations is shown in Equation 1, where 𝐵(𝑡)  is the number of susceptible individuals who 205 

become exposed to mumps, 𝐶(𝑡) is the number of newly infectious cases, and 𝐷(𝑡) is the number 206 

of cases that are removed from the population: 207 
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𝑆(𝑡 + 𝛿) = 	𝑆(𝑡) − 	𝐵(𝑡)	208 
	209 

𝐸(𝑡 + 𝛿) = 	𝐸(𝑡) + 	𝐵(𝑡) − 	𝐶(𝑡)	210 
	211 

𝐼(𝑡 + 𝛿) = 	𝐼(𝑡) + 	𝐶(𝑡) − 	𝐷(𝑡)	212 
	213 

𝑅(𝑡 + 𝛿) = 	𝑅(𝑡) + 𝐷(𝑡)	214 
	215 

𝑆(𝑡) + 	𝐸(𝑡) + 	𝐼(𝑡) + 	𝑅(𝑡) = 	𝑁	216 
	217 

Equation 1 describes how the sizes of the four compartments (susceptible, exposed, 218 

infectious, and removed) change between (𝑡, 𝑡 + 𝛿) . The model further assumes that the 219 

population size 𝑁 remains constant at every time point. We added inherent randomness to our 220 

model by setting 𝐵(𝑡), 𝐶(𝑡), and 𝐷(𝑡) as binomials. If we assume that the length of time an 221 

individual spends in a compartment is exponentially distributed with some compartment-specific 222 

rate 𝑥(𝑡) , then the probability of remaining in that compartment for an additional day is 223 

𝑒𝑥𝑝(−𝑥(𝑡)) and the probability of leaving that compartment is 1 − 	𝑒𝑥𝑝	(−𝑥(𝑡)): 224 

𝐵(𝑡) ∼ 	𝐵𝑖𝑛(𝑆(𝑡), 1 −𝑒𝑥𝑝 (−𝜆(𝑡	)), where 𝜆(𝑡) = 	𝛽(𝑡) #(%)
'

 225 

𝐶(𝑡) ∼ 𝐵𝑖𝑛(𝐸(𝑡), 1 −𝑒𝑥𝑝 (−𝜎	))	226 
	227 

𝐷(𝑡) ∼ 𝐵𝑖𝑛(𝐼(𝑡), 1 −𝑒𝑥𝑝 (−𝛾(𝑡)	))	228 
	229 

 The force of infection, 𝜆(𝑡), is the transition rate between the susceptible and exposed 230 

classes at time t and can be expressed as 𝛽(𝑡) #(%)
'

, where 𝛽(𝑡) represents the transmission rate of 231 

the disease. The removal rate between the infectious and removed compartments at time t is given 232 

by 𝛾(𝑡), and transition rate between the exposed and infectious classes is 𝜎. Therefore, 𝛾(𝑡)() 233 

represents the mean length of time a person is infectious before being removed from the population 234 

(either because of intervention efforts or natural recovery), while 𝜎() represents the mean length 235 

of time a person stays in the latent stage. With this notation, we are implicitly assuming that the 236 

transmission and removal rates could change over time due to interventions or changes in behavior, 237 

 
(1) 

 
(2) 
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while the duration of the latent stage is constant and determined by the physiopathology of the 238 

disease. We will justify these assumptions for Harvard and OSU next, as well as provide explicit 239 

formulas for 𝛽(𝑡)	and  𝛾(𝑡). 240 

Leaving aside the unlikely possibility of change in pathogen’s infectivity, the transmission 241 

rate 𝛽(𝑡) essentially depends on the frequency of exposure events. In the case of Harvard, its 242 

nature as a residential campus would lead to significant decreases in student population, and 243 

therefore exposures, during school vacations. Exposure at OSU, a non-residential campus, is 244 

arguably less affected by vacation breaks. Another potential cause for reduction in exposures is 245 

awareness campaigns resulting in the adoption of preventive behaviors by students. Both Harvard 246 

and OSU adopted such campaigns, in the former, implemented as emails regularly sent out by 247 

HUHS recommending personal hygiene and testing in case of symptoms compatible with mumps; 248 

in the latter, in the form of advisories posted around campus and online, advising self-isolation to 249 

those students who presented symptoms. Furthermore, due to the scale of the mumps outbreak in 250 

Ohio, it received local and national news coverage, particularly in connection with OSU. 251 

Anecdotal evidence (i.e.: conversation with students) and, most importantly, the fact that HUHS 252 

emails were throughout the outbreak, make us conclude that emails were not particularly effective. 253 

On the other hand, news coverage in the case of OSU could have led to additional awareness by 254 

students and encouraged some to self-isolate. We argue that self-isolation results in lowering of 255 

transmission rate, not shortening of the removal time, because it is not perfect quarantine and 256 

people can still interact and become exposed, albeit at a lower frequency. Based on these known 257 

facts and our interpretation of them, we propose the following transmission rate 𝛽!(𝑡) for the 258 

Harvard model:  259 

𝛽!(𝑡) = 	𝑝𝛽!	,			𝑡0 ≤ 𝑡 ≤ 𝑡1	𝑜𝑟	𝑡 ≥ 𝑡2		 260 
	= 	𝛽! 	𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒																		 261 

 
(3) 
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Here, t0 and t1 represent the starting and ending dates for the spring break (March 12-20 2016), 262 

and t2 the beginning of the summer recess (May 26 2016). The constant 𝛽!  is the baseline 263 

transmission rate during normal class term, and the parameter p is a number between 0 and 1 that 264 

accounts for the reduction of student population on campus during the school vacation. In the case 265 

of OSU, we propose:  266 

𝛽"(𝑡) = 	𝑤𝛽"	,			𝑡 ≥ 𝜁		 267 
													= 	𝛽"	𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 268 

 269 
In this equation, 𝛽" the baseline transmission rate, w is a constant lower than 1, and 𝜁 the time 270 

when students began to self- quarantine. Based on publication of public health advisories and 271 

local news, we set this time as the last week of March 2014 (week 12). Since Harvard’s 272 

quarantine was in effect through the entirety of the outbreak, we did not incorporate a similar w 273 

coefficient to the corresponding 𝛽!(𝑡) equation for Harvard. 274 

 The removal rate 𝛾(𝑡) can also be affected by interventions and personal behaviors. We 275 

know that HUHS diagnosis protocol changed on day 61 of the outbreak at Harvard, resulting in a 276 

shorter average removal time since clinical presentation of symptoms alone was enough to result 277 

in strict isolation of suspected cases. Thus, we propose the following 𝛾!(𝑡) for Harvard:  278 

𝛾!(𝑡) = 	𝑞𝛾!	, 𝑡 ≥ 𝜏		 279 
						= 	 𝛾! , 𝑡 < 𝜏 280 

Here, q is a constant greater than 1 and 𝜏 is the date when the new criteria was implemented (April 281 

15, 2014). The constant 𝛾!  is the baseline removal rate reflecting the impact of the original 282 

diagnosis protocol. In the OSU model, on the other hand, we assume a constant recovery rate 𝛾 283 

equal to the population average for mumps, since infected individuals self-isolate at home. This 284 

would not result in a strict quarantine but in a reduced contact rate with susceptible individuals, 285 

which is already modeled by a lower transmission rate in equation (4).  286 

 
(4) 

 
(5) 
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Finally, it is necessary to estimate the basic reproduction number, 𝑅0, which equals the 287 

expected number of secondary cases produced by an infectious person in a completely susceptible 288 

population (30). 𝑅0 measures the initial growth rate of an outbreak and so, if it is less than 1, then 289 

the infection will die out and there will be no epidemic. For our stochastic SEIR model, this 290 

constant can be expressed as 𝑅0 = +
,
  (18). Meanwhile, the time-dependent effective reproduction 291 

number is defined as 𝑅-(𝑡) =
+(%)
,(%)

∗ .(%)
'

, but because 𝑆(𝑡) 	≈ 	𝑁, we can simplify this expression 292 

to 𝑅-(𝑡) 	≈ 	
+(%)
,(%)

. Both the basic and effective reproduction numbers allow us to understand the 293 

strength of an outbreak. 294 

 295 

2.3.2 Measurement Model 296 

Although it is impossible to directly record the number of people that are susceptible, exposed, 297 

infectious, and removed directly, the MDPH and CDC data tells us the number of observed cases 298 

per day. The mean number of observed cases per day is the true number of cases multiplied by the 299 

reporting rate 𝜌 (𝜌 < 1). However, rather than simply denoting the observed number of cases as a 300 

binomial distribution, we account for greater variability in the measurements than a binomial 301 

distribution expects, since college populations are “small” (comparted to cities and larger 302 

administrative units) and more affected by random fluctuations (32). Thus, the number of observed 303 

cases, 𝑦%, given the number of true cases,	𝐶(𝑡), can be best modelled by an overdispersed binomial 304 

distribution defined as a discretized Normal random variable:   305 

𝑦%	|	𝐶(𝑡) 	∼ 	𝑁𝑜𝑟𝑚𝑎𝑙(𝜌𝐶(𝑡), 𝜌(1 − 𝜌)𝐶(𝑡) + U𝜓𝜌𝐶(𝑡)W/)	306 
	307 

	308 
The parameter 𝜓 handles the increased variability in a small population. If 𝜓 = 0, the 309 

variance in our measurement model simplifies to the variance for a binomial distribution.  310 

 
(6) 
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 311 

2.3.3 Final POMP Model 312 

The process and measurement models define our final POMP model. For each time point, the 313 

process model generates the number of new cases based on binomially distributed counts. The 314 

measurement model then estimates the observed number of cases based on the true number of 315 

cases and reporting rate. The free parameters in our POMP models for Harvard and OSU that need 316 

to be estimated from the data are the following: (i) 𝛽! and 𝛽", baseline transmission rates, (ii) p 317 

and w, decrease in transmission rate at Harvard and OSU due to vacation and self-isolation, 318 

respectively, (iii) 𝛾! baseline removal rate at Harvard (iv) 𝑞, increase in removal rate due to the 319 

updated HUHS diagnosis protocol, (v) 𝜌!  and 𝜌" ,  case reporting rates, (vi) 𝜓!  and 𝜓" , 320 

overdispersion coefficient representing additional variability in the populations.  321 

 322 

2.3 Fixed parameters 323 

In addition to the free parameters to be estimated from the observed case data, our models also 324 

include a number of fixed parameters, shown in Table 1, whose values can be inferred directly 325 

from previous knowledge or available information. As mentioned earlier, we chose 𝜏 = 61 days 326 

and 𝜁 = 12 weeks because those points in time at Harvard and OSU correspond to the introduction 327 

of the interventions that we hypothesized to be impactful in the dynamics of the respective 328 

outbreaks. Dates t0, t1, and t2 for the spring and summer vacations at Harvard are available online 329 

(33). We set the rate between the exposed and infectious classes and the recovery rate to 𝜎 = )
)0

  330 

and 𝛾 = )
1
, respectively, since the average latent period and recovery time for mumps are known 331 

to be 𝜎() = 17 days and 𝛾() = 5 days (7). Finally, we set the effective population size at Harvard 332 

𝑁! = 20,000 × 0.53 = 10,600  people based on records of Harvard’s enrollment and 333 
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employment, and Lewnard and Grad estimation of susceptibility to mumps among college-age 334 

adults due to immunity waning (7). Similarly, we use an effective population for OSU given by 335 

𝑁" = 60,000 × 0.53 = 31,800, leveraging the total enrollment for the 2013-2014 academic year 336 

reported in OSU’s statistics website (34). 337 

 338 

Symbol Description Value Units Source 
𝜏 Date of intervention at Harvard 61 day Harvard records on interventions (21) 

t0, t1, t2 Vacation dates at Harvard, 2015-2016 
academic year 

26, 34, 
100 

day Harvard archived academic calendar 
(33) 

𝜁 Date of intervention at OSU 12 week  
𝜎!" Duration of mumps latent period 17	 day Lewnard and Grad (7)  
𝛾!" Duration of mumps recovery period 5 day Lewnard and Grad (7) 
𝑁#	 Effective population at Harvard 10,600	 — Harvard records on population size 

(22) and mumps susceptibility among 
college-aged individuals (7) 

𝑁$ Effective population at OSU 31,800 — OSU’s statistical summary (34) and 
mumps susceptibility among college-
aged individuals (7) 

 339 

 340 

2.4 Maximum likelihood estimation of free parameters 341 

In order to obtain estimates of the free parameters in our models, we pick the parameter values that 342 

maximize the log likelihood of the observed data given each model. Within the POMP framework, 343 

we can perform fast maximum likelihood estimation (MLE) via Sequential Monte Carlo (SMC) 344 

techniques (31). SMC allows us to calculate the likelihood of the data more efficiently by applying 345 

the Markov property to generate paths in parameter space that sample the likelihood surface. We 346 

performed 100 searches from random parameter guesses, each converging to a unique value, and 347 

we then took the maximum over the 100 runs the final point estimates. We did this using the pomp 348 

package version 3.3 (35) for the R statistical software version 4.0.5 (36). In order to calculate the 349 

Table 1: List of fixed parameters used in mumps transmission model for Harvard and OSU 
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confidence intervals for each parameter, we applied the Monte Carlo-adjusted profile (MCAP) 350 

algorithm (37). 351 

 352 

2.5 Intervention analysis 353 

Finally, we performed an analysis of the parameters q and w, which respectively quantify the effect 354 

of what we consider to be the defining intervention at Harvard (aggressive diagnosis) occurring 355 

around day 61 of the outbreak, and the self-isolation awareness campaign at OSU during March 356 

2014. This could allow us to understand to what extent these interventions made a difference on 357 

the trajectory of the outbreak. First, we compared the scenario with the interventions versus a 358 

scenario without the interventions. Controlling for all other parameters, we run two sets of 359 

simulations at the MLEs, with 200 simulations each. The first set of simulations fixed q and w at 360 

the value obtained from MLE, while the second set of simulations set q and w to 1, assuming that 361 

no interventions occurred around day 61 at Harvard and by week 12 at OSU. We then compared 362 

the cumulative number of cases over time for these two sets of simulations, generating a 95% 363 

percentile range from all the simulations in each set. Second, we used this method to determine if 364 

administering the interventions earlier could have lowered the number of cases. For Harvard, we 365 

let the day of the intervention take on values between 1 and 60. Subsequently, we ran simulations 366 

for each of these 60 cases, pulled the final outbreak size from the median simulation, and calculated 367 

the reduction in outbreak size. We applied the same procedure for OSU, in this case varying the 368 

day of intervention between 1 and 11 and calculating the corresponding final outbreak sizes.  369 
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3. RESULTS 370 

3.1 Optimal Parameters of Harvard and OSU Outbreaks 371 

The MLEs of the parameters provide insight into the key characteristics of Harvard’s and OSU’s 372 

outbreak. In general, we observe very good agreement between the observed cases and the 373 

simulated outbreaks using the optimal parameters. The effective reproduction number also reflects 374 

the effects of the interventions at Harvard and OSU in way that’s consistent with our initial 375 

modeling assumptions.  376 

 377 

3.1.1 Maximum Likelihood Estimates for Harvard 378 

The results are shown in Table 2. Notably, the baseline removal rate 𝛾! is quite high, indicating 379 

that the initial diagnosis protocol was quite effective at identifying and removing infected students 380 

from the population, but it was further increased after day 61. The reporting rate 𝜌!  is also 381 

remarkably high, which suggests that HUHS was able to identify most of the cases circulating at 382 

Harvard. 383 

 384 

Symbol Description Point estimate 95% CI Units Source 
𝛽#	 Baseline transmission rate 1.39 (1.02, 2.20) day-1 MLE 
𝛾# Baseline removal rate 0.85 (0.78, 0.99) day-1 MLE 
p	 Decrease in infection due to vacation 0.11 (0.00, 0.47)  MLE 
q Increase in removal rate  2.8 (1.39, 6.00) — MLE 
𝜌# Proportion of infections reported 0.97 (0.87, 0.99) — MLE 
𝜓#	 Overdispersion parameter 0.54	 (0.36, 0.72)  — MLE 
𝑅%(𝑡) Effective reproduction number 1.63 normal term 

0.18 during vacation 
0.58 after intervention 

— — Calculated as &(()
*(()

 

 385 

 386 
Table 2: List of parameters in the Harvard model that were obtained by MLE or calculated 
using the estimated parameters. 
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We ran 200 stochastic simulations of Harvard’s outbreak using the parameter values from 387 

Table 2. Figure 3A shows the range of values across simulations, and they appear consistent with 388 

the observed data. Shortly after day 61 (the time of the primary intervention), we see a decrease in 389 

the number of cases. The variability in the simulations can partly be attributed to the randomness 390 

in the stochastic model as well as the over-dispersion parameter. Variability can also be explained 391 

by the MLE of the basic reproduction number being below 2, which together with the stochasticity 392 

built into the simulations, can result in absence of outbreak.  393 

 394 

3.1.2 Maximum Likelihood Estimates for OSU 395 

The MLEs of the parameters for the OSU model, as well as derived quantities, are shown in Table 396 

3. Here we can see an initial reproductive number of almost 6, much higher than Harvard’s. 397 

However, it eventually becomes lower than 1, which supports our modeling assumptions of an 398 

awareness campaign from OSU, perhaps helped by news reporting about the outbreak, that lead to 399 

effective self-isolation of individuals. 400 

Symbol Description Point estimate 95% CI Units Source 

𝛽" 	 Transmission rate constant 1.19 (0.92, 1.43) day-1 MLE 
w Decrease in infection due to self-isolation 0.16 (0.09, 1.17) — MLE 
𝜌"  Proportion of infections reported 0.03 (0.03, 0.08) — MLE 
𝜓" 	 Overdispersion parameter 0.38 (0.22, 0.65) — MLE 
𝑅%(𝑡) Effective reproduction number    5.95 initial 

   0.95 after advisory 
 — Calculated as  &(()

*(()
 

 401 

 402 

As with Harvard, we run stochastic simulations of OSU’s outbreak using the parameter values 403 

from Table 3. The simulated outbreaks are shown in Figure 3B, and they follow the real data 404 

remarkably well. However, the proportion of infections reported, 𝜌" , is very low at 3%. This would 405 

Table 3: List of parameters in the OSU model that obtained by MLE or calculated using 
the estimated parameters. 
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imply that the true number of cases in the OSU outbreak was 30 times larger than observed, placing 406 

the total count at around 15,000.   407 

 408 

 409 

 410 

 411 

 412 

 413 

3.2 Earlier intervention decreases outbreak size at Harvard and OSU 414 

The results from the intervention analysis for Harvard and OSU is depicted in Figure 4. By the 415 

final day of the Harvard outbreak (day 130), the simulations without the intervention on day 61 416 

yielded outbreak sizes that were up to four times the size of the actual outbreak (Figure 4A). These 417 

Figure 3: These plots show the observed case count data (red line) and the range of simulated case 
count values at each time point between the bottom 5% and top 95% percentiles (blue shaded area) 
from 200 simulation runs using the Harvard (A) and OSU (B) models evaluated at the maximum 
likelihood estimates of the parameters. 
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results also indicate that the outbreak would have lasted much longer, if not for these vigilance-418 

increasing strategies. By varying the day of the intervention from 1 to 61, we also obtained a linear 419 

regression between day of intervention and reduction of the outbreak (Figure 4C). The fitness of 420 

the regression is very high (R2=0.96, P<10-9), and quick inspection of the plot reveals that if the 421 

new diagnosis protocol had been implemented within the first 10 days of the outbreak, then no 422 

more than 50 students would have been infected in total at Harvard.  423 

For OSU we observe similar trends. Lack of intervention on week 12 could have resulted 424 

in an outbreak twice as large (Figure 4B). The outbreak size as a function of the intervention week 425 

also shows a strong dependency, but in this case non-linear and best fit with a sigmoid function of 426 

the form 1/(1+eweek-12). Using this transformation, the fit is also very high (R2=0.63, P<0.005), and 427 

we can conclude that intervening earlier would have had a major effect as well: if the awareness 428 

campaigns prompting students to self-isolate had started around week 5 or 6 (rather than week 12), 429 

then it appears likely that the outbreak could have been completely eradicated. 430 
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 431 

 432 

 433 

 434 

Figure 4: Panels A and B show the comparison of the cumulative number of cases over time for the 
observed Harvard and OSU data and the range of cases (95% percentile of the runs) in simulations with 
and without interventions, with dotted lines representing the timing of the interventions in each school 
(panels A and B). In panels C and D, the plots show the percentage we expect outbreak size to decrease by 
if the date of intervention had been moved up. There is a significant linear relationship between the time 
and percentage reduction in the case of Harvard, as well as a significant relationship after doing a sigmoid 
transformation of the time variable in the case of OSU. 
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4. DISCUSSION 435 

4.1 Parameter interpretation 436 

The MLEs give us insight into characteristics of the mumps outbreaks at Harvard University in 437 

2016 and Ohio State University in 2014, as measured by their effective reproduction numbers 𝑅-, 438 

intervention parameters q and w, rates of removal 𝛾 , reporting rates 𝜌 , and overdispersion 439 

parameters 𝜓 . At Harvard, 𝑅-  during normal class term was 1.63, which indicates that the 440 

outbreak was growing, even though testing and isolation by HUHS resulted in a baseline removal 441 

time of only  )
2.41

= 1.2  days. This points to the effectiveness of the quarantine system 442 

implemented by HUHS. However, a small fraction of false negative cases still managed to escape 443 

quarantine and keep the virus under circulation, as indicated by the reproduction number being 444 

higher than 1. The reproduction number goes below 1 during the spring break, which is reasonable 445 

given that most students are away due to the residential nature of the Harvard campus. However, 446 

transmission resumes after the break. It is only after the implementation of the new diagnosis 447 

protocol on day 61, which required isolation if clinical symptoms were present, that had a dramatic 448 

effect on the detection and isolation of positive cases, effectively taking the removal time to less 449 

than 1 day and the reproductive number below 0.6. Thanks to this key intervention, it was possible 450 

to end the outbreak before the beginning of the summer recess.  451 

The estimate of 𝜌 is 0.96, which implies the reporting rate at Harvard was remarkable. 452 

Reasons include the email awareness campaign, a community network – from resident deans to 453 

athletic coaches – reporting students and employees who seemed at-risk, and more aggressive 454 

diagnoses, particularly towards the end of the outbreak. The estimate for 𝜓 is 0.54, suggesting that 455 

the actual data has more variability than expected under the assumed distribution. If 𝜓 had been 456 
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approximately 0, the variance in our measurement model would have simplified to the variance 457 

for a binomial distribution. However, because the 95% confidence interval is (0.22, 0.65) and thus 458 

does not include 0, we justify the modelling decision of representing the number of cases as an 459 

over-dispersed binomial. Demographic and environmental stochasticity (e.g.: a student during 460 

midterm season may be less likely to report symptoms), as well as the interventions themselves 461 

(e.g.: reporting may increase temporarily after an awareness email) can result in over-dispersion 462 

in the number of reported cases.  463 

In the case of OSU, we obtain a much higher reproduction number at the beginning of the 464 

outbreak, near 6, and a very low reporting rate of 3%. Before discussing these results any further, 465 

it is important to keep in mind that we extrapolated OSU cases from state-level reports by the CDC. 466 

Furthermore, we did not have direct access to information about the containment interventions 467 

adopted by the school, as we did for Harvard, so we were only able to make educated guesses 468 

about those possible interventions based on information we found on the web. Within our OSU 469 

model, we can conclude that self-isolation of students motivated by the advisories posted by OSU 470 

had the intended effect of stopping the outbreak. The effective reproduction number dips below 1 471 

after March, which is when the awareness campaign appeared to have started, and when the 472 

outbreak gained local and national prominence due to news reporting. A significant issue with the 473 

OSU model is the very low reporting rate of 3% derived from the MLE calculation. This rate 474 

implies that the true number of mumps cases during the OSU outbreak should have been 475 

approximately 30 times larger than observed. It follows that the total number of cases could have 476 

reached 15,000 individuals, which is internally consistent in the model given that the number of 477 

susceptible within the school’s student population is over 30,000. However, such a large case count 478 

is unlikely, as it doubles the highest number of yearly mumps cases reported in the US in the last 479 
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20 years (38), which was 6,369 in 2016. There is little data on the percentage of asymptomatic 480 

mumps infections that would result in non-reporting, but the available evidence points to 15%–481 

30% (39, 40). Seroprevalence studies from the pre-vaccination era indicate a reporting rate of 482 

around 4% (41), which is strikingly similar to the MLE estimate for OSU, but it is hard to imagine 483 

such level underreporting in 2014 and in the midst of an active outbreak. Therefore, we are not 484 

confident on this parameter estimate, even though the 95% confidence interval is very narrow at 485 

(3%, 8%). Our interpretation of this situation is that the modeling approximation of a closed SEIR 486 

compartments is probably less accurate for OSU given its non-residential nature: students there 487 

have more opportunity to interact with individuals outside of their school, resulting both in 488 

additional transmissions that are not captured by our model, and also in a “buffering” effect due to 489 

a largely immune population (outside the college age). 490 

  491 

4.2 Effect of strict isolation policy 492 

Arguably the most critical intervention by HUHS was the isolation requirement for confirmed and 493 

probable mumps cases. By taking the Harvard model on its own, we see that the infectious period 494 

was already quite low at 1.2 days, even before the update in testing protocols. This conclude that 495 

the isolation policy led to a smaller average infectious period for Harvard patients. The MLEs for 496 

Harvard and OSU are different for several parameters, most notably basic reproduction number, 497 

reporting rate, and rate of transition from the infectious to removed class. Firstly, OSU’s basic 498 

reproduction number is over four times that of Harvard. Harvard’s isolation policy best explains 499 

this difference because it physically prevented infectious persons from causing multiple secondary 500 

infections, thus suppressing the growth of the outbreak. But as pointed out before, the extremely 501 
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low reporting rate inferred from the OSU model makes us less confident in it, so any comparison 502 

between the Harvard and OSU outbreaks based on the MLE parameters should be taken with 503 

caution. 504 

 505 

4.3 Implications of intervention analysis 506 

With the benefit of our intervention analysis, we conclude that aggressive diagnoses decreased the 507 

size of the Harvard outbreak by approximately three-fourths. Furthermore, for every day of 508 

intervention delay, we estimate that the outbreak size would have increased by 1.6 percentage 509 

points, extrapolating the regression line in Figure 4C. Likewise, self-isolation prompted by health 510 

advisories posted by the university reduced the size of the OSU outbreak by half. Given the non-511 

linear dependency between change in outbreak size and timing of intervention (Figure 4D), the 512 

increase would have been even larger in that outbreak. Interestingly, this dependency also implies 513 

that self-isolation in the first weeks of the outbreak can be enough to completely stop spread.  514 

Clearly, a limitation of this analysis is the assumption that everything remains the same 515 

while changing the time of the intervention under consideration. In reality, other factors might 516 

come into play if the outbreak becomes larger or smaller, which in turn could affect the dynamics 517 

of the outbreak as well as the interventions themselves. However, this analysis still provides a 518 

useful hypothetical quantification of the effect of accelerating or delaying interventions designed 519 

to contain the spread of an outbreak and here, as expected, the sooner the interventions are 520 

introduced, the better the outcomes in terms of outbreak size. Of course, existing constraints in the 521 

school’s health system could impede fast interventions. In such situations, our method can be 522 
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useful to perform a cost-benefit analysis of how late an intervention could be made to still have a 523 

significant reduction in the health burden caused by the disease. 524 

 525 

4.4 Conclusions 526 

We constructed and parametrized a POMP model for the transmission of mumps on college 527 

campuses. The POMP model is a computationally efficient approach suitable to small populations 528 

that accounts for the noisiness and incompleteness of case data. Moreover, it incorporates 529 

parameters that measures the effect of interventions implemented after a given point in time. Given 530 

the worldwide crisis caused by the COVID-19 pandemic, such models can be useful to quickly 531 

evaluate interventions designed to contain the spread of SARS-CoV-2 once schools reopen in the 532 

U.S. and around the world. 533 

We compared an outbreak at Harvard University, with its various intervention strategies, 534 

to another university outbreak of comparable reported cases at OSU. Importantly, while most 535 

literature today focuses on mumps prevention – such as administering third MMR doses to college-536 

age students – this paper provides quantitative backing for more immediate and less costly 537 

approaches to mitigating the spread of mumps and other infectious diseases, most notably COVID-538 

19. Even with widespread availability of vaccines, outbreaks of highly transmissible diseases are 539 

still a reality, as mumps exemplifies very clearly. In particular, requiring strict isolation if any 540 

symptoms of the disease are presented would significantly reduce transmission and ultimately the 541 

size of the outbreak. Effective awareness campaigns that lead to self-isolation of infected 542 

individuals with mild symptoms can also have a significant effect in containing the spread of 543 

disease and limiting the risk for vulnerable populations. 544 
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4.4 Limitations 545 

Some of our conclusions are likely affected by confounding factors that we cannot control for in 546 

this analysis. For example, the outbreak at Harvard started to subside in late April, not long before 547 

students finish the semester and leave campus, which would decrease the number of potential 548 

infections. The most promising method to determine the exact effect of isolation strategies is 549 

through a randomized control trial. Regarding the differences between OSU and Harvard 550 

parameters, we must be cautious in taking the OSU estimates at face value given the inconsistency 551 

in the reporting rate, which may be indicating a more fundamental limitation of model to represent 552 

the OSU outbreak. In addition to that, given that the OSU data consists of weekly reports rather 553 

than daily reports of cases, we should expect the estimates for the parameters to be less accurate. 554 

Furthermore, the cases are not solely linked to the university. Numerous cases in the data occurred 555 

in the greater Columbus area, suggesting that the parameter estimates do not only account for the 556 

dynamics of mumps on campus. Lastly, major differences in housing and campus characteristics 557 

could have also contributed to differences between the two schools; for instance, OSU’s population 558 

size is three times that of Harvard, and OSU has larger dorms than Harvard’s houses. Interventions 559 

used at Harvard simply may not have worked as well at OSU. We were fortunate to have direct 560 

access to school administrators who were involved in the response to the 2016 outbreak to discuss 561 

HUHS interventions in detail, but we were not able to get the same level of detail for OSU’s 562 

interventions, as discussed in the main text. More broadly, lack of publicly available datasets, with 563 

the exception of CDC reports on OSU’s outbreak, is a serious impediment to perform these 564 

analyses. Therefore, it will be essential that universities across the US and globe actively share 565 

data for comparative analysis, to identify the best intervention strategies to protect college 566 

campuses from outbreaks, especially in the post-COVID-19 world.  567 
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