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The rapid rollout of the COVID-19 vaccine global raises the question of whether and when10

the ongoing pandemic could be eliminated with vaccination and non-pharmaceutical inter-11

ventions (NPIs). Despite advances in the impact of NPIs and the conceptual belief that NPIs12

and vaccination control COVID-19 infections, we lack evidence to employ control theory in13

real-world social human dynamics in the context of disease spreading. We bridge the gap14

by developing a new analytical framework that treats COVID-19 as a feedback control sys-15

tem with the NPIs and vaccination as the controllers and a computational and mathematical16

model that maps human social behaviors to input signals. This approach enables us to ef-17

fectively predict the epidemic spreading in 381 Metropolitan statistical areas (MSAs) in the18

US by learning our model parameters utilizing the time series NPIs (i.e., the stay-at-home19

order, face-mask wearing, and testing) data. This model allows us to optimally identify three20

NPIs to predict infections actually in 381 MSAs and avoid overfitting. Our numerical results21

universally demonstrate our approach’s excellent predictive power with R2 > 0.9 of all the22

MSAs regardless of their sizes, locations, and demographic status. Our methodology allows23

us to estimate the needed vaccine coverage and NPIs for achievingRe to the manageable level24

and the required days for disease elimination at each location. Our analytical results provide25

insights into the debates on the aims for eliminating COVID-19. NPIs, if tailored to the26
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MSAs, can drive the pandemic to an easily containable level and suppress future recurrences27

of epidemic cycles.28

The ongoing global pandemic of coronavirus disease 2019 (COVID-19) has caused devastat-29

ing loss of human lives and inflicted severe economic burden in the US1. By 20 March 2021, more30

than 510,000 people were killed by COVID-19, the unemployment reaches 11.5%2, and fiscal31

shortfall reaches over 200 billion3. In response to the disease, federal, state, and local governments32

have implemented non-pharmaceutical interventions (NPIs) from encouragement and recommen-33

dations to full-on regulation and sanctions4–6 and pharmaceutical interventions (PIs) with avail-34

able vaccinations7, 8 and drugs9. However, these NPIs (e.g., social distancing, face mask-wearing,35

hand hygiene, testing, contact tracing, isolation, etc.) are often loosened and re-tightened with-36

out rigorous empirical evidence. Methodologies, from randomized controlled trials5, econometric37

methods10, 11 to mathematical models12–18, have been developed to measure the effects of these38

NPIs. But many of the methodologies cannot be used without predicting the pandemic when the39

NPIs are adjusted. Besides, different sets of NPIs enforced in different places at different times40

often come with different effects10, 16. Without considering NPIs’ varieties on space, timing, and41

duration, we cannot understand whether these NPIs have had the desired effect of controlling the42

epidemic. In this study, we aim to tackle the challenge by modeling the COVID-19 spreading as43

a feedback control system, where the NPIs and vaccination note the controllers, and then to help44

policymakers determine the magnitude and timing of interventions’ deployment as circumstances45

change.46

Engineering perspectives are useful in epidemic modeling19, including the principle of con-47

trol theory that provides a theoretical basis for NPIs’ functioning and transmission management.48

Control theory, originally developed for engineered systems with applications to power grids, man-49

ufacture, aircraft, satellite, and robots, has recently been adapted to understand the controllability50

of complex systems emerging in ecology, biology, and society. The recent work about network51

control enables us to identify the minimal driver nodes20 or lowest control costs19, 21 for node con-52

trol, edge control22, target control23, multilayer control24, 25, temporal control26, and data-driven53
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control27. However, we continue to lack general answers to practically applying control theory54

to human and natural systems, like the dynamical system for disease spreading. The difficulty is55

rooted in the fact that we know the pedals and the steering wheel are the drivers prompting a car56

to move with the desired speed and in the desired direction, but the practical drivers are unknown57

for complex human and natural systems28, 29. Specifically, when focusing on the COVID-19 pan-58

demic, we hypothesize that non-pharmaceutical and pharmaceutical interventions are the ”drivers”59

to determine the dynamics of the COVID-19 pandemic in each location through controlling the60

infection, recovery, and death rates29. We validate this hypothesis by developing a parsimonious61

model that excellently predicts how the interventions influence the spreads in 381 MSAs in the US62

and ultimately estimates the end of COVID-19.63

Results64

Model COVID-19 spreading as a feedback control system. Increasing evidence shows that65

the spread of COVID-19 follows compartmental models10, 12, 30–32, such as the SIRD (Susceptible-66

Infectious-Recovered-Death) model, which is mathematically described by the nonlinear equations67

expressing a population balance as follows33:68

Ṡ = µ
(
S(t) + I(t) +R(t)

)
− βS(t)I(t)− µS(t)− V,

İ = βS(t)I(t)− γI(t)− δI(t)− µI(t),

Ṙ = γI(t)− µR(t),

Ḋ = δI(t),

(1)

where S, I , R, and D are the susceptible, infected, recovered and death numbers, respectively.69

S + I + R + D = Ω and Ω is the population at the given place. V is the ratio of people full70

vaccinated with efficacy rate 90%34. The parameter µ is the crude birth and death rate, and epi-71

demiological parameters β, γ, and δ are the infection, recovery and death rates (Θ = [β, γ, δ]T ).72

Studies show that epidemiological parameter are time-dependent, which adapt accordingly to the73

change of interventions12, 13. By defining β0, γ0, and δ0 as the infection, recovery and death rates74

before interventions are imposed (Θ0 = [β0, γ0, δ0]T ), we define Θ(t) = Θ0 + UΘ(t), where75
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UΘ(t) = [Uβ(t), Uγ(t), Uδ(t)]
T is a vector of the control input signals. As shown in Fig. 1a, the76

controllers UΘ(t) work as the edge control22 and the vaccination V works as the node control20.77

Based on nonlinear feedback control law, we develop the controllers UΘ(t) using the feedback lin-78

earization approach. Then the SIRD model could perfectly track the reference trajectories which79

is generated from reported real-world pandemic data. As illustrated in Fig. 1b, the output model80

trajectory fits the real-world 3-dimensional data when the time-varying controllers are included,81

while it fails to fit when the controllers are not considered. Note that our approach is general and82

can be extended to other models that consider n-dimensional data.83

Next, we propose the parsimonious model by employing the difference-in-difference esti-84

mation, which maps human behavior toward NPIs into the designed controller, as shown in Fig.85

1c. This method enables us to measure the effect of NPIs on the controllers UΘ by comparing the86

infection dynamics before and after the same region’s NPIs deployment. Beyond existing models,87

which assume the effects on policies are approximately linear10, we also identify the interactions88

between policies. Thus, we are able to compile the evolution of human behaviour toward the89

NPIs, θI = [θs, θf , θg]
T , (e.g., stay-at-home order θs, face-mask wearing θf , and testing θg) to the90

evolution of the control signals with their respective effects,W I
Θ = [wsΘ, w

f
Θ, w

g
Θ]T .91

In short, our two-steps approach captures how the NPIs and vaccinations govern the disease92

dynamics, through combining the principles of control theory29, 35 and statistical estimation10, 36.93

Tracking the pandemic’s trajectory with designed controllers. To validate its accuracy in pre-94

dicting the disease evolution in the future and its applicability in determining the needed interven-95

tions to control the infection process, we test the NPIs data and infection data at 381 Metropolitan96

statistical areas (MSAs) from 1 April 2020 to 20 February 2021. The MSAs, defined as the core97

areas integrating social and economic adjacent counties, is contiguous areas of relatively high pop-98

ulation and traffic density. We consider each MSA as a “closed population” the disease evolution99
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could be modeled by the nonlinear SIRD dynamical model, Eq. (1), in a compact form, as100

Ẋ = F (X,UΘ + Θ0), (2)

with X = [S, I, R,D]T is the state/output vector and UΘ = [Uβ, Uγ, Uδ]
T is the input vector.101

Using feedback linearization control design, we construct a nonlinear feedback control law UΘ =102

φ(X, Ẋ,Xd, Ẋd), to track the real-world pandemic trajectories Xd = [Sd, Id, Rd, Dd]
T (see Eqs.103

(6-11) in Methods). The feedback law φ(.) relies on the measurements of the model full state X104

and the reference trajectory (Xd) and their time derivative (Ẋ and Ẋd).105

Theoretically, for each MSA, the output trajectory X perfectly fits the reported infection106

trajectory Xd when the control action UΘ is applied. This fact is illustrated in Fig. 2, which shows107

the evolution of the predicted and reported trajectories from 1 April 2020 to 20 February 2021108

for two MSAs, namely the ”New York” MSA (with New York as the core) and ’Houston’ MSA109

(with Houston as the core). Moreover, the excellent alignments between the real-world and model110

data of all 381 MSAs indicate our approach’s predictive power, as shown in Fig. 2b. On the other111

side, Fig. 2c shows all MSAs’ infection rate [β0 + Uβ(t)], recovery rate [γ0 + Uγ(t)], and death112

rate [δ + Uδ(t)], respectively, and mark out the respective rates for the two examples of MSA.113

Overall speaking, the infection rate and recovery rate decrease till May, rebound in June, decrease114

again to the lowest in September and start to fluctuate till February. The death rate continues to115

decrease in October and stays relatively constant beyond. As validated in literature4, ”New York”116

MSA enforces interventions more effectively and earlier, leading to a relatively lower infection117

rate, recovery rate, and death rate than most MSAs till October. One can observe that ”Houston”118

MSA follows medium patterns.119

Having the daily transmission rate, recovery rate, and death rate, we compute the effective120

reproductive ratio Re(t) =
[β0+Uβ(t)]S(t)

[γ0+Uγ(t)]+[δ0+Uδ(t)]+µ
, representing the expected number of secondary121

infected cases at time t when no vaccinations are rolled out. The function Re(t) is a critical thresh-122

old in understanding whether the outbreak is under control. More precisely, if Re(t) < 1, then the123

ongoing outbreak will eventually fade out, whereas Re(t) > 1 means an acceleration of the infec-124
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tion dynamics leading to a substantial growth of infected cases and deaths. Fig. 2d-e respectively125

visualize the temporal and spatial distribution of the MSAs’ effective reproductive ratio. Our re-126

sults reveal that just a few MSAs’ effective reproductive ratios ever reach Re(t) < 1, implying the127

need to implement more rigorous interventions to achieve an effective controlling of the pandemic.128

For example, from 14 February 2021 to 20 February 2021, the average effective reproductive ratios129

in ”New York” and ”Houston” MSAs are evaluated as 1.468 and 1.393, respectively, revealing a130

critical need for stronger interventions.131

Mapping human behaviours as actuators to steer NPIs as controllers. Although our con-132

troller, UΘ, precisely predicts the infectious, death toll, and recovery, it is thus far unknown how133

the measurable interventions change the controllers. Compared with the driving car, it is similar134

that we know the desired speed and direction in order to move the car to the target location, but we135

do not know what the pedals and the steering wheel for epidemic control are and how the changes136

in the pedals and the steering wheel determine the speed and direction. In another word, as depicted137

in Fig. 1, we assume that the changes of interventions, directly steering the control signals, will138

shape the disease dynamics when they are tightened and loosen to different levels. For multiple139

NPIs θI , we divide them into two sets, i.e., the set of community NPIs ϑc (e.g., social distancing140

and quarantine) and the set personal NPIs ϑp (e.g., face covering, test, and frequent hand wash).141

Then we develop the following mathematical model ÛΘ(t) = [Uβ, Uγ, Uδ]
T = f(θI(t),W I

Θ) as142

(see [Eqs. (12-15)] in Methods)143

ÛΘ(t) =
∏

i∈{c,p}

(1−
∑
j∈ϑi

wjΘθj(t))− 1 (3)

where ÛΘ(t) is the estimate of the control action based on NPIs with their magnitudes θj(t) and144

their impact value wjΘ. For a the specific NPI j, large wjΘ value demonstrates that NPI j has strong145

impact. If wjΘ = 0, the control ÛΘ(t) is independent with the NPI j. The term
∏

i∈{c,p} indicates146

that community NPIs ϑc and personal NPIs ϑp have a joint affect on the controller. For either147

community NPIs ϑc or personal NPIs ϑp, 1 −
∑

θj∈ϑi w
j
Θθj(t) term denotes the combined impact148

of the NPI set. Usually, ÛΘ is a non-positive value, showing the reductions in each controller.149
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Given the collected data sets for eight NPIs, we evaluate the goodness of fit versus different150

combinations of NPIs to find an effective parsimonious model for Eq. 3. A parsimonious model,151

which has great explanatory predictive power, accomplishes a better prediction of controllers as152

few NPIs as possible. With 70% of the dataset of NPIs as the training data, we use the mean153

absolute error to test the predictive accuracy for the rest 30% of the dataset. Fig. 3 shows that154

including three NPIs in the model gains the highest predictive accuracy for the designed controllers155

(see supplementary text for the details). We find that the most representative NPIs for Eq. 3156

are: (1) stay-at-home order, represented by the normalized ratio of excessive time of staying at157

home, θs; (2) face-mask wearing, represented by the fraction of people wearing face masks, θf ;158

(3) testing, represented by the normalized fraction of tested population, θg. Commonly, stay-at-159

home order and face-mask wearing have a positive impact on decreasing the number of reported160

cases. Differently, testing θg(t) may positively or negatively impact the reported infected cases.161

The reason is that more testing could allow identifying more cases when the number of testing is162

not sufficient, and yet, more testing may also lead to less infected cases6. Representing the three163

NPIs as θI = [θs, θf , θg], then,164

ÛΘ(t) = (1− wsΘθs(t))
(

1− wfΘθf (t)− w
g
Θθg(t)

)
− 1 (4)

In the following studies, we only use these three selected NPIs for predictions.165

Effects of NPIs on shaping the disease dynamics. Based of the parsimonious model of Eq. (4),166

we learn the parameter-by-intervention specific marginal effects wsΘ, wfΘ, and wtΘ, reflecting the167

variations of ÛΘ as a function of the evolution of the time-dependent local NPIs θs(t), θf (t), and168

θt(t) at MSAs. With the objective to directly infer the ÛΘ with the NPIs data, we first use 70%169

dataset of NPIs as the training data to learn the marginal effects. Then, we estimate the counterparts170

ÛΘ given as Eq. (4) using the 30% left testing datasets and evaluate the fit between UΘ and ÛΘ.171

Taking the ”New York” MSA and ”Houston” MSA shown in Fig. 4a-b as illustrative examples;172

given the evolution of NPIs, the estimated control signals Ûβ and Ûδ with the learned marginal173

effects, fit the predicted model-based control law defined in terms of Uβ and Uδ. Based on the174
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proportionality between Uγ(t) and Uβ(t) (see Fig. S2), i.e., Uβ(t)/Uγ(t) = 2.664, here, we only175

consider Uβ(t) and Uδ(t).176

It is remarkable that for all MSAs, Eq. (4) stays robust to the huge heterogeneity of locality.177

As depicted in Fig. 4c, the NPIs have a great high standard deviation (σ) across MSAs, especially178

for stay-at-home order and face-mask wearing. One can notice that the average magnitude of stay-179

at-home order decreases from 80% to 40% recently with σ = 0.140. Besides, nearly 53.56% of180

people are wearing face masks when being outdoors with σ = 0.20 while the average magnitude181

of testing increases to 9.19% with σ = 0.032. To test the robustness of the model of Eq. (4), we182

trained and validated the model iteratively on different MSAs’ datasets for NPIs. The distributions183

of marginal effects across the three NPIs are shown in Fig. 4d. Most MSAs’ marginal effects for184

stay-at-home order and face-mask wearing are negative. The statistics imply the generic feature of185

the Eq. (4) in capturing NPIs’ effects despite the huge regional heterogeneity of human behaviours.186

However, the average marginal effect of testing has two opposite outcomes. For Ûβ(t), 73.5% of187

MSAs’ testing’ marginal effects are positive, meaning 26.5% of them are negative. For Ûδ(t),188

46.0% of MSAs’ testing’ marginal effects are positive, meaning 54.0% of them are negative. The189

positive effects suggest that testing is favorable to finding more infections and deaths, while the190

negative effects show that testing reduces infection or death.191

Applying the estimated control signals Ûβ(t), Ûδ(t), and Ûγ(t) = Ûβ(t)/2.264 to the SIRD192

model, we find that the new output trajectories X̂ fit the reported infection Xd with R2 ≥ 0.9,193

as show in Fig. S3. As well, Fig. 4e-f depict the predicted infected/dead cases with reported194

infected/dead cases on 20 October 2020 and 20 February 2021. All the results further validate the195

model in assessing NPIs’ effects on disease dynamics.196

Needed NPIs and vaccinations for achievingRe to manageable level. The two-steps approach,197

integrating the designed controllers in Eqs. (1-2) and the effect of NPIs on controllers in Eqs. 4,198

has successfully mapped human behaviors to NPIs to infection rate, recovery rate, and death rate199
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of the SIRD model. Then, the effective reproductive number Re can be equivalently translated in200

terms of magnitudes of NPIs (θI) and V (the ratio of people full vaccinated with efficacy rate 90%201

34), that is,202

Re(t) =
β0 + f(θI ,W

I
β)

γ0 + δ0 + µ+ f(θI ,W
I
γ) + f(θI ,W

I
δ)

(S(t)− V ). (5)

From the equation above, we can determine the needed magnitude of NPIs for achievingRe(t) < 1,203

criteria for the disease die out, under a given vaccination coverage. Here, the vaccination coverage204

is viewed as an open-loop control action or a given parameter whose assigned value affects the205

speed of propagation of the disease.206

When there is no vaccination administered in the US (like before 12 January 2021 V = 0),207

the needed magnitude of NPIs to achieve an effective reproductive number below the threshold,208

Re(t) < 137, for ’New York’ and ’Houston’ MSAs are shown in Fig. 5a-b. The ”triangular209

prism” in three dimensions represents the needed magnitude of the stay-at-home order, face-mask210

wearing, and testing. The horizontal slices of the ”triangular prism” are the visualization for the211

needed magnitude of stay-at-home order and face-mask wearing if the magnitude of testing is212

fixed. If stay-at-home order and face-mask wearing interventions are enforced at a level greater213

than about 80%, Re(t) < 1, which forms a ”triangle” as shown in Fig. 5a-b. As opposed to stay-at-214

home order and face-mask wearing, the testing intervention has a positive marginal effect on ’New215

York’ MSA and ’Houston’ MSA. Hence, in both cases, the ”triangle” becomes smaller for larger216

testing. Some MSAs (’Log Angles’ MSA and ’Miami’ MSA in Fig. S4) have a negative marginal217

effect for testing intervention, and their ”triangle” becomes bigger for larger testing. According to218

their testing interventions ’ marginal effects, the shapes of ”triangular prism” for more MSAs are219

shown in Fig. S4.220

Since 12 January 2021, the US began the first jab of vaccine, and undoubtedly, Re(t) could221

be smaller with mass vaccinations according to the Eq. (5). For different ratios of fully vaccinated222

people with 90% efficiency, we could find at least how much NPIs could be relaxed (reduced) to223

achieve Re(t) = 1 in Fig. 5c. Setting aside testing intervention, more magnitude of stay-at-home224

order and face-mask wearing interventions could be eased if more people are fully vaccinated.225
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However, when 60% of people are fully vaccinated, only 55.3% of stay-at-home order and 64.8%226

face-mask wearing could be eased. When 70% people are fully vaccinated, the stay-at-home order227

and face-mask wearing could be eased entirely. However, to achieve Re(t) < 1, the policymakers228

should relax NPIs with more cautions.229

Needed days of eliminating the pandemic locally with vaccinations. Moreover, due to the230

unknowns around mutations in escalating the disease’s infectiousness38 and human’s long-term231

immunity to the disease39, suppressing the disease to an acceptable level with NPIs but not aim-232

ing to eliminate it could make COVID-19 an endemic40, 41. A COVID endemic could claim mil-233

lions of more lives each year and cause devastating economic burdens on immunization, treat-234

ment, and prevention. Also, repeated tightening and loosening interventions due to recurrent235

outbreaks, without a doubt, increase the difficulty to decide the right moment of enforcing exit236

strategies14, 35, 42, 43. Currently, three vaccines are authorized and recommended in the United States237

from Pfizer-BioNTech, Moderna, and Johnson & Johnson. By 10 March, more than 37.4 million238

adults in the U.S. have been fully vaccinated44. Despite continued efforts of NPIs and vaccine roll-239

out, the plateaued numbers of infection cases and the fast-spreading variants still pose significant240

uncertainty about whether ”zero COVID” could be achieved locally in the US. Given the examples241

of New Zealand45, Vietnam, Brunei, and Island states in the Carbbean40, which ever reached a242

”Zero COVID” stage, we investigate the possibility of reaching zero contamination in the MSAs.243

We refer to ”Zero COVID” to describe a situation that leads to no new cases at least for three244

months in a given location, referring to literature46. Furthermore, the day when the following three245

months having zero new cases is defined as the elimination day.246

We assume that the ratio of fully vaccinated people (also call vaccination coverage), follows247

the innovation adoption model according to Rogers47, which is a normal distribution, H(t), see Eq.248

(16)-(17). Then, the total number of immunized people is defined as V (t) = aH(t) where a is the249

vaccine effectiveness (a = 90%). As shown in Fig. 6a, the reported data reveal that the ratio of fully250

vaccinated people from 12 January 2021 to 20 February 2021 in the US increases to 5.40%. By251
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fitting the real-world ratio, we obtained the vaccination coverage as a curve that gradually reaches252

saturation within different periods (Ts). Considering a full vaccination of 50% of people after 360253

days since 12 January 2021, the average elimination day for all MSAs corresponds to the hundred254

seventieth day. Under this configuration, from in Fig. 6b, one can notice that ’New York’ MSA255

reaches a total elimination stage after 197 days while ’Houston’ MSA achieves a total elimination256

stage after 187 days. Of course, one could define a vaccination strategy rollout accounting for257

nonuniform saturation coverage in different periods. Fig. 6c comprehensively presents all MSAs’258

elimination days for vaccination coverage ranging from 0% to 90% with vaccination period (Ts)259

equals to 90 days, 180 days, 270 days, and 360 days. Our results reveal that broader vaccination260

coverage further reduces both the remoteness of the elimination day and the death toll. On the261

other side, a larger vaccination period expands the time range needed to reach the elimination day262

and leads to a more significant death toll. For the case in Fig. 6b, a total of 23,920,837 more people263

would be infected, and 1,199,202 more people would be dead because of COVID-19 if 50% of peo-264

ple are fully vaccinated in 360 days. On the contrary, if 90% of the population is fully vaccinated265

in 360 days, the average elimination day for all MSAs is about 129 days after implementing the266

vaccination strategy, with 20,428,296 more infected cases and 9,127,85 more dead cases overall.267

As shown in Fig. S6-S7, ”New York” MSA, ’Los angels’ MSA, ”Chicago” MSA, ”Dallas” MSA,268

”Phoenix” MSA, ”Boston” MSA and ”Philadelphia” MSA have far more death than other MSAs,269

meaning they need stricter interventions in reducing death because of COVID-19. In summary,270

all these results emphasize that the earlier, aggressive vaccination strategies are deployed in each271

MSA, the earlier the pandemic could be eliminated, leaving fewer deaths from the disease.272

Discussion273

We present the COVID-19 pandemic as the feedback control system to show how the evolution274

of disease adapt to human behaviours to NPIs and the vaccine coverage. This approach enable275

us to model the linear and nonlinear effects of multiple NPIs on the SIRD model-based feedback276

controllers on the epidemiological parameters. Through reducing eight NPIs to three representa-277
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tive three (i.e., stay-at-home order, face-mask wearing, and testing), we obtain the model having278

great explanatory predictive power toward disease dynamics. By studying the NPIs at 381 MSAs279

from 1 April 2020 to 20 February 2021, we find that the two-steps approach is robust and efficient280

to predict daily infection and death accurately. Beyond in line with existing studies that NPIs are281

effective in suppressing the disease outbreaks30, 48, 49, we could directly link the NPIs’ marginal282

effects to the effective reproductive number Re. It implies that, without the need for up-to-date283

knowledge of current infections and ’nowcasting’. Besides accurate forecast on both case counts284

and deaths, this approach could provide practical information for policymakers regarding the ex-285

tent of safely relaxing NPIs and the needed vaccination coverage to end COVID-19 locally. The286

approach is also universal and thus can be used by policymakers elsewhere.287

Through analyzing the needed NPIs for keeping Re < 1, we find that MSAs should continue288

to enforce their stay-at-home order and face-mask wearing. Loosening the degree below 80% could289

lead to a resurgence of COVID-19. Our results show that MSAs should continue to require wearing290

masks and unless 60% of people are fully vaccinated, the MSA should not relax the stay-at-home291

order and face-mask wearing intervention.292

There is an ongoing debate on if the elimination of COVID-19 (”Zero COVID”) is possible40, 41.293

It is considered by some as the only way to prevent future crises and cannot be achieved without294

mass vaccination. Using the ”Zero COVID” as a guiding criterion, i.e., no new infection at least for295

three months, we test how many days it can be achieved if 50% MSA populations are vaccinated296

in a 360-day period. We find that, on average, it takes 170 days to reach the ”Zero COVID” mile-297

stone. It is worth noting that the promising result can be undermined by many external factors, like298

importation cases from other areas, making the total elimination a long process with fluctuations299

on new infections. In addition, some scientists argue pursuing the ”Zero COVID” comes at a huge300

cost to normal human life40, 41 and can thus out-weigh the benefits. Nevertheless, our experiments301

reinforce the argument that maintaining NPIs and encouraging people to get vaccines are necessary302

and key strategies to lower the new infections as much as possible.303
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Our study has some limitations. The first limitation is rooted in the dataset for COVID-19304

and the dataset for NPIs. Given the mass mild or asymptomatic infections, the inaccuracy of re-305

ported infections and deaths would increase the uncertainty of the SIRD model-based feedback306

controllers. The second limitation is assuming each MSA as the closed population, which ignores307

the fluctuation of infections caused by case importation and exportation. This simplification would308

influence the results from needed NPIs and PIs for suppressing COVID-19 to elimination test.309

The third limitation is assuming vaccination adoption follows the curve of diffusion of innovations310

without considering people’s attitude to vaccinations. As the attitudes towards vaccination vary by311

age, race, ethnicity, and education, it is hard to capture the full complexity. In our current work,312

we use feedback linearization to design the control signals, and we may improve the accuracy313

by considering other controller design strategies, for example, adaptive controller50, 51, model pre-314

dictive control52, or intelligent control53. Nevertheless, our study provides practical insights into315

tightening or relaxing NPIs for the aim of living with COVID-19. Also, we provide the possibility316

of achieving ”Zero COVID” in metropolitan areas if vaccination is stable and efficient enough.317

Methods318

Dataset. 2019-COVID pandemic. We acquire the second-administrative units’ COVID-19 cases319

from the 2019 Novel Coronavirus Visual Dashboard operated by the Johns Hopkins University320

Center for Systems Science and Engineering54. It covers the counties’ reported infected and dead321

cases at the US and the whole countries’ infected and dead cases from 21 January 2020 to 20322

February 2021. We integrate counties’ COVID-19 cases for 381 MSAs defined by the United323

States Office of Management and Budget (OMB), which serves as a high degree of social and324

economic core areas.325

Testing Capacity. The testing data at each county is also collected by the Johns Hopkins326

University Center for Systems Science and Engineering54. By integrating the counties’ testing327

data, we get each MSA’s daily ratio of total testing over MSA’s population.328
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Stay-at-home Data. Daily data about the observed minutes at home and observed minutes329

outside of home for all devices are counted at each county by the Safegraph55, which is a platform330

of collecting the points of interests (POIs) from anonymous mobile devices. Integrating the data,331

we could get each MSA’s ratio of time at home, i.e, the fractions of the observed minutes at home332

over the sum of observed minutes at home and outside home, which is reflective of people mobility333

pattern for local governments’ anti-contagious policies. By subtracting the benchmark ratio (the334

average ratio of time at home before 13 March 2020) and then normalizing the ratios from 0 to 1,335

we get each MSA’s ratio of excessive time at home.336

People Wearing Face Mask. We assume that the search of ”face mask” collected by Google337

Trend equals to the fraction of people having the awareness of wearing face masks in each MSA.338

Combined the fractions and the weekly percentages of people wearing face mask in the US pro-339

vided by YouGov56, we could obtain each MSA’s daily percentage of people wearing face mask.340

We use the similar approach to collect the data of people support school closure, quarantine ,341

working from home, frequent hand wash, and avoid crowding.342

Vaccination Data. CDC provides the overall US COVID-19 Vaccine Distribution and Ad-343

ministration, mainly for Pfizer-BioNTech and Moderna.344

Deriving the feedback controllers. The feedback controllers measure the output of the SIRD345

model and then manipulates the inputs on infection rate, recovery rate, and death rate of as needed346

to drive the model output toward the desired COVID-19 pandemic trajectory. In another word,347

given the controllablility of the SIRD model (see supplementary text), then we could rewrite the348

Eq. (1) as349

dI

dt
= [β0 + Uβ(t)]SI − [γ0 + Uγ(t)]I − [δ0 + Uδ(t)]I − µI

dR

dt
= [γ0 + Uγ(t)]I − µR

dD

dt
= [δ0 + Uδ(t)]I

(6)
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with the controller set UΘ(t) = [Uβ, Uγ, Uδ]
T . Uβ, Uγ, Uδ are the controllers on infection rate, re-350

covery rate, and death rate. For the reference COVID-19 pandemic trajectoryXd = [Sd, Id, Rd, Dd]
T

351

and its corresponding output trajectoryX , the error dynamicsXd−X is governed by the following352

equations353

˙̃I(t) = −k1Ĩ(t), ˙̃R(t) = −k2R̃(t), ˙̃D(t) = −k3D̃(t), (7)

where, Ĩ = Id − I , R̃ = Rd − R, and D̃ = Dd −D. Here, k1, k2, and k3 are positive gains of the354

designed feedback controller. The solution to the linear ordinary differential equations above are355

expressed as356

Ĩ(t) = e−k1tĨ(0), R̃(t) = e−k2tR̃(0) D̃(t) = e−k3tD̃(0), (8)

and
(
Ĩ(t), R̃(t), D̃(t)

)
→ (0, 0, 0). Therefore, the error system is exponentially stable and357

X(t) → Xd(t). The simulation of the closed-loop system is performed selecting k1 = k2 = k3 =358

0.1. The controllers are359

Uβ(t) =


1
SI

(
İd + µI + [γ0 + Uγ(t)]I + [δ0 + Uδ(t)]I − k1(Id − I)

)
− β0, for Uβ(t) > −β0

−β0, for Uβ(t) ≤ −β0

(9)360

Uγ(t) =


1
I

(
Ṙd + µR− k2(Rd −R)

)
− γ0, for Uγ(t) > −γ0

−γ0, for Uγ(t) ≤ −γ0

(10)

361

Uδ(t) =


1
I

(
Ḋd − k3(Dd −D)

)
− δ0, for Uδ(t) > −δ0

−δ0, for Uδ(t) ≤ −δ0

(11)

To prevent un-physical negative transmission rate Uβ(t), recovery rate Uγ(t), and death rate Uδ(t),362

the controllers are clipped such that the time-dependent epidemiological parameters are always363

positive. Here Θ0 = [β0, γ0, δ0]T is the pre-intervention epidemiological parameters learned by364

infection of ’New York’ MSA from 1 March 2020 to 13 March 2020 with Nelder-Mead simplex365

algorithm57. For the controllers, whatever the values for Θ0, the error system is stable and X(t)→366

Xd(t).367
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Using difference-in-difference method to learn the NPIs’ marginal effects to the controllers.368

For NPI set θI , we use the linear regression model for difference-in-difference to calculate their369

effects on the vector of infection rate, recovery rate, and death rate UΘ(t) + Θ0. Consider the370

model,371

UΘ(t) + Θ0 = λ(t) + f(θI(t)) + εΘ(t) (12)

where λ(t) is the facotr for time trend and εΘ(t) is the residual term. Then, the difference of372

outcome controllers from time t− 1 to time t is373

UΘ(t)− UΘ(t− 1) = [λ(t) + f(θI(t)) + εΘ(t)]

− [λ(t− 1) + f(θI(t)) + εΘ(t− 1)]
(13)

Adding up the all difference from time t = 0 to time t374

UΘ(t)− UΘ(0) =
∑
t′∈[1,t]

λ(t′)−
∑

t′∈[0,t−1]

λ(t′) +
∑
t′∈[1,t]

εΘ(t′)−
∑

t′∈[0,t−1]

εΘ(t′)

+ f(θI(t))− f(θI(0))

≈ f(θI(t))− f(θI(0))

(14)

As when t = 0 no NPIs are implemented, thus, UΘ(t) = 0 and f(θI(0)) = 0,375

UΘ(t) = f(θI(t),W I
Θ) (15)

Vaccination adoption model. Like the innovation adoption model, the daily newly vaccination376

adoption (vaccination coverage) will follow the bell curve, the normal distribution,377

h(t, u, σ) = V̂
1

σ
√

2π
e−

1
2

( t−u
σ

)2 (16)

where V̂ is the saturation of vaccination coverage. The the cumulative vaccination adoption (vac-378

cination coverage) is379

H(t) = Pr(1 ≤ x ≤ t) =

∫ t

1

h(t, u, σ)dt (17)

with t ∈ [1, Ts]. It means, the cumulative vaccination coverage will reach saturation of V̂ in380

Ts days. In the test of ”Zero COVID”, we tune the u and σ to fit the real-world vaccination381

coverage in the United States from 12 January 2021 to 20 Februray 2021 for V̂ ∈ [0.1, 0.9] and382

Ts ∈ {120, 180, 250, 360} in Fig. 6.383
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Figure 1: The SIRD-model based feedback control system reveals how the interventions’ magnitudes and timing
govern the dynamics of disease. a Based on nonlinear feedback control law, we develop the controllers UΘ =

[Uβ , Uγ , Uδ]
T working as the edge control on infection rate, recovery rate, and death rate. On the other side, the

vaccination V works as the node control on susceptible population. b With these controllers, the output trajectory of
disease X = [S, I,R,D]T of the feedback control system fit withe real-world infection data of the disease. c Through
the model, which includes the nonlinearity or interactions between NPIs, the human behaviour toward NPIs (e.g.,
stay-at-home order θs, face-mask wearing θf , and testing θg) are linked to the controllers UΘ through their effects
(e.g., wsΘ, wfΘ, wgΘ).
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Figure 2: The designed feedback controllers UΘ drive the output trajectories (Ẋ) in the SIRD model ingeniously
fits the reported trajectories (Ẋd) for 381 MSAs. a The reported data (dots) of infected/recovered/dead cases
are fitted with the output trajectory (solid line) for example MSAs, i.e., ”New York” MSA and ”Houston” MSA. b
Comparison between the reported data and output data at all MSAs. Each MSA represent a dot. c All MSAs’ temporal
infection rate, [β0 + Uβ(t)], recovery rate, [γ0 + Uγ(t)], and death rate, [δ0 + Uδ(t)] with marking out the examples
MSAs’ rates. d shows the MSA’s temporal effective reproductive ratio (Re) and e shows each MSA’s average effective
reproductive ratio from 14 February 2020 to 20 February 2021 in the cartogram map, in which geometry of regions
are distorted according to their population. The effective reproductive ratio reaches the lowest as of 20 February 2021.
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Figure 3: NPIs selection for predicting the designed controllers UΘ. Given eight NPIs, i.e., stay-at-home order,
school closure, quarantine , working from home, face-mask wearing, testing, frequent hand wash, and avoid crowding,
we test the accuracy of predictive model of Eq. (4) with different combinations of NPIs for Uβ (a), Uγ (b), and Uδ (c).
The model achieves high parsimony (with fewer NPIs) and high level of goodness of fit (with lowest mean absolute
error) using three NPIs, which are stay-at-home order, face-mask wearing, and testing.
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Figure 4: The learned effects enable to use magnitude of NPIs to predict infection at each MSA. Using the 70%
NPIs and infection data, we learned the NPIs’ effects in the model of Eq. (4). Based on the learned effects, a,b
illustrates of how the magnitude of NPIs determine the controllers (Ûβ(t) and Ûδ(t)) in the example MSAs. To test
the accuracy of model, we compare [Ûβ(t) and Ûδ(t)] with analytical controllers [Uβ(t) and Uδ(t)] with the left 30%
NPIs and infection data (vertical shaded area) in the right-side plots of a,b. c All MSAs’ magnitudes of NPIs. The
solid line represents the average, and the shaded area represents the standard variance for all MSAs. Though large
difference between MSAs’ magnitudes of interventions, in d, the marginal effects for stay-at-home order and face-
mask wearing are mainly negative. Testing, which may helps to find more infection and death, has either negative
or positive effect. Thus, by taking the estimated controllers Û = [Ûβ , Ûβ , Ûγ ] as the input the SIRD model, we find
the estimated infection/death assemble with reported infection/death with R2 > 0.9, see the two example dates in e
and f. Fig. S3 shows the estimation accuracy for all others dates. It should be noted that as the Ûγ keeps constantly
proportional to Ûβ (see Fig. S1), there is no need of further exploring Ûγ .
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Figure 5: Needed NPIs to keep effective reproductive ratio Re ≤ 1 with difference vaccine coverage. Take the
”New York” MSA and ”Houston” MSA as the examples; a,b show the needed magnitude for NPIs in order to keep
Re ≤ 1 with zero vaccine coverage. The horizontal slices of the ”triangular prism” are the visualization for the needed
magnitude of stay-at-home order and face-mask wearing if the magnitude of testing is fixed. c When people are full
vaccinated at different level (vaccine coverage), how much extents of stay-at-home order and face-mask wearing could
be relaxed while keep Re = 1. The magnitude of testing is fixed as each MSA’ recent testing capacity. These results
demonstrate relaxing interventions need thorough and careful considerations when the ratios of full vaccinated people
< 0.6.
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Figure 6: Days needed for reaching ”Zero COVID” if the saturation of vaccination coverage are reached within
90 days, 180 days, 270 days, and 360 days. By (1) defining ”Zero COVID” as that the disease is eliminated when
there are zero new infection for 90 days, (2) defining the day reaching ”Zero COVID” as the elimination day, (3) as-
suming that interventions (i.e., stay-at-home order, face-mask wearing, and testing) keep same as that from 5 January
2021 to 11 February 2021, (4) consider ratio of people full vaccinated as the vaccination coverage, we test the elimina-
tion days for MSAs since 12 January 2021. a The vaccination adoption modelH(t) illustrate how saturation of people
full vaccinated is reached in period Ts. Specifically, the orange line is the reported cumulative vaccination coverage. b
MSAs’ estimated elimination days if 50% are full vaccinated with 360 days. c Box plots for the elimination days, and
the additional death till elimination days for different saturation of vaccination coverage within different time period
Ts.
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