
Appendix: Modelling gambiense human African trypanosomiasis

infection in villages using Kolmogorov forward equations

Christopher N. Davis1,2,*, Matt J. Keeling1,2,3, Kat S. Rock1,2

* Corresponding author: C.Davis.7@warwick.ac.uk
1 Mathematics Institute, University of Warwick, Coventry, CV4 7AL, UK
2 Zeeman Institute (SBIDER), University of Warwick, Coventry, CV4 7AL, UK
3 School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK

Adapting the ODE gHAT model to Kolmogorov forward equations

The gambiense human African trypanosomiasis (gHAT) Kolmogorov forward equations model presented in the main
manuscript is given by the equations:

dPIH1,IH2
(t)

dt
= −PIH1,IH2

(t)(ζ1 (IH1, IH2, t) (NH1 − IH1) + ζ2 (IH1, IH2, t) (NH2 − IH2)

+ (µH + ψH(Y )) (IH1 + IH2))

+ PIH1−1,IH2
(t)ζ1(IH1 − 1, IH2, t) (NH1 − IH1 + 1)

+ PIH1,IH2−1(t)ζ2(IH1, IH2 − 1, t) (NH2 − IH2 + 1)

+ PIH1+1,IH2
(t) (µH + ψH(Y )) (IH1 + 1)

+ PIH1,IH2+1(t) (µH + ψH(Y )) (IH2 + 1) , (1)

where PIH1,IH2
(t) is the probability of there being IH1 infected people classed as low-risk people and IH2 infected

people classed as high-risk people. The same model structure could alternatively be expressed by an ordinary
differential equation variant:

dSHi
dt

= (µH + ψH(Y )) IHi − ζi(IH1, IH2)SHi, (2)

dIHi
dt

= ζi(IH1, IH2)SHi − (µH + ψH(Y )) IHi, (3)

for i = 1, 2. The models consider two types of people (low- and high-risk are given as i = 1 and 2 respectively),
that can either be susceptible (SH) or infected (IH).

The model design and parameterisation has been adapted from the model described as ‘Model 4’, which was
first presented in Rock et al. [1], and updated in Crump et al. [2]. The model in Crump et al. [2] is a mechanistic
compartmental model for gHAT infection that further divides people of each risk class into five compartments
defined as: susceptible SH , exposed (but not infectious) EH , Stage 1 infection I1H , Stage 2 infection I2H and
hospitalised (or recovering at home) RH . The model outputs the number of humans in each compartment and the
proportion of the total number of vectors in each infection compartment, where the vectors (tsetse) are: in the
pupal stage PV , teneral (unfed) SV , infected and in their extrinsic incubation period (there are three classes to
create a gamma distributed period) EV , infectious tsetse IV , and non-teneral (fed) but uninfected tsetse GV . The
population size was assumed to be constant and thus NHi = SHi(t) +EHi(t) + I1Hi(t) + I2Hi(t) +RHi(t), i = 1, 2,
where i = 1 for low-risk individuals, randomly participating in active screening, and i = 2 for high-risk individuals,
never participating in active screening, each at time t > 0. The compartments of the model [1, 2] and the possible
transitions between them are shown graphically in Figure S1, where the transmission of infection between humans
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and tsetse is shown by grey paths. The full ODE model equations are given in Equations 4–16:

dSHi
dt

= µHNHi + ωRHi − αmefffi
SHi
NHi

IV − µHSHi (4)

dEHi
dt

= αmefffi
SHi
NHi

IV − (σH + µH)EHi (5)

dI1Hi
dt

= σHEHi − (ϕH + ηH(Y ) + µH)I1Hi (6)

dI2Hi
dt

= ϕHI1Hi − (γH(Y ) + µH)I2Hi (7)

dRHi
dt

= ηH(Y )I1Hi + γH(Y )I2Hi − (ωH + µH)RHi (8)

dPV
dt

= BVNV − (ξV +
PV
K

)PV (9)

dSV
dt

= ξV P(pupating)PV − αSV − µV SV (10)

dE1V

dt
= αpV (fH1

I1H1 + I2H1

NH1
+ fH2

I1H2 + I2H2

NH2
)(SV + εGV ) − (3σV + µV )E1V (11)

dE2V

dt
= 3σV E1V − (3σV + µV )E2V (12)

dE3V

dt
= 3σV E2V − (3σV + µV )E3V (13)

dIV
dt

= 3σV E3V − µV IV (14)

dGV
dt

= α(1 − pV (fH1
I1H1 + I2H1

NH1
+ fH2

I1H2 + I2H2

NH2
))SV (15)

− αpV (fH1
I1H1 + I2H1

NH1
+ fH2

I1H2 + I2H2

NH2
)εGV − µVGV , (16)

for i = 1, 2 (low- and high-risk people).
As described in the main manuscript, the Kolmogorov forward equation model reduces complexity by replacing

the explicit tsetse compartments of the model with a quasi-equilibrium solution. This is obtained by solving the
tsetse dynamic equations (Equations 9–16) at steady state. This gives the solution:

IQV =
27σ3

V αpV

(
fH1

(I1H1+I2H1)
NH1

+ fH2
(I1H2+I2H2)

NH2

)
NH (µV + εα)

(α+ µV )
(
αpV

(
fH1

(I1H1+I2H1)
NH1

+ fH2
(I1H2+I2H2)

NH2

)
ε+ µV

)
(3σ + µV )

3
, (17)

which is a function of the number of infected humans. To develop the Kolmogorov forward equations, this term
replaces IV in the reduced set of Equations 4–8.

In the more detailed model, humans can become exposed, EH , upon a bite from an infective tsetse and
progress to Stage 1 infection, IH1, before either moving to Stage 2 infection IH2 followed by the non-infectious
class RH , or moving directly to the non-infectious class, if the infection is detected early. Stage 1 detection is
at rate ηH(Y ) = ηpost

H (ηHamp/(1+ exp(−dsteep(t− dchange)))) and Stage 2 is at rate γH(Y ) = γpost
H (γHamp/(1 +

exp(−dsteep(t− dchange)))). The birth rates BHi are given by µHNHi for i = 1, 2 and BV is equal to µVNH , where
the different numbers of humans and vectors are accounted for in the effective tsetse density meff.

We remove much of this structure by combining the exposed and infected compartments from each risk class into
one compartment (infected) and the susceptible and recovered compartments into one compartment (susceptible).
We keep the mean time spent in each compartment (or group of compartments) the same in both models by
introducing new parameter ψH and new function ζ, which is a combination of previous parameters and the number
of infected people. This describes the movement between the new compartments in the reduced model. These are
given by:

ψH(Y ) =
1

1/σH + 1
1

1/ϕH+1/γH (Y )
+1/ηH(Y )

(18)
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Figure S1: Schematic of the compartmental model for gHAT infection dynamics in humans (low- and high-risk)
and tsetse. Adapted from Crump et al. [2].
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and

ζi(IH1, IH2) =
1

1/ωH +
µV +pV αε

(
fH1

IH1
NH1

+fH2
IH2
NH2

)
αmeffI

Q
V

(
fH1

IH1
NH1

+fH2
IH2
NH2

) (
fHi
NHi

) (19)

for i = 1, 2. IH1 is now defined as the number of low-risk infected people (of either infection stage) and likewise IH2

is for high-risk. These definition in Equations 2 and 3 provide the model new structure, while ensuring the the mean
time spent in the compartments remains the same as the full model. Values of these original parameters is given in
Table S1. These parameter values are taken from Crump et al. [2], which were either sourced from literature, where
well-defined, or otherwise (in the case of R0, k1, k2, r, u, Se, ηpost

H , ηHamp, γpre
H , γpost

H , ηHamp, dchange, and dsteep)
taken as the median of the distribution obtained by model fitting using a Metropolis–Hastings MCMC algorithm
that matched the deterministic version of the model to incidence data from the WHO HAT Atlas [3].

Reducing the state space

Despite reducing the possible state space in the Kolmogorov forward equations by only including four human model
compartments, which is fully determined by just two (IH1 and IH2) due to the constant population size, the state
space is still very large. Therefore, since gHAT is an infection with typically low levels of infection [3], we can reduce
the state space by only modelling low levels of infection. It is exceedingly improbable that near the full population
would become infected with gHAT.

We introduce MH1 and MH2 as the maximum number of people possible to be infected in each risk group. In
theory, MH1 = NH1 and MH2 = NH2; however, we set these values such that there is a probability of less than
1 × 10−8 that the infection levels will exceed these numbers at the initial condition. When the number of infected
people is equal to these imposed maxima, there is then zero probability of an additional person becoming infected
in the model. To ensure the probability of such an event remains small, the values of MH1 and MH2 dependent on
NH (given in Figure S2). For the largest village in Kwamouth, with a population size of 20,697, it is only necessary
to model up to MH1 = 1, 084 and MH2 = 594 to ensure that the probability of infected people exceeding these
numbers is less than 1 × 10−8.

Figure S2: The imposed maxima of the number of infected low-risk people ML, and high-risk people, MH , to keep
the state space sufficiently small.
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Table S1: Parameter notation and values for suite of gHAT infection models. At the bottom are the parameters
of the Kolmogorov forward equation model given in the first time point (in 1998) for the mean expected initial
conditions of a village with population size NH = 1000.

Parameter Description Value Source
µH Natural human mortality rate 5.4795 × 10−5 days−1 [4]
ωH Human recovery rate 0.006 days−1 [5]
σH Human incubation rate 0.0833 days−1 [6]
φH Stage 1 to 2 progression 0.0019 days−1 [7, 8]

ηpost
H Post-1998 exit rate from Stage 1 by treat-

ment or death
0.00012 days−1 [2]

ηHamp Maximum increase in the Stage 1 exit rate 2.51 [2]
γpre
H Pre-1998 exit rate from Stage 2 by treat-

ment or death
0.0017 days−1 [2]

γpost
H Post-1998 exit rate from Stage 2 by treat-

ment or death
0.0019 days−1 [2]

γHamp Maximum increase in the Stage 2 exit rate 0.514 [2]
dsteep Steepness of the improvement rates for

Stage 1 and Stage 2 passive detection
0.941 [2]

dchange Switching year of the improvement rate
for Stage 1 and Stage 2 passive detection

2006 [2]

NH Human population size Varies N/A
µV Tsetse mortality rate 0.03 days−1 [6]
σV Tsetse incubation rate 0.034 days−1 [9, 10]
ε Reduced non-teneral susceptibility factor 0.05 [2]
α Tsetse bite rate 0.333 days−1 [11]
meff Effective tsetse density 6.56 [2]
pV Probability of tsetse infection per single

infective bite
0.065 [6]

fH Proportion of blood-meals on humans 0.09 [12]
K Pupal density dependence 111.09 [13]

P(pupating) Probability of pupating 0.75 [13]
ξV Pupal death rate 0.037 [13]
BV Total deposit rate 0.0505 [13]
Se Sensitivity 0.91 [14]
Sp Specificity 0.9991 [2]
k1 Proportion of low-risk humans 0.902 [2]
k2 Proportion of high-risk humans 0.098 [2]
r Relative bites taken on high-risk humans

compared to low-risk
6.61 [2]

u Reporting probability for Stage 2 cases 0.2737 [2]
δ Importation of infection rate in 2000 3.4 × 10−6 days−1 [15]
ζ1 Force of infection in low-risk group in Kol-

mogorov forward equation model
1.303 × 10−5 days−1 derived

ζ2 Force of infection in high-risk group in
Kolmogorov forward equation model

8.525 × 10−5 days−1 derived

ψH Recovery rate in Kolmogorov forward
equation model

0.001055 days−1 derived
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Active screening

Active screening is where the population is tested for gHAT, typically with the Card Agglutination Test for Try-
panosomiasis (CATT), or other rapid diagnostic test (RDT), with those people infected being treated (after disease
confirmation and often stage determination). We simulate this process in the model by moving infected people di-
rectly from the infected class back to the susceptible class. This occurs through random selection from the low-risk
population using a hypergeometric distribution HG(NH1, c, k). We consider the number of infected people detected
c from the population NH1 of low-risk people available to be screened, when a total of k people are screened.
Subsequently, we assume that there is a 91% probability of true positives being detected (the sensitivity of the
screening algorithm). We use a binomial distribution B(c,Se), where the test sensitivity is Se = 91% [14] to get the
number of infected people screened that are identified.

We apply this process to the current probability vector for the population using the active screening matrix A.
This is a sparse lower-triangular transition matrix, which gives the new probability of being in each state after an
active screening of given coverage. Thus p (Y, 0) = p (Y − 1, 365)A (Y ), i.e. the probability distribution at the
start of the year is equal to the same distribution at the end of the previous year with the active screening matrix
post-multiplied.

Linking the villages

To consider the interactions of people moving between villages and becoming infected, causing importations of
infection to their home village, as opposed to becoming infected through transmission in their village, we use the
rate matrix QE . We formulate this behaviour in two separate ways in the main manuscript. For

For the general set of villages in the health zone of Kwamouth, we assume a value of the rate of infectious
importations from a previous study [16]. This rate decreases in time, where the rate is matched to the rate at which
cases have decreased in the DRC [17].

However, when we consider the all of the actual villages of Kwamouth, we adapt the matrix QE by modifying
this rate of infectious importations. We re-calculate the base rate of infectious importations at the steady state
from 1998 to match the expected number of infected people to the expected number of infected people from the
ODE formulation of the full model for the health zone with mixing in all villages. Then we remove the exponential
decrease and replace this with a term proportional to the total number of expected infections in model predictions
across all villages of a study region.

For a group of villages, we can calculate the total expected number of infected people by taking the sum of the ex-
pected number from each village ITotal. In the rate matrix QE , when considering an event that causes an importation
of infection, we replace the term δ(NHi−IHi), where δ is the rate of importations, with δITotal(Y, y)/ITotal(0)(NHi−

Figure S3: The villages of Kwamouth, DRC. (A) Histogram of the estimated population sizes of the villages from
2018, based on census data from the WHO HAT Atlas [3]. Inset plot shows smaller populations. (B) The annual
mean screening coverage for a village when it is screened in Kwamouth (2000–2018). (C) The proportion of the
villages of Kwamouth listed in the WHO HAT Atlas that are screened each year (2000–2018).
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IHi). As such, for Y = 1998, we have the original rate, but as infection levels across all populations fall (or indeed
increase), the importations of infection will fall (or increase).

In using this calculation we are making the simplification that ITotal(Y, y), the total expected number of infections
across all the villages, is not dependent on the current state of a particular village, but formed simply from the total
expected number across all villages. We do not want to compute the probabilities of all possible combinations of
village states, as this would greatly increase the size of our system. This is assumption will be a good approximation
for a large number of villages, although we note in making it we are neglecting second order effects. However, with
this method, we have linked the infection dynamics in villages so that when there is no infection ITotal will be zero
and so there will be no importations of infection and elimination of transmission will have occurred in the region.

Population and active screening data

Population data for the health zone of Kwamouth is taken from the census data provided in the WHO HAT Atlas [3].
Here, where there are multiple census estimates for a village (all with the same geo-location), we calculate the time
adjusted census estimate by assuming an annual population growth of 2.6% [17] and take the median value of the
village population estimate as the population size of the village and then re-calculate the size in different years
using the population growth rate. To keep the population size constant in the mode, we then assume the value from
2018. These calculations give a total population size for all villages in Kwamouth as 206,135, a value comparable
with other sources [18].

Similarly, the village active screening data is taken from WHO HAT Atlas [3], where the number of people in
each active screening event is reported. We derive the village-level active screening coverage by simply dividing the
number of people screened by the population size of the village.

Active screening in Kwamouth has a mean screening coverage of 68.6% for each village-level active screening for
the years 2000–2018 and 23.4% of years have an active screening for each village (Figure S3).

Figure S4: The villages of Mosango, DRC. (A) Histogram of the estimated population sizes of the villages from
2018, based on census data from the WHO HAT Atlas [3]. (B) The annual mean screening coverage for a village
when it is screened in Mosango (2000–2018). (C) The proportion of the villages of Mosango listed in the WHO
HAT Atlas that are screened each year (2000–2018).
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Figure S5: A map of the DRC. The health zones Kwamouth and Mosango are highlighted yellow and labelled. The
villages of Kwamouth are shown by blue dots and the villages of Mosango shown by red dots. The inset map in
the top right corner shows the location within the DRC.

Another health zone

The main manuscript primarily considers the dynamics of gHAT in a high-incidence health zone and this method
could be applied to any health zone of the DRC. However, the specific parameterisation is derived from adapting
the parameters (described in Equations 18 and 19) with values given by a fit to incidence data from the health zone
of Kwamouth. We present an alternative parameterisation for the low-incidence health zone of Mosango (taken
from Crump et al. [2] with similar screening behaviour (Figure S4) to produce similar results.

The locations of the health zones Kwamouth and Mosango within the DRC are shown in Figure S5. The villages
of Kwamouth are shown by blue dots and the villages of Mosango shown by red dots. The active screening pattern
in each health zone shows that larger villages tend to have more active screening events and fewer with very low
coverage (Figure S6).

Figure S7 shows the infection distribution in the health zone of Mosango using the Kolmogorov forward equations
in the same form as Figure 5 of the main manuscript. Results are qualitatively similar but without the large
villages of Kwamouth. The maximum village population in Mosango in 3,721. There is higher probability of EOT
in Mosango by 2030, at approximately 0.63 and 2029 is the expected year of EOT (shown in the main manuscript).
These results are comparable to deterministic predictions [19].
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Figure S6: Active screening data by popuation size for Kwamouth and Mosango. The left plot shows the active
screening coverag of each active screening event and the right plot show the number of times each village had an
active screening in the years 2000–2018 (a maximum of 19).
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Figure S7: The risk distribution of infection in the villages of Mosango at selected time points. There are 204
villages with populations ranging between 3 and 3,721 of which we present the probability distribution of infected
people in four villages (NH = 103, 501, 1, 051 and 3, 721).
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Additional results

Due to lack of detailed data on when active screening occurs within a year, we have assumed that all active
screening occurs on the first day of each day in all simulations. We now relax this assumption and consider 12
villages of population NH = 1, 000 of which one has an active screening at the beginning of each other (Figure
S8). There is minimal difference between the infection dynamics under the two assumptions. There are marginally
more infections when the screening is spread across the year, as there is benefit in reducing the infection numbers
as much as possible at a given time to reduce transmission within the year. However, at the end of each year the
infection levels are very similar, with bounce-back from the annual screening assumption. Thus, we can say that it
is a reasonable approximation to assume all screening occurs on the first day of the year (or indeed any other day of
the year). For modelling, assuming that all screening is done on the first day of the year is a useful simplification,
since the available data will often not indicate exactly when active screenings occurred within a year and therefore
it is useful to know that this lack of information will have minimal impact on predictions.

Figure S8: The expected number of gHAT infections for an area of 12 villages, each with a population of NH = 1, 000
people, given the assumption on timing of active screening: active screening in all villages occurs on the first day
of the year, and one village is screened each month.
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Comparison with ODE model

Comparing the results of the Kolmogorov forward equation model to the ODE variant we see very similar results,
particularly for the Mosango health zone, which has a smaller population size. The prediction intervals also strongly
overlap, giving confidence that these two model are showing very similar results. Hence, the Kolmogorov forward
equation model, which significantly simpler, is a good approximation, but is fast to run compared to an event-driven
stochastic approach, and provides the full and exact probability distribution of infection within the modelled health
zone.

Figure S9: The expected number of infections in both Kwamouth and Mosango using the Kolmogorov forward
equations (KFE) presented in the main manuscript and the model variant using ordinaring differential equations
(ODE) from previous work [2, 19]. The both models shows 95% predictions intervals.
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