
Supplementary Materials for

Single-dose SARS-CoV-2 vaccine in a prospective cohort of Covid-19 patients

Marit J. van Gils¹, Hugo D. van Willigen^{1#}, Elke Wynberg^{1,2 #}, Alvin X. Han¹, Karlijn van der Straten^{1,3}, Anouk Verveen⁴, Romy Lebbink², Maartje Dijkstra^{2,3}, Judith A. Burger¹, Melissa Oomen¹, Khadija Tejjani¹, Joey H. Bouhuijs¹, Brent Appelman⁵, Ayesha H.A. Lavell⁶,
Meliawati Poniman¹, Tom G. Caniels¹, Ilja Bontjer¹, Lonneke A. van Vught^{5,7}, Alexander P.J. Vlaar⁷, Jonne J. Sikkens⁶, Marije K. Bomers⁶, Rogier W. Sanders^{1,8}, Neeltje A. Kootstra⁹, Colin Russell¹, Maria Prins^{2,3}, Godelieve J. de Bree^{3‡}, Menno D. de Jong^{1‡}, RECoVERED Study Group^{*}

Correspondence to: m.d.dejong@amsterdamumc.nl; g.j.debree@amsterdamumc.nl

This PDF file includes: Figure S1 to S4 Table S1 to S6 Supplementary Methods

(A) Paired pre- and post-vaccination IgG binding levels to S, RBD and N protein (left panel) and serum neutralization levels to WT SARS-CoV-2 (right panel). Each line between pre- and post-vaccination data points show the changes in binding levels for a study participant (colored by disease severity). (B) Pre- (orange) and post-vaccination (purple) distributions of IgG binding levels to S, RBD and N (left panel) and serum neutralization of SARS-CoV-2 (right panel). (C) Pre- and post-vaccination distributions of IgG binding levels to other human pathogens including influenza A/H1N1pdm09 haemagglutinin (HA) protein, respiratory syncytial virus glycoprotein (RSV-G) and Tetanus toxoid. The corresponding distribution of mean effect size estimates (Table S3) using a Bayesian ANOVA model is shown above each response distribution plot for (B) and (C).

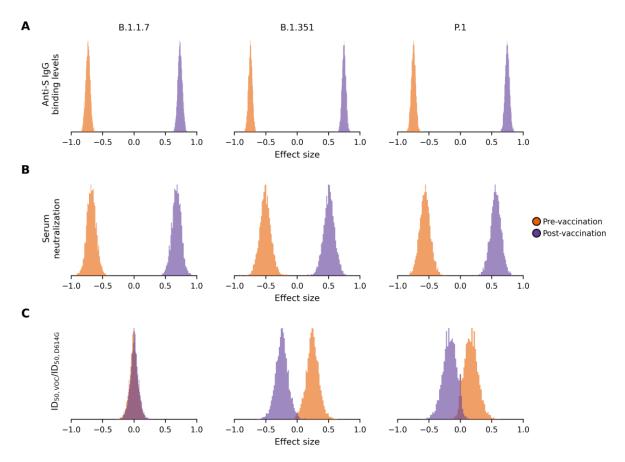


Figure S2: Effect size estimates of pre- and post-vaccination antibody response after mRNA vaccination

Pre- (orange) and post-vaccination (purple) distributions of mean effect size estimates (Table S4) using a Bayesian ANOVA model for (**A**) anti-S IgG binding, (**B**) serum neutralization levels and (**C**) ratio of neutralization against VOC to WT (D614G) for lineage B.1.1.7, B.1.351 and P.1.

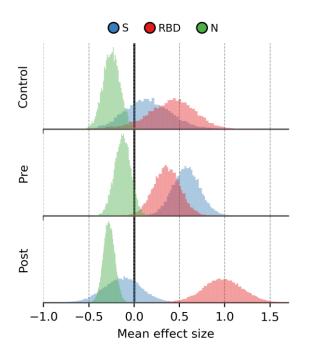


Figure S3: Joint contributions of IgG binding to different SARS-CoV-2 antigens on control pre- and post-vaccination serum neutralization levels.

The mean effects across study participants were estimated using a Bayesian multilevel model. All continuous predictors were mean-centered and scaled such that effect sizes shown can be compared on a common scale. S, spike protein; RBD, receptor binding domain protein; N, nucleocapsid protein

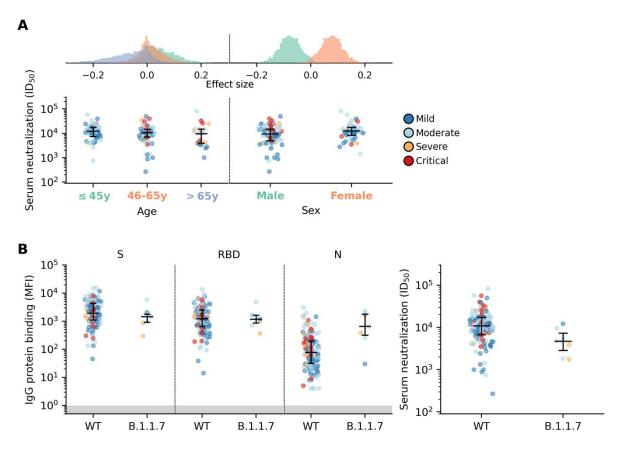


Figure S4: Anti-SARS-CoV-2 antibody responses after mRNA vaccination stratified by age, sex and infection by lineage B.1.1.7.

(**A**) Distributions of mean effect size estimates using a Bayesian ANOVA model (top) and post-vaccination serum neutralization levels (bottom) of study participants stratified according to age and sex. (**B**) Distributions of post-vaccination serum IgG binding and neutralization levels of study participants stratified according to the lineage of the infecting virus (wild-type (WT) or B.1.1.7).

Analysis	Observed variable	Predictor variable
Correlating pre-vaccination neutralization titers to anti- SARS-CoV-2 IgG binding levels	Pre-vaccination neutralization titers	Pre-vaccination IgG binding levels to spike, RBD and nucleoprotein (all continuous)
Correlating post-vaccination neutralization titers to anti- SARS-CoV-2 IgG binding levels	Post-vaccination neutralization titers	Post-vaccination IgG binding levels to spike, RBD and nucleoprotein (all continuous)
Correlating post-vaccination neutralization titers to participant-specific meta variables	Post-vaccination neutralization titers	Age (categorical; ≥45years, 46-65years, >65years) Sex (binary, male or female)
Vallables		Severity (categorical; mild, moderate, severe / critical)
		Time since symptom onset (categorical; ≥6 months, 7- 12 months, >12 months)
		Pre-vaccination neutralization titers (continuous)
		Comorbidities (i.e. cancer, cardiovascular diseases, chronic respiratory disease, diabetes mellitus, obesity; binary, presence or absence)
		Participant infected with the B.1.1.7 lineage variant (i.e. binary, presence or absence)

Table S1: Analyses performed using the Bayesian multilevel joint-contribution model

Side effects	No. of participants (%)
Lo	ocal
Injection site pain	130 (83.9%)
Injection site redness	8 (5.2%)
Injection site swollen	19 (12.3%)
Syst	emic
Fatigue	75 (48.4%)
Fever	31 (20.0%)
Headache	55 (35.5%)
Cold shivers	34 (21.9%)
Myalgia	41 (26.5%)
Arthralgia	13 (8.4%)
Nausea/vomiting	10 (6.5%)
Diarrhoea	6 (3.9%)

Table S2: Symptoms post-vaccination

	IgG bin	ding levels	s (MFI)		Bayesi	A results	results	
	-	Interquart	tile range		95% credible			
Variable	Median	Lower	Upper	Variable	Lower	Upper	ESS	Ŕ
		Anti	-S IgG aga	inst WT SARS-CoV-2				
Control	887.3	479.9	1649.6	Control	0.14	0.33	962	1.00
Pre	60.0	23.0	242.0	Pre	-0.91	-0.74	956	1.00
Post	1888.0	1028.0	4233.0	Post	0.52	0.67	954	1.00
				Diff (Post-Control)	0.23	0.51		
				Diff (Pre-Control)	-1.24	-0.91		
Fold change								
(Post-Pre/Pre)	29.4	9.1	92.1	Diff (Post-Pre)	1.30	1.55		
		Anti-R	BD IgG ag	gainst WT SARS-CoV-	2			
Control	1406.4	725.1	2543.1	Control	0.40	0.59	1041	1.01
Pre	36.0	14.5	158.0	Pre	-1.05	-0.87	1040	1.01
Post	1217.0	643.0	2457.0	Post	0.40	0.55	1035	1.01
				Diff (Post-Control)	-0.17	0.12		
				Diff (Pre-Control)	-1.64	-1.29		
Fold change (Post-Pre/Pre)	27.6	10.3	70.8	Diff (Post-Pre)	1.29	1.57		
			N IgG aga	ainst WT SARS-CoV-2				
Control	5.5	3.1	9.4	Control	-0.78	-0.62	799	1.01
Pre	40.0	16.5	164.0	Pre	0.12	0.30	788	1.01
Post	83.0	32.0	224.0	Post	0.41	0.57	791	1.01
				Diff (Post-Control)	1.05	1.32		
				Diff (Pre-Control)	0.76	1.06		
Fold change (Post-Pre/Pre)	0.9	0.0	2.5	Diff (Post-Pre)	0.14	0.43		
(0.0	0.0		anus toxoid				
Pre	168.0	60.0	435.0	Pre	-0.19	-0.03	763	1.01
Post	272.0	95.0	703.0	Post	0.03	0.19	757	1.01
		0010			0.00	0110		
Fold change (Post-Pre/Pre)	0.6	-0.1	2.7	Diff (Post-Pre)	0.05	0.37		
	0.0	-0.1	2.1	RSV G	0.05	0.57		
Pre	771.0	421.0	1255.5	Pre	-0.16	-0.07	771	1.01
Pre Post	1192.0	421.0 776.0	2252.0		-0.16	-0.07 0.16	765	1.01
1 031	1192.0	110.0	2202.0	Post	0.07	0.10	105	1.01
Fold change	0.0	0.4	0.4	Diff (Deat Dur)	0.45	0.24		
(Post-Pre/Pre)	0.6	-0.1	2.4	Diff (Post-Pre)	0.15	0.31		
Dra	050.0	00.0		N1pdm09 HA	0.40	0.05	000	4 00
Pre	252.0	92.0	730.0	Pre	-0.19	-0.05	982	1.00
Post	446.0	198.0	1052.0	Post	0.05	0.19	990	1.00
Fold change								
(Post-Pre/Pre)	0.7	-0.1	2.6	Diff (Post-Pre)	0.10	0.37		

Table S3: Bayesian ANOVA regression results: IgG binding

			Anti-S Ig	G against B.1.1.7				
Pre	36.0	13.0	147.0	Pre	-0.81	-0.67	1227	1.00
Post	1212.0	654.0	2582.0	Post	0.67	0.81	1251	1.00
Fold change (Post-Pre/Pre)	31.2	11.0	93.8	Diff (Post-Pre)	1.33	1.62		
			Anti-S IgC	G against B.1.351				
Pre	38.0	14.0	138.5	Pre	-0.81	-0.69	1271	1.00
Post	1276.0	736.0	2844.0	Post	0.69	0.81	1277	1.00
Fold change (Post-Pre/Pre)	36.6	10.5	104.5	Diff (Post-Pre)	1.37	1.62		
			Anti-S I	gG against P.1				
Pre	25.0	9.0	89.5	Pre	-0.81	-0.68	1048	1.00
Post	824.0	469.0	1917.0	Post	0.68	0.81	1052	1.00
Fold change (Post-Pre/Pre) *ESS – Effective	31.0	10.9	103.9	Diff (Post-Pre)	1.35	1.63		

*ESS = Effective sample size

	Serum n	eutralizati	on (ID ₅₀)		Bayesi	ian ANOV	A results	3
		Interqua	rtile range	_95% credible interval				
Variable	Median	Lower	Upper	Variable	Lower	Upper	ESS	Ŕ
		WT (D	0614G) SAF	RS-CoV-2 - entire	cohort			
Control	1863.0	1321.0	3020.0	Control	-0.16	-0.02	852	1.00
Pre	714.0	213.0	1866.5	Pre	-0.61	-0.46	855	1.00
Post	10635.0	6312.0	17128.0	Post	0.56	0.67	856	1.00
				Post-Control	0.59	0.81		
				Pre-Control	-0.59	-0.33		
Fold change								
(Post-Pre/Pre)	12.5	5.2	39.6	Diff (Post-Pre)	1.05	1.27		
	WT (D	614G) SA	RS-CoV-2	- randomly selecte	d 20 participa	ants		
Pre	489.5	211.4	1753.3	Pre	-0.78	-0.49	1025	1.00
Post	12902.0	7674.0	17982.8	Post	0.49	0.78	1027	1.00
Fold change								
(Post-Pre/Pre)	23.4	9.5	37.0	Diff (Post-Pre)	0.98	1.56		
				B.1.1.7				
Pre	398.4	100.0	1068.8	Pre	-0.82	-0.52	1171	1.00
Post	8261.5	7052.5	11410.8	Post	0.52	0.82	1159	1.00
Fold change								
(Post-Pre/Pre)	29.8	7.2	70.4	Diff (Post-Pre)	1.05	1.64		
				B.1.351				
Pre	190.4	100.0	885.3	Pre	-0.69	-0.33	1069	1.00
Post	3297.5	1767.0	7220.0	Post	0.33	0.69	1050	1.00
Fold change								
(Post-Pre/Pre)	9.1	6.4	21.2	Diff (Post-Pre)	0.67	1.37		
				P.1				
Pre	438.8	105.9	1364.0	Pre	-0.73	-0.39	1465	1.00
Post	7099.5	3940.3	11111.8	Post	0.39	0.73	1481	1.00
Fold change								
(Post-Pre/Pre)	10.5	5.7	36.8	Diff (Post-Pre)	0.78	1.46		
		WT(D	0614G) v. B	.1.1.7 (Pre-vaccina	ation)			
WT	489.5	211.4	1753.3	WT	-0.08	0.25	1011	1.01
VOC	398.4	100.0	1068.8	VOC	-0.25	0.08	1002	1.01
				Diff (VOC-WT)	-0.50	0.16		
		WT(D	614G) v. B.	1.351 (Pre-vaccin	ation)			
WT	489.5	211.4	1753.3	WТ	-0.07	0.28	956	1.00
VOC	190.4	100.0	885.3	VOC	-0.28	0.07	945	1.00
				Diff (VOC-WT)	-0.56	0.13		
		WT	(D614G) v.	P.1 (Pre-vaccinat	ion)			
WT	489.5	211.4	1753.3	WТ	-0.11	0.21	465	1.01
VOC	438.8	105.9	1364.0	VOC	-0.21	0.11	471	1.01
				Diff (VOC-WT)	-0.42	0.23		

Table S4: Bayesian ANOVA regression results: Serum neutralization

		WT(D	614G) v. B	1.1.7 (Post-vaccina	ation)			
WT	12902.0	7674.0	17982.8	WT	-0.04	0.14	688	1.01
VOC	8261.5	7052.5	11410.8	VOC	-0.14	0.04	698	1.01
				Diff (VOC-WT)	-0.28	0.07		
		WT(De	614G) v. B.	1.351 (Post-vaccin	ation)			
WT	12902.0	7674.0	17982.8	WT	0.12	0.38	1065	1.00
VOC	3297.5	1767.0	7220.0	VOC	-0.38	-0.12	1076	1.01
				Diff (VOC-WT)	-0.76	-0.23		
		WT(D614G) v.	P.1 (Post-vaccinat	ion)			
WT	12902.0	7674.0	17982.8	WT	-0.01	0.24	976	1.00
VOC	7099.5	3940.3	11111.8	VOC	-0.24	0.01	978	1.00
				Diff (VOC-WT)	-0.48	0.02		
			B.1.1	1.7/WT ratio				
Pre	0.82	0.56	1.06	Pre	-0.14	0.14	738	1.00
Post	0.73	0.58	1.02	Post	-0.14	0.14	676	1.00
				Diff (Post-Pre)	-0.28	0.28		
			B.1.3	51/WT ratio				
Pre	0.85	0.53	1.00	Pre	0.04	0.45	937	1.00
Post	0.36	0.20	0.44	Post	-0.45	-0.04	895	1.01
				Diff (Post-Pre)	-0.90	-0.08		
			P.′	1/WT ratio				
Pre	0.90	0.69	1.36	Pre	-0.03	0.38	742	1.00
Post	0.59	0.44	0.80	Post	-0.38	0.03	737	1.00
				Diff (Post-Pre)	-0.76	0.05		

*ESS = Effective sample size

	No. of participants (%)
Total	139
Age (median = 50y. range = (22y. 80	Эу)
≥45 y	53 (38.1%)
46-65 y	63 (45.3%)
>65 y	23 (16.5%)
Sex	
Female	53 (38.1%)
Male	86 (61.9%)
Severity	
Mild	49 (35.3%)
Moderate	62 (44.6%)
Severe	13 (9.4%)
Critical	15 (10.8%)
Time between symptom onset and vacci (median = 9 months; range = (1 month. 15	
≥6 months	47 (33.8%)
7-12 months	58 (41.7%)
>12 months	34 (24.5%)
Comorbidities	
Cancer	8 (5.8%)
Cardiovascular disease	23 (16.5%)
Chronic respiratory disease	19 (13.7%)
Diabetes Mellitus	10 (7.2%)
Obesity	25 (18.0%)

Table S5: Characteristics of study participants included in vaccine response - meta variables regression analysis

	With B.1.1.7						B.1.1.7	
	95% credible interval							
Variable	Lower	Upper	ESS*	Ŕ	Lower	Upper	ESS	Ŕ
Age	-0.29	-0.05	5758	1.00	-0.29	-0.04	6872	1.00
Sex	0.04	0.32	4732	1.00	0.03	0.32	6387	1.00
Severity	-0.02	0.17	4242	1.00	-0.01	0.17	6681	1.00
Time since symptom onset	-0.07	0.15	4148	1.00	-0.09	0.13	6196	1.00
Pre- vaccination neutralization	0.16	0.45	2258	1.00	0.18	0.47	3359	1.00
Cancer	-0.48	0.21	3667	1.00	-0.48	0.19	7007	1.00
Cardiovascular disease	-0.18	0.27	3959	1.00	-0.19	0.27	5622	1.00
Chronic respiratory disease	-0.32	0.12	1540	1.00	-0.31	0.12	5602	1.00
Diabetes Mellitus	-0.48	0.1	5077	1.00	-0.49	0.08	7814	1.00
Obesity	-0.14	0.23	6954	1.00	-0.12	0.25	7814	1.00
B.1.1.7 infection	-0.88	0.06	4479	1.00				

Table S6: Bayesian multilevel regression results: Post-vaccination neutralization titersv. participants' metadata.

*ESS = Effective sample size

Supplementary Methods

To identify and estimate the effect size of different predictor variables on the observed pseudovirus SARS-CoV-2 neutralization data. we used a Bayesian hierarchical model that partially pooled effect size estimates across all study participants *l*. We assumed a linear correlation between the mean-centered predicted log neutralization values $\langle Y \rangle$ and predictor variables X_i :

$$\langle Y \rangle = \beta_{l.0} + \sum_{i} \beta_{l.i} X_i$$

where $\beta_{l,i}$ is the normalized effects of variable *i* for participant *l* and $\beta_{l,0}$ is the participant-specific intercept.

We assumed that the observed mean-centered and scaled neutralization values *Y* follow a Student-T distribution about the predicted $\langle Y \rangle$ with error-term standard deviation σ_Y with ν_Y degrees of freedom:

$$Y \sim T(\nu_Y, \langle Y \rangle, \sigma_Y)$$

We assumed that ν is exponentially distributed with a mean of 30 such that high prior probability was allocated over parameter values that describe the range from normal to heavy-tailed data under the Student-T distribution (Kruschke. 2011):

$$\nu \sim \exp\left(\frac{1}{30}\right)$$

The intercepts $\beta_{l,0}$ were assumed to be normally distributed about a common mean intercept $\langle \beta_0 \rangle$ with standard deviation σ_{β_0} :

$$\beta_{l.0} \sim N(\langle \beta_0 \rangle, \sigma_{\beta_0})$$

The participant-specific effect sizes $\beta_{l,i}$ of variable *i* were assumed to be normally distributed about a common mean effect size $\langle \beta_i \rangle$ with a predictor-specific standard deviation σ_{β_i} :

$$\beta_{l.i} \sim N(\langle \beta_i \rangle, \sigma_{\beta_i})$$

Weakly informative priors were placed on all standard deviation terms to constrain parameter inferences within biologically and mathematically plausible values (Gelman. 2006):

$$\sigma_{Y} \sim \text{Half-Normal}(0.1)$$

 $\sigma_{\beta_{0}} \sim \text{Half-Normal}(0.1)$
 $\sigma_{\beta_{i}} \sim \text{Half-Normal}(0.1)$

A weakly informative Gaussian prior was also placed for the mean intercept $\langle \beta_0 \rangle$ while a weakly informative Student-T prior was placed on the mean effect size $\langle \beta_i \rangle$ for each predictor *i*:

$$\langle \beta_0 \rangle \sim N(0.1)$$

 $\langle \beta_i \rangle \sim T(3.0.2.5)$

We performed three different analyses with the aforementioned model correlating different predictors to mean-centered log neutralisation values (Table S1).

We also implemented a Bayesian hierarchical generalisation of the one-way ANOVA model to estimate the bounds on the effects of individual groups *j* of a nominal predictor *i* on an observed metric variable. We assumed that the predicted mean-centered metric variable $\langle Y_i \rangle$ is given by:

$$\langle Y_i \rangle = \beta_{i.0} + \sum_j \beta_{i.j} x_{i.j}$$

where $x_{i,j}$ is a Boolean variable denoting if an individual belongs to subgroup *j* for the nominal predictor *i*.

We assumed that the observed metric data (Y_i) can be described by the Student-t distribution with ν degrees of freedom. the predicted location $\langle Y_i \rangle$ and heterogenous variances for individual groups $\sigma_{i,[j]}$:

$$Y \sim T(\nu, \langle Y_i \rangle, \sigma_{i,[j]})$$

The intercept $\beta_{i,0}$ was again placed with a weakly informative Gaussian prior:

$$\beta_{i.0} \sim N(0.1)$$

We placed Student-T prior on the effect size $\beta_{i,j}$ for each subgroup *j* of nominal predictor *i* centered around zero. with weakly-informative gamma prior on ν_{β} degrees of freedom and positive-constrained half-normal prior on the standard deviation error-term σ_{β} :

$$\beta_{i.j} \sim T(\nu_{\beta}, 0, \sigma_{\beta})$$
$$\nu_{\beta} \sim \text{Gamma}(2.0.1)$$
$$\sigma_{\beta} \sim \text{Half-Normal}(0.1)$$

Following Kruschke (Kruschke. 2011). we assumed that ν is exponentially distributed with a mean of 30 such that high prior probability was allocated over parameter values that describe the range from normal to heavy-tailed data under the Student-T distribution:

$$\nu \sim \exp\left(\frac{1}{30}\right)$$

As mentioned earlier. we assumed a heterogenous scale term $\sigma_{i.j}$ for each subgroup *j* that follows a gamma distribution with mode ω and standard deviation σ_{σ} . We placed vague gamma priors on both ω and σ_{σ} that are broad on the scale of the data by estimating the shape (*k*) and scale (θ) of the priors such that the mode and standard deviation equal to $\frac{\sigma_{Y_{obs}}}{2}$ and $2\sigma_{Y_{obs}}$ respectively:

$$\sigma_{i,j} \sim \text{Gamma}\left(k = 1 + \frac{\omega}{\theta} \cdot \theta = \frac{2\sigma_{\sigma}^{2}}{\omega + \sqrt{\omega^{2} + 4\sigma_{\sigma}^{2}}}\right)$$
$$\omega \text{ or } \sigma_{\sigma} \sim \text{Gamma}\left(k = 1 + \frac{\sigma_{Y_{obs}}}{2\theta} \cdot \theta = \frac{2(2\sigma_{Y_{obs}})^{2}}{\frac{\sigma_{Y_{obs}}}{2} + \sqrt{\left(\frac{\sigma_{Y_{obs}}}{2}\right)^{2} + 4\left(2\sigma_{Y_{obs}}\right)^{2}}}\right)$$

We fitted all Bayesian models using Markov Chain Monte carlo (MCMC) with pymc3 (Salvatier et al. 2016). implementing a no-u-turn sampler. Four MCMC chains were ran with at least 4000 burn-in steps and 2000 saved posterior samples. Convergence for all parameters were

verified by checking trace plots. ensuring their \hat{R} values were < 1.05 with sufficient effective sample size (>200).

References

Gelman A. 2006. Prior distributions for variance parameters in hierarchical models (comment onarticle by Browne and Draper). *Bayesian Anal* **1**:515–534. doi:10.1214/06-BA117A

Kruschke JK. 2011. Doing Bayesian data analysis: a tutorial with R and BUGS. Academic Press.

Salvatier J. Wiecki T V. Fonnesbeck C. 2016. Probabilistic programming in Python using PyMC3. *PeerJ Comput Sci* **2**:e55. doi:10.7717/peerj-cs.55