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ABSTRACT 

Distinct DNA methylation patterns have recently been observed to precede type 1 diabetes in 

whole blood collected from young children. Our aim was to determine, whether perinatal DNA 

methylation could be associated with later progression to type 1 diabetes. Reduced representation 

bisulfite sequencing (RRBS) analysis was performed on umbilical cord blood samples collected 

within the Type 1 Diabetes Prediction and Prevention (DIPP) study. Children later diagnosed 

with type 1 diabetes and/or testing positive for multiple islet autoantibodies (N=43) were 

compared to control individuals (N=79), who remained autoantibody-negative throughout the 

DIPP follow-up until 15 years of age. Potential confounding factors related to the pregnancy and 

the mother were included in the analysis. No differences in the cord blood methylation patterns 

were observed between these cases and controls. 

INTRODUCTION 

DNA methylation at cytosine residues is one of the most important epigenetic mechanisms 

regulating gene expression. The modification converts cytosine to 5-methylcytosine, usually in 

the context of CpG dinucleotides. Differential methylation at the promoter or other regulatory 

elements affect gene expression in health and diseases, e.g. type 2 diabetes (1) and systemic 

lupus erythematosus (2). Most studies on the association between type 1 diabetes and DNA 

methylation have focused on differences between case and control subjects at the time of 

diagnosis or later. For example, methylation patterns at the promoters of insulin and IL2RA 

genes have been associated with type 1 diabetes (3,4). The most extensive study on the topic 

included immune effector cells from 52 monozygotic twin pairs discordant for type 1 diabetes 

(5). Thousands of CpG-sites were found to be differentially variable between affected subjects 

and their healthy co-twins. An earlier study by the same group (6) included a small set of 

samples from pre-diabetic individuals (N=7) to confirm their findings from already-diagnosed 

subjects. A recent report from the DAISY study on prospective epigenomics of type 1 diabetes 

also included samples collected before the case subjects’ seroconversion to islet autoantibody 

positivity (7). They discovered differential methylation at 30 genomic regions between 

longitudinal samples of 87 autoantibody-negative control individuals and 87 case individuals 

who later progressed to type 1 diabetes. 

DNA methylation patterns are largely established in utero (8), and neonatal DNA methylation 

marks have been associated with later health outcomes (9,10). We therefore hypothesized, that 

the progression to type 1 diabetes during childhood might be reflected in the epigenome already 

at birth. Two earlier studies have examined umbilical cord blood samples from neonates, who 

later progressed to type 1 diabetes (5,7). In both studies, the neonatal samples were only utilized 

to confirm the direction of change in the differentially methylated regions discovered at later 

time points. However, they did not publish umbilical cord blood DNA methylation 

measurements outside the candidate regions, and neither were the studies designed to compare 

neonatal samples.  
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In this study we used the reduced representation bisulfite sequencing (RRBS) method to analyze 

umbilical cord blood DNA methylation associated with later progression to type 1 diabetes in a 

prospective cohort, the Finnish Type 1 Diabetes Prediction and Prevention (DIPP) study. The 

aim was to detect DNA methylation patterns associated with later progression to type 1 diabetes. 

Such findings would be valuable for a better understanding of early mechanisms underlying the 

progression to type 1 diabetes related autoimmunity.  

RESEARCH DESIGN AND METHODS 

The supplementary material includes a more detailed description of the sample collection 

protocol, HLA risk class determination (11), the bisulfite sequencing and the statistical methods. 

Study design 

Case children (N = 43) who were diagnosed with type 1 diabetes during the DIPP follow-up or 

became persistently positive for at least two biochemical islet autoantibodies (in at least two 

consecutive serum samples) were compared to control children (N = 79) who remained 

autoantibody-negative throughout the DIPP follow-up, i.e. up to 15 years of age or until their 

decision to discontinue participation in the DIPP study. Data until the end of year 2018 were 

included. Clinical data such as maternal insulin-treated diabetes, gestational weight gain, and the 

child’s birth weight were utilized to adjust for potential confounding effects. The characteristics 

of the case and control children are described in Table 1. 

Umbilical cord blood samples were collected from newborn children born in Turku University 

Hospital between 1995 and 2006. After informed consent, HLA DR/DQ genotyping was 

performed from umbilical cord blood to identify children at increased risk to develop type 1 

diabetes. Eligible children were invited to participate in the DIPP follow-up. Criteria for 

eligibility have been modified during the study years to increase the sensitivity and specificity of 

the screening (11). During DIPP follow-up, serum samples for islet autoantibody measurements 

were collected at 3-month intervals until the age of 2 years and thereafter every 6 or 12 months 

until the age of 15 years or until type 1 diabetes diagnosis. Islet autoantibodies were measured 

with specific radio-binding assays and included IAA (insulin autoantibody), IA-2A (insulinoma-

associated protein 2 antibody), GADA (glutamic acid decarboxylase antibody) and ZnT8A (zinc 

transporter-8 antibody). Classical islet cell antibodies (ICA) were used as the only autoantibody 

screening method for DIPP children born until the end 2002, and if positive, all other 

autoantibodies were measured from all earlier and future samples of the child. ICA, IAA, GADA 

and IA-2A were measured from all follow-up samples from children born since 2003, whereas 

ZnT8A were measured only if at least one of the other autoantibodies became positive (12). In 

addition, all five islet autoantibodies were measured from all samples of the first 1000 children 

participating in DIPP follow-up (12). 
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DNA methylation profiling 

The library preparations steps were adapted from the RRBS protocol by Boyle et al. (13). 

Illumina HiSeq 2500 instrument was used for paired-end sequencing (2 x 100 bp) of the DNA 

libraries. TrimGalore (14) and Bismark (15) were used for trimming and alignment of paired-end 

RRBS reads on the GRCh37 (hg19) genome assembly (16). After removing M-biases, potential 

single nucleotide polymorphisms (17), and sites with extremely high coverages, a minimum 

coverage of 10 reads was required for at least one third of the samples in both groups. 

Differential methylation analysis  

A generalized mixed effects model (GLMM) implemented in the R package PQLseq (18) was fit 

separately for read counts at each CpG site on autosomal chromosomes. The covariates listed in 

Table 1 were modeled as fixed effects and the genetic similarity between individuals as a random 

effect. Since we could not know, which covariates might be important confounding factors, we 

included all available reliably recorded information. However, only one covariate was selected 

from each group of mutually correlated clinical covariates (detailed inclusion criteria are listed in 

Supplementary Table 1). A few missing covariate values were median-imputed, and continuous 

covariates were Z-transformed. The Wald test P values computed within PQLseq were spatially 

adjusted by a weighted Z-test implemented in package RADMeth (19). Since the spatially 

adjusted P values were found to be inflated, false discovery rate (FDR) was estimated 

empirically through a permutation analysis (20). 

Pyrosequencing validation of selected targets  

Technical validation was performed by targeted pyrosequencing with PyroMark Q24 system 

(Qiagen) using 58 samples, which were a subset of the samples studied with RRBS. We chose an 

even number of male and female case and control subjects, who were born vaginally at full term 

with normal birth weight and normal Apgar score and were not exposed to maternal smoking in 

utero. The genomic regions of interest were captured with an assay and amplified by 45 rounds 

of PCR. An ordinary linear regression model was fit for each DNA methylation proportion, after 

applying a transformation: arcsin(2 × proportion – 1). The included explanatory variables are 

specified in the supplementary material. Each model was fit with and without the covariate of 

interest, and the significance of the association was estimated based on an ANOVA test 

comparing the two models. 

Ethical aspects 

All participating families gave an informed consent for the genetic HLA screening from 

umbilical cord blood and for the follow-up. The study was originally approved by the Ethics 

Committee of the Hospital District of Southwest Finland followed by the Ethics Committee of 

the Hospital District of Northern Ostrobothnia. The study followed the principals of the Helsinki 

II declaration. 

Data and resource availability  
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The datasets generated during the current study will be available in a public repository as soon as 

the manuscript is accepted for publication. The code is available in 

https://github.com/EssiLaajala/RRBS_workflow, where also the data availability status will be 

updated. 

RESULTS 

Altogether 2568146 CpG sites fulfilled the quality and coverage criteria and were included in the 

differential methylation analysis. None of them were differentially methylated between the case 

and the control children as individual CpG sites (Benjamini-Hochberg-corrected Wald test P 

value < 0.05 before the spatial adjustment). After spatial adjustment, two adjacent CpG sites 

(chr11:400288 and chr11:400295, GRCh37 genome assembly) on an intron of gene Plakophilin-

3 (PKP3) showed weak evidence of hypomethylation in the case children, as compared to the 

controls (Table 2). However, technical replication by targeted pyrosequencing showed that the 

difference was not significant (Figure1A-B, Supplementary Figure 1). 

The strong inflation of spatially adjusted P values was an important observation in these data, as 

described by Laajala et al. (20). Before the inflation was discovered, 28 genomic regions were 

considered differentially methylated between cases and controls, based on Benjamini-Hochberg-

corrected spatially adjusted P values (< 0.05). We carried out pyrosequencing to validate five 

selected targets technically, but the results did not indicate differential methylation between the 

groups (Supplementary Table 2). Empirical false discovery rate control of the RRBS results 

further confirmed that the differences were indeed not significant. 

We selected a sex-associated differentially methylated region as a positive control to confirm 

that concordant results could be obtained by two different technologies (RRBS and targeted 

pyrosequencing) in the analyzed samples. This target (chr17:38024242–38024291) included six 

CpG sites that were hypomethylated in males (N=105), as compared to females (N=68). The 

region is located on the promoter of Zona pellucida binding protein 2 (ZPBP2), whose 

expression is highly specific to the testis tissue (GTEx Portal on 03/02/21). Pyrosequencing 

results confirmed differential methylation between sexes with P values in the order of 10-6–10-9 

at each CpG site (Supplementery Figure 2). One of these CpG sites is visualized in Figure1C-D. 

DISCUSSION 

Distinct DNA methylation patterns have recently been observed to precede type 1 diabetes in 

whole blood collected from very young children (7). We tested the possible presence of such 

differences already at the time of birth in a collection of umbilical cord blood samples. 

Compared to earlier studies, our data covered a substantially larger number of CpG sites and was 

specifically designed to compare DNA methylation at the time of birth. Based on our results, 

differences between children who progress to type 1 diabetes and those who remain healthy 

throughout childhood, are not yet present in the perinatal DNA methylome. 
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As several earlier studies have already pointed out, effect sizes in umbilical cord blood DNA 

methylation studies are small (21,22). The median methylation difference between males and 

females at sex-associated differentially methylated cytosines (DMCs) was 10 %, range 0.6 % - 

35.2 % (20). The DMCs selected for technical validation with pyrosequencing, all of which were 

successfully validated, had a median methylation difference of 11.6 % between the sexes in the 

RRBS data. Since the sample numbers were relatively large in all comparisons (we compared 68 

female individuals to 105 male individuals and 43 case individuals to 79 control individuals), 

effects of the class covariate of similar sizes probably would have been detected if they had been 

present in these data. However, we cannot exclude the possibility that such differences could be 

found in a larger data set.  

A peak in the appearance of islet autoimmunity occurs at an early age, between one and two 

years (23,24), suggesting an early trigger that could act already before birth and affect the 

epigenome. Our data did not show epigenetic differences in cord blood between cases and 

controls, but it does not exclude the existence of such differences elsewhere, e.g. in pancreatic 

cells. 

This study was limited to an overall comparison between healthy controls and a heterogeneous 

group of case children with different first-appearing autoantibodies, seroconversion ages (range 

0.5 – 11.6 years), and diagnosis ages (range 1.6 – 18.8 years), who might represent different 

disease subtypes, the existence of which has been suggested by several studies during the past 

decade (23). For example, the group of children with IAA as the first-appearing islet 

autoantibody is characterized by a different HLA-DR-DQ profile and age at seroconversion 

compared to children with GADA as the first-appearing autoantibody (23,24). The epigenetic 

profile of newborn infants representing a potential disease subtype, for example children who 

develop type 1 diabetes at very young age, would be an interesting goal for future studies. 
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FIGURES AND TABLES 

Table 1: Characteristics of the case and control children. All the covariates listed here were included as explanatory 

variables in the differential methylation analysis, except for age at diagnosis, age at seroconversion and first-
appearing autoantibody, which are relevant only for the case group. The inclusion criteria are specified in the 

Supplementary material. 

 Cases (N = 43) Controls (N = 79) Number of 

missing 

values 

 

CHILD: 

   

 

Age at diagnosis of 

type 1 diabetes 

(N=34) 

 

Range: 1.6 – 18.8 years 

Median: 8.7 years 

 

NA 

 

- 

 

Age at 

seroconversion 

 

Range: 0.5 – 10.7 years 

Median: 2.5 years 

 

NA 

 

- 

 

First biochemical 

autoantibody 

 

mIAA: 14 

GADA: 13 

IA2A: 3 

Multiple/unknown: 13 

 

NA 

 

- 

 

HLA risk 

 

High: 21 

Moderate: 19 

Neutral/slightly elevated: 

3 

 

 

High: 24 

Moderate: 27 

Neutral/slightly elevated: 

28 

 

0 

 

Sex 

 

Female: 17 

Male: 26 

 

Female: 25 

Male: 54 

 

0 

 

Birth weight 

 

Range: 2310 g – 4600 g 

Median: 3750 g 

 

Range: 1910 g – 4860 g 

Mean: 3500 g 

 

0 

 

Apgar points, 1 

minute 

 

 

Normal (8 – 10): 38 

Low (4 – 7): 5 

 

Normal (8 – 10): 68 

Low (4 – 7): 11 

 

1 

 

MOTHER: 

   

 

Maternal age 

 

Median: 29.8 years 

Range: 21.3 – 39.6 years 

 

Median: 30.7 years 

Range: 21.3 – 45.8 years 

 

0 

 

Maternal height 

 

Median: 168 cm 

 

Median: 165 cm 

 

0 
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Range: 152 – 179 cm Range: 150 – 179 cm 

 

Maternal BMI 

(before this 

pregnancy) 

 

Median: 22.7 

Range: 17.2 – 41.7 

 

Median: 23.2 

Range: 18.0 – 35.5 

 

2 

 

Number of earlier 

miscarriages 

 

 

0:  34 

1 or more: 9 

 

0: 64 

1 or more: 15 

 

0 

 

PREGNANCY: 

   

 

Gestational weight 

gain (mother) 

 

Range: 0 – 22 kg 

Median: 13.0 kg 

 

Range: 0 – 28 kg 

Mean: 14.0 kg 

 

3 

 

Maternal insulin 

treatment for 

diabetes (gestational 

or other) 

 

Yes: 4 

No: 39 

 

Yes: 1 

No: 78 

 

0 

 

Maternal smoking 

during pregnancy 

 

 

Yes: 3 

No: 39 

 

Yes: 5 

No: 72 

 

3 

 

DELIVERY: 

   

 

Mode of delivery 

 

C-section: 3 

Vaginal: 40 

 

C-section: 13 

Vaginal: 66 

 

0 

 

Labor induction 

 

Yes: 7 

No: 36 

 

Yes: 14 

No: 65 

 

0 

 

Usage of epidural 

anesthetic during 

delivery phase I 

 

 

Yes: 18 

No: 25 

 

Yes: 40 

No: 39 

 

0 

 

TECHNICAL: 

   

 

Year of birth 

 

Mean: 2001 

Range: 1995 – 2006 

 

Mean: 1999 

Range: 1995 – 2006  

 

0 

 

Month of birth 

 

 

Dec – Feb: 11 

Mar – May: 12 

Jun – Aug: 11 

Sep – Nov: 9 

 

Dec – Feb: 20 

Mar – May: 23 

Jun – Aug: 18 

Sep – Nov: 18 

 

0 
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Library preparation 

batch 

 

Batch 1A: 5 

Batch 1B: 2 

Batch 1C: 6 

Batch 2A: 6 

Batch 2B: 11 

Batch 3A: 4 

Batch 3B: 9 

 

Batch 1A: 11 

Batch 1B: 2 

Batch 1C: 9 

Batch 2A: 15 

Batch 2B: 11 

Batch 3A: 8 

Batch 3B: 23 

 

0 

 

 

Table 2: Two adjacent CpG sites on the intron of PKP3 (GRCh37 genome assembly) showed weak evidence of 
hypomethylation in the case group (N=43), as compared to the control group (N=79). Coverage-corrected mean 

methylation difference is calculated as sum(number of methylated reads in cases) / sum(number of total reads in 

cases) – sum(number of methylated reads in controls) / sum(number of total reads in controls). 

 
chr11:400288 chr11:400295 

P value 1.14 × 10-2 4.45 × 10-4 

Spatially adjusted P value 1.22 × 10-13 2.64 × 10-13 

Total number of reads, case group 1268 1109 

Number of methylated reads, case group 649 615 

Total number of reads, control group 2349 2173 

Number of methylated reads, control group 1399 1442 

Coverage-corrected mean methylation difference between 

groups 

–0.084 –0.109 
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Figure 1: Methylation proportions quantified with two different technologies (RRBS and targeted pyrosequencing) 
at two example CpG sites visualized as boxplots (similar figures for all pyrosequenced targets are presented in the 

Supplementary material). A CpG site at Chr11:400295 (A-B) on an intron of Plakophilin 3 (PKP3) showed weak 

evidence of differential methylation between case and control subjects (not as an individual cytosine but as part of a 

candidate differentially methylated region), as measured by RRBS (A) and pyrosequencing (B). A CpG site at 

Chr17:38024242 (C-D) on the promoter of Zona Pellucida Binding Protein 2 (ZPBP2) was differentially methylated 

(genome-wide significance) between the sexes as an individual CpG site and as part of a differentially methylated 

region, as quantified by RRBS (C). Targeted pyrosequencing confirmed the differential methylation at this location 

(D), as well as at other CpG sites in the region (Supplementary Material). The P values marked below each plot are 

nominal (neither spatially adjusted nor multiple testing corrected). The midline of each boxplot is drawn at the 

median, boxes range from the 1st to the 3rd quartile, and whiskers extend to the most extreme values. 
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