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Outbreak risk metrics 16 

 17 

Here, we provide additional details about the metrics used in the main text for assessing 18 

the risk of an outbreak resulting from the introduction of an infectious host into the 19 

population. 20 

 21 

Instantaneous outbreak risk (IOR) 22 

 23 



The IOR represents the risk that an imported case initiates an outbreak as opposed to 24 

the virus simply fading out, under the assumption that pathogen transmissibility is fixed 25 

at its value when the imported case enters the population.  If the introduction occurs at 26 

time 𝑡, when the infection rate is 𝛽(1 − Λ(𝑡)) and the time-varying reproduction number 27 

is 𝑅!(𝑡) =
"($%&('))

)
, then the outbreak probability can be derived by first denoting by 𝑞*(') 28 

the probability that an outbreak does not occur starting from 𝐼(𝑡) infected individuals.  29 

Conditioning on whether the first event is an infection or a removal event gives 30 

 31 

𝑞*(') =
𝛽,1 − Λ(𝑡)-

𝛽,1 − Λ(𝑡)- + 𝜇
𝑞*(')+$ +

𝜇
𝛽,1 − Λ(𝑡)- + 𝜇	

𝑞*(')%$. 32 

 33 

In particular, starting from a single introduction at time 𝑡, 34 

 35 

𝑞$ =
𝛽,1 − Λ(𝑡)-

𝛽,1 − Λ(𝑡)- + 𝜇
𝑞, +

𝜇
𝛽,1 − Λ(𝑡)- + 𝜇	

𝑞-. 36 

 37 

Since infections occur according to a branching process, 𝑞, = 𝑞$,. Furthermore, an 38 

outbreak will not occur if there are no infected individuals (i.e. 𝑞- = 1), so that 39 

 40 

𝛽,1 − Λ(𝑡)-𝑞$, − ,𝛽,1 − Λ(𝑡)- + 𝜇-𝑞$ + 𝜇 = 0. 41 

 42 



Solving this quadratic equation, and taking the minimal non-negative solution (as 43 

dictated by Markov chain theory when calculating the probability that a branching 44 

process fades out [1]) leads to the IOR, 45 

 46 

IOR = 1 − 𝑞$ = 6
0		for	𝑅!(𝑡) ≤ 1,

1 −
1

𝑅!(𝑡)
			for	𝑅!(𝑡) > 1. 47 

 48 

 49 

Case outbreak risk (COR) 50 

 51 

Unlike the IOR, the COR accounts for changes in 𝛽,1 − Λ(𝑡)- that occur after the virus is 52 

introduced into the host population when assessing the outbreak risk.  Similarly to above, 53 

the probability that an outbreak does not occur starting from 𝐼	infected individuals in the 54 

population at time 𝑡 is denoted by 𝑞*(𝑡). Then, starting from a single introduction into the 55 

population at time 𝑡 and conditioning on the possible events events in the next ∆𝑡 days 56 

(where ∆𝑡 represents a short time period, so that at most a single event can occur in the 57 

interval [𝑡, 𝑡 + ∆𝑡)) gives 58 

 59 

𝑞!(𝑡) = 𝛽'1 − Λ(𝑡)+∆𝑡	𝑞"(𝑡 + ∆𝑡) + 𝜇∆𝑡	𝑞#(𝑡 + ∆𝑡) + '1 − 𝛽'1 − Λ(𝑡)+∆𝑡 − 𝜇∆𝑡+𝑞!(𝑡 + ∆𝑡).   60 

 61 

Since infections occur according to a branching process, 𝑞,(𝑡 + ∆𝑡) = 𝑞$(𝑡 + ∆𝑡),. 62 

Furthermore, an outbreak will not occur if there are no infected individuals (i.e. 63 

𝑞-(𝑡 + ∆𝑡) = 1), so that 64 



 65 

𝑞$(𝑡) = 𝛽,1 − Λ(𝑡)-∆𝑡	𝑞$(𝑡 + ∆𝑡), + 𝜇∆𝑡	 + ,1 − 𝛽,1 − Λ(𝑡)-∆𝑡 − 𝜇∆𝑡-𝑞$(𝑡 + ∆𝑡). 66 

 67 

Rearranging this expression, and taking the limit ∆𝑡 → 0, gives equation (3) in the main 68 

text, 69 

 70 

𝑑𝑞(𝑡)
𝑑𝑡 = β,1 − Λ(𝑡)-𝑞(𝑡),1 − 𝑞(𝑡)- + µ(𝑞(𝑡) − 1),										(S1) 71 

 72 

in which the variable 𝑞$(𝑡) has been replaced by 𝑞(𝑡) for notational convenience.  This 73 

equation can be solved numerically, after which the COR at time 𝑡 (i.e. the probability that 74 

an outbreak occurs) is given by	1 − 𝑞(𝑡). 75 

 76 

Solving equation (S1) numerically requires the value of 𝑞(𝑡) to be known at a single 77 

timepoint. In scenarios in which the time-varying reproduction number is above one 78 

when the vaccine programme is complete, we solve equation (S1) backwards in time 79 

starting from the final condition	𝑞(𝑡∗) = $
/!('∗)

, where 𝑡∗ is the time at which the 80 

vaccination programme ends.  The rationale for this choice is that the COR matches the 81 

IOR in scenarios in which virus transmissibility does not change in future (e.g. the end 82 

of the vaccination programme). In scenarios in which 𝑅!(𝑡) is instead below one when 83 

the vaccination programme is completed, we set 𝑞(0) so that 1 − 𝑞(0) matches the 84 

Numerical Outbreak Risk (NOR) at time 𝑡 = 0 (see below), and then solve equation (S1) 85 

forwards in time starting from 𝑡 = 0. 86 



 87 

Simulated outbreak risk (SOR) 88 

 89 

The SOR is calculated by simulating the stochastic branching process model 10,000 90 

times starting from a single infected individual introduced into the system at time 𝑡. The 91 

SOR is then given by the proportion of simulations in which the number of individuals 92 

infected simultaneously reaches the threshold 𝑀 = 100 as opposed to fading out (i.e. 93 

the number of infected hosts reaches 100 before hitting zero). 94 

 95 

To simulate the branching process model, we follow the following steps: 96 

1. Set the initial time 𝑡, and set 𝐼(𝑡) = 1.  97 

2. Calculate the time of the next event, 𝑡 + 𝜏, using the expression 98 

∫ (β+1 − Λ(𝑠)/ + 𝜇)𝐼(𝑠)d𝑠 = −ln	(𝑟!)
$%&
$ , 99 

where 𝑟! is a random number sampled from a uniform distribution on (0,1). 100 

3. Determine whether the next event is an infection event or a removal event. To do 101 

this, sample a second random number (𝑟") from a uniform distribution on (0,1). If 102 

𝑟" <
β+1 − Λ(𝑡 + 𝜏)/

β+1 − Λ(𝑡 + 𝜏)/ + 𝜇
, 103 

then the next event is an infection event; set 𝐼(𝑡 + 𝜏) = 𝐼(𝑡) + 1. If instead the 104 

inequality above is not satisfied, then the next event is a removal event; set 105 

𝐼(𝑡 + 𝜏) = 𝐼(𝑡) − 1. 106 

4. Repeat steps 2-3 while the outbreak is still ongoing and the threshold value of 𝑀 =107 

100 has not been hit (i.e. 𝐼(𝑡) > 0 and 𝐼(𝑡) < 𝑀). 108 

 109 



Numerical outbreak risk (NOR) 110 

 111 

The NOR is analogous to the SOR, but with the advantage that it can be calculated 112 

without performing model simulations. To calculate the NOR, we define the vector 113 

𝑝(𝑡) = ,𝑝-(𝑡), … , 𝑝0%$(𝑡), 𝑝0(𝑡)-
T, where, for 𝑖 ≤ 𝑀 − 1, 𝑝1(𝑡) represents the probability 114 

that 𝐼(𝑡) = 𝑖 and that the number infected has not reached threshold 𝑀 by time 𝑡. The 115 

variable 𝑝0(𝑡) is defined as the probability that 𝐼(𝑡) has reached threshold 𝑀 by time 𝑡. As 116 

with the SOR, we again use a value of 𝑀 = 100 in our analyses. Then, the Kolmogorov 117 

forward equations [2] are 23(')
2'

= 𝑄(𝑡)𝑝(𝑡), where 118 

 119 

𝑄(𝑡) = 	

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎛

0 𝜇 0 ⋯ ⋯ 0
0 −(𝛽/1 − Λ(𝑡)2 + 𝜇) 2𝜇 ⋯ ⋯ 0
0 𝛽/1 − Λ(𝑡)2 −(2𝛽/1 − Λ(𝑡)2 + 2𝜇) ⋯ ⋯ 0
0 0 2𝛽/1 − Λ(𝑡)2 ⋯ ⋯ 0
⋮ ⋮ ⋮ ⋱ ⋮ ⋮
0 0 0 ⋮ (𝑀 − 1)𝜇 0
0 0 0 ⋮ −((𝑀 − 1)𝛽/1 − Λ(𝑡)2 + (𝑀 − 1)𝜇) 0
0 0 0 ⋮ (𝑀 − 1)𝛽/1 − Λ(𝑡)2 0⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎞

. 120 

 121 

In this matrix, the state 𝐼(𝑡) = 𝑀 is an absorbing state (analogous to stopping the 122 

simulations as soon as 𝐼(𝑡) reaches the threshold	𝑀 when calculating the SOR). The 123 

probability that that are at least 𝑀 infected individuals at some stage following the 124 

introduction of a single infected host into the population at time 𝑡 is then given by 125 

NOR(𝑡)	=	 lim
4→6

(𝑝0(𝑠)), where 𝑝(𝑡) = (0,1,0… ,0,0)T.  The NOR is therefore calculated by 126 

solving the Kolmogorov forward equations numerically until the system converges to an 127 

equilibrium state. 128 

 129 



Supplementary figures 130 

 131 

 132 

Figure S1. The effect of the assumed vaccine uptake on the outbreak risk. (a) Isle of Man. Analogous 133 

panel to Fig 3b in the main text, but with vaccine uptake 𝜈 = 0.8. (b) Analogous panel to Fig 3b in the 134 

main text, but with vaccine uptake 𝜈 = 0.9. (b) Analogous panel to Fig 3b in the main text, but with 135 

vaccine uptake 𝜈 = 0.95. (d) Israel. Analogous panel to Fig 3d in the main text, but with vaccine uptake 136 

𝜈 = 0.8. (e) Analogous panel to Fig 3d in the main text, but with vaccine uptake 𝜈 = 0.9. (e) Analogous 137 

panel to Fig 3d in the main text, but with vaccine uptake 𝜈 = 0.95. Ticks on the x-axes refer to the starts of 138 

the months labelled. 139 

 140 

 141 



 142 

Figure S2. The effect of immunity due to prior infections on the outbreak risk. (a) Isle of Man. Analogous 143 

panel to Fig 3b in the main text, but with 𝑅# reduced by 1.35% (an approximation of the proportion of the 144 

population who had been infected before 1st May 2021, based on 1,154 confirmed cases out of a 145 

population of 𝑁 = 85,400). (b) Israel. Analogous panel to Fig 3d in the main text, but with 𝑅# reduced by 146 

9.55% (an approximation of proportion of the population who had been infected before 1st May 2021, 147 

based on 838,000 confirmed cases out of a population of 𝑁 = 8,772,800). Ticks on the x-axes refer to the 148 

starts of the months labelled. 149 

 150 

 151 
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