medRxiv preprint doi: https://doi.org/10.1101/2020.12.06.20244863; this version posted May 20, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.
It is made available under a CC-BY-NC 4.0 International license .

Persistent Homology of Tumor CT Scans is
Associated with Survival In Lung Cancer

Eashwar Somasundaram'”, Adam Litzler?, Raoul R. Wadhwa®, Rowan Barker-Clarke*,
and Jacob G. Scott!-3+>+

'Case Western Reserve University School of Medicine, Cleveland, OH 44195, USA

2University of Colorado Boulder, Department of Applied Mathematics, Boulder, CO 80309, USA

3Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH 44195, USA
4Lerner Research Institute, Department of Translational Hematology and Oncology Research, Cleveland, OH
44195, USA

STaussig Cancer Institute, Department of Radiation Oncology, Cleveland, OH 44195, USA
“evs27@case.edu

*Correspondence: scottj10@ccf.org

ABSTRACT

Purpose: Radiomics, the objective study of non-visual features in clinical imaging, has been useful in informing decisions in
clinical oncology. However, radiomics currently lacks the ability to characterize the overall topological structure of the data.
This niche can be filled by persistent homology, a form of topological data analysis that analyzes high-level structure. We
hypothesized that persistent homology could be applied to lung tumor scans and analyze clinical outcomes.

Methods: We obtained segmented computed tomography lung scans (n = 565) from the NSCLC-Radiomics and NSCLC-
Radiogenomics datasets in The Cancer Imaging Archive. For each scan, a cubical complex filtration based on Hounsfield
units was generated. We calculated a feature curve that plotted the number of 0 dimensional topological features against
each Hounsfield unit. This curve’s first moment of distribution was utilized as a summary statistic to predict survival in a Cox
proportional hazards model.

Results: After controlling for tumor image size, age, and stage, the first moment of the 0D topological feature curve was
associated with poorer survival (HR = 1.118; 95% Cl = 1.026-1.218; p = 0.01). The patients in our study with the lowest first
moment scores had significantly better survival (1238 days; 95% Cl = 936-1599) compared to the patients with the highest first
moment scores (429 days; 95% Cl = 326-601; p = .0015).

Conclusions: We have shown that persistent homology can generate useful clinical correlates from tumor CT scans. Our
0-dimensional topological feature curve statistic predicts survival in lung cancer patients. This novel statistic may be used in
tandem with standard radiomics variables to better inform clinical oncology decisions.

1 Introduction

The use of radiomics in tumor imaging has been an increasingly popular area of research to better inform cancer diagnosis,
treatment, and prognosis'. Geometric properties of tumors such as size, surface area, and volume are commonly studied features
among more non-visual features such as texture”. We propose extending the utility of radiomics by studying topological
properties. In contrast to the local structural focus of geometry, topology focuses more on global structure.

Since topological properties would focus on general tumor shape properties, they are theorized to be more robust to noise
and could capture information not found in traditional radiomic features. Intuitively, one can describe several topological
differences between malignant and benign tumors. Benign tumors are well-connected and have a homogeneous shape whereas
malignant tumors are more likely to have diffuse spread and necrotic cavities®. Quantifying the number of topological features
may be useful in predicting patient survival. In fact, pathology already uses shape properties in the context of Gleason scores,
which is a measure of prostate cancer severity based on prostate gland shape*.

Persistent homology is a popular technique in the -omics sciences to describe the topological features of large data sets.
Persistent homology has already been used in cancer biology from genomics to histology™°. A statistical measure inspired by
persistent homology called the smooth Euler characteristic has been developed to predict clinical outcomes from glioblastoma
tumor imaging’. Persistence images, an alternative representation of persistent homology, have been used in machine learning
models to classify MRI images of hepatic tumors®. While radiomics and persistent homology have largely existed in separate
worlds, they share similar challenges. In radiomics, one challenge is to find the most informative image features for analysis®.

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.


https://doi.org/10.1101/2020.12.06.20244863
http://creativecommons.org/licenses/by-nc/4.0/

medRxiv preprint doi: https://doi.org/10.1101/2020.12.06.20244863; this version posted May 20, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.
It is made available under a CC-BY-NC 4.0 International license .

In persistent homology, a similar challenge is finding the most useful topological data representation for visualization, statistical
comparison, and predictive modeling. We were interested in whether image features related to topology in lung CT scans
were associated with survival. Since we hypothesized earlier that an increased number of topological features may correlate
to a more malignant tumor, we wanted to create a topological data representation that captured the quantity of topological
features of a CT tumor scan. In this project, we create a new radiomics variable using the statistical summary variables of the
0D topological feature curve, our method of representing topological feature quantity. We describe this further in section 2. To
our knowledge, no work has been done in using persistent homology to characterize survival in cancer patients using such a
summary statistic. We show through a discrete and continuous analysis that moment 1 of our OD topological feature curve (i.e.
average number of OD features) is significantly associated with worse survival.

2 Persistent Homology Background

Topological data analysis (TDA) encompasses a broad set of techniques used to highlight topological patterns in data. Computing
persistent homology using cubical complexes is a popular method within TDA for describing topology in imaging data'®.
Counting topological features on an image requires a binary black and white image, so we cannot count the topological features
from the grayscale CT scan directly. However, we can convert the CT scan into a series of binary black and white images (i.e.
filtration) from which the topological features can be counted. In the context of persistent homology, cubical complexes are
essentially synonymous with these binary images.

For each CT scan, we create a series of binary images (i.e. cubical complexes), one for each Hounsfield unit filtration value.
For example, if the filtration value is -900 Hounsfield units, then all pixels with units less than or equal to -900 are colored black,
and all pixels above are colored white. Topological features can be counted from these binary images. A particular topological
feature can be described by dimension and the range of Hounsfield unit filtration values across which the feature is found.

We show this filtration process with slice 13 of scan 1 in Figure 1A. This slice is shown as it demonstrates a potential
connection between tissue characteristics (calcifications) and topological features. At low Hounsfield unit thresholds, the image
is mostly white. Islands of black pixels are considered connected components or OD features. Tissue necrosis may result in a
more fragmented tumor, which would increase the number of OD features. “Lakes” of white pixels are considered holes or 1D
features. Two-dimensional features are not shown in Figure 1 as they only appear when considering the cubical complexes of
all the slices stacked together as a three-dimensional structure. Intuitively, they can be thought of as volumetrically contiguous
groups of white pixels existing in interior of the tumor image surrounded by black pixels. Calcifications would likely manifest
as 1D or 2D features late in the filtration, which is shown when the Hounsfield unit threshold is 200 in Figure 1A.

Topological barcodes are one of the most popular ways to visualize persistent homology''. Each topological feature in a
barcode diagram is given a color to represent its dimension and a horizontal bar that spans the Hounsfield unit filtration values
where the feature can be found. The barcode diagram in Figure 1B represents the entire cubical complex persistent homology
of scan 1. Since we were interested in topological feature quantity, we developed an alternative representation of persistent
homology called the topological feature curve.

The topological feature curve is a transformation of the barcode diagram that counts the number of bars (i.e. topological
features) at each Hounsfield filtration value. The number of bars is then plotted against each Hounsfield unit filtration value.
We can construct four topological feature curves, one for each feature dimension, plus a fourth curve that counts all features
regardless of dimension. The topological feature curves in Figure 1C represent all feature curves in scan 1.

We used the raw moments of the distribution of the resulting 0D topological feature curve as predictor variables for our
survival analysis. The exact mathematical calculation is described in Supplemental Table 1. We focused on the 0D curve’s
characteristics because it showed the most variability across tumor scans. Incorporating all of the curves moments (16 potential
variables) would not have been feasible given our sample size.

Similar topological summary statistics have been described in analyzing brain connectomes of individuals with Attention-
deficit/hyperactivity disorder using OD Vietoris-Rips complex persistent homology features'?. Likewise, we also focus our
analysis on 0D features; however, we generate our topological features using cubical complexes.

3 Results

Table 1 gives a descriptive overview of the two lung scan data sets. These data sets were obtained from The Cancer Imaging
Archive!3. The NSCLC-Radiomics set (n = 421) had more patients compared to the NSCLC Radiogenomics set (n = 138)14.15,

Whole Cohort NSCLC- NSCLC-Radiomics p- Missing
Radiogenomics value (%)
Total Sample Size 559 138 421
Vital Status (% Dead) 424 (75.8) 51 (37.0) 373 (88.6) <0.001 0.0

2117


https://doi.org/10.1101/2020.12.06.20244863
http://creativecommons.org/licenses/by-nc/4.0/

medRxiv preprint doi: https://doi.org/10.1101/2020.12.06.20244863; this version posted May 20, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.
It is made available under a CC-BY-NC 4.0 International license .

Moment 1 24.23 [5.57, 70.40] 21.07 [5.22, 69.19] 26.26 [5.64, 71.48] 0.782 0.0
Moment 2 9.49 x 103 1.37 x 10* 8.74 x 103 0.032 0.0
[7.72 x 102, [8.69 x 102, [7.06 x 102,
5.99 x 10%] 1.64 x 10°] 4.55 x 10%]
Moment 3 3.92 x 10° 9.12 x 10° 3.29 x 10° 0.003 0.0
[1.31 x 107, [1.63 x 107, [9.85 x 10%,
6.56 x 107] 4.21 x 10%] 4.16 x 107]
Moment 4 1.97 x 10° 6.98 x 10° 1.38 x 10° 0.001 0.0
[2.25 x 107, [4.15 x 107, [1.36 x 107,
8.76 x 101] 1.21 x 10'%] 4.62 x 1010
Tumor Image Size 4.60 x 10* 4.51 x 10* 4.60 x 10* 0.364 0.0
[1.19 x 104, [1.22 x 104, [1.19 x 10%,
1.30 x 10°] 1.63 x 10°] 1.24 x 10°]
Age 68.36 (9.78) 69.27 (8.79) 68.05 (10.09) 0.206 3.9
Stage <0.001 0.2
Stage I 180 (32.3) 87 (63.0) 93 (22.1)
Stage 11 66 (11.8) 26 (18.8) 40 (9.5)
Stage Illa 131 (23.5) 20 (14.5) 111 (26.4)
Stage ITIb 177 (31.7) 1(0.7) 176 (41.9)
Stage IV 4(0.7) 4(2.9) 0 (0.0)
Sex (% Female) 166 (29.7) 35 (25.4) 131 (31.1) 0239 0.0
Patient Followup 1975.00 [1440.50, 1834.00 [1260.00, 3372.50  [1765.00, <0.001 0.0
2984.50] 2153.00] 3634.50]

Table 1. Descriptive statistics of the two cohorts of patient scans used in this study. All patient scans were downloaded from The Cancer Imaging
Archive'3. The moments of the OD feature curves are presented as median [IQR] since the data was not normally distributed. Tumor image size was also not
normally distributed and also presented as median [IQR]. All other data are presented as mean (SD) or as a proportion. Statistical comparisons between the two
cohorts were performed using Wilcoxon rank-sum test for the non normally distributed data. Student’s t-test was used for the other continuous data.
Chi-squared test was used for the categorical stage and sex data.

The NSCLC Radiomics dataset had a greater proportion of patients who died during its study. The mean follow up time for
the censured patients (alive at the end of the study) was higher in the Radiomics cohort as well; though both feature relatively
long median follow up times of at least 5 years. There was no significant difference in age between the Radiomics cohort (68.05
=+ 10.09) and the Radiogenomics cohort (69.27 & 8.79, t = 1.27, p = 0.206). Stage had a different distribution between the two
cohorts (Stage I tumors 22.1% vs 63.0%, x> = 135, p < .001). There were no significant differences in sex proportion between
the two data sets (32 = 1.38, p = 0.239). Both datasets contained a higher percentage of male patients. Moment 1 of the 0D
feature curve (Z = 28592, p = 0.782) and tumor image size (Z = 30544, p = 0.36) were not significantly different between the
two data sets. Both of these variables were significant in predicting survival in the univariate Cox hazard model.

We first performed a discrete analysis comparing survival quartiles by their moments of distribution of the OD feature
curves. This was performed primarily for intuition showing what the median topological feature curves looked like between
survival groups. Supplemental Figures 1, 2 and Supplemental Table 2 show and quantify this difference.

The discrete analysis is not as rigorous as a Cox model, which would measure the impact of the moments of the 0D
topological feature curve on survival outcomes. We verified that the assumptions of proportional hazards were met through
visual appraisal of the Schoenfeld residuals plot, which is shown in Supplemental Figure 4. Table 2 shows the results of our
Cox proportional hazard model.

Cox Proportional Hazard Model

Univariate Model HR p-value Multivariate Model HR p-value
Age 1.018 (1.007-1.029) 0.0019 1.025 (1.013-1.037) 4.0x1073
Male vs Female 1.229 (0.994-1.52) 0.057 1.128 (0.898-1.417) 0.30
Scaled Moment 1 1.019 (1.005-1.033) 0.0082 1.118 (1.026-1.218) 0.011
Scaled Moment 2 1.004 (0.982-1.026) 0.74 0.766 (0.53-1.106) 0.16
Scaled Moment 3 0.992 (0.94-1.047) 0.77 1.282 (0.412-3.991) 0.67
Scaled Moment 4 0.985 (0.893-1.088) 0.77 0.995 (0.369-2.681) 0.99
Scaled Tumor Image Size  1.015 (1.003-1.026) 0.01 1.014 (0.983-1.046) 0.38
Stage Il vs 1 1.249 (0.884-1.765) 0.21 1.028 (0.71-1.489) 0.88
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Stage Illa vs I 1.695 (1.304-2.203) 8.0 x 107> 1.742 (1.317-2.305) 0.0001
Stage IIIb vs 1 1.626 (1.272-2.077) 0.0001 1.483 (1.127-1.951) 0.0049
Stage IV vs 1 1.279 (0.406-4.028) 0.67 1.825 (0.572-5.818) 0.31

Table 2. Both univariate and multivariate Cox hazard models show moment 1 of the 0D feature curve is associated with poorer survival. Data is
shown as hazard ratio (95% confidence interval). Bolded predictor variables were significant in both the univariate and multivariate models. Italicized predictor
variables were only significant in the univariate model. The moments of distribution and tumor image size were rescaled to lie between 0 and 50 units. Linear
scaling does not alter HR significance but does change the magnitude of the HR and CI to a more interpretable value. Patients with stage O tumors were
removed from this model as the Stage 0 vs stage I variable did not converge in the model (Supplemental Table 3).

Increasing age had a significant effect on survival (multivariate HR: 1.025; 95% CI: 1.013-1.037; z = 4.109; p < 0.001).
Sex did not have a significant effect on survival (multivariate HR: 1.128; 95% CI: 0.898-1.417; z = 1.037; p = 0.30). Increasing
stage also had a significant effect on survival except for stage I'V, which is likely due to small sample size (n = 4). Moment 1
of the OD topological feature curves had a significant effect on survival (multivariate HR: 1.118; 95% CI: 1.026-1.218; z =
2.547; p=0.011). Moment 1 of the OD topological feature curve significantly predicted survival even after controlling for
tumor image size. Tumor image size only had a significant effect on survival in the univariate model (univariate HR: 1.015;
95% CI: 1.003-1.026; z = 2.565; p = 0.01). Figure 2 shows a forest plot of the Cox model. The nonsignificant Stage IV vs
Stage I predictor variable was removed as its wide confidence interval interfered with data visualization.

We used Kaplan-Meier curves (Figure 3) to visually justify our survival results. Patients were divided into four groups
based on scaled moment 1 quartiles. The median survival is depicted by the colored vertical lines and stated with 95% CI in
the legend. The four groups had significantly different survival distributions by the log-rank test (}2 = 19.7, p < 0.001). The
median survival of the first quartile (1357 days; 95% CI: 1028-1661) was significantly different from the median survival of the
fourth quartile (429 days; 95% CI: 326-601; x> = 13.4; p = 0.0015). The median survival of the second quartile (944 days; 95%
CI: 672-1490) was also significantly different from the median survival of the fourth quartile (y? = 12.5; p = 0.0024).

4 Discussion

As the “~omics” sciences continue to become more present in the clinic, we need stronger analysis techniques that make
meaning out of the massive amount of data. Compared to the other “-omics,” radiomics may be the most useful from a clinical
perspective. Obtaining repeated tumor CT and MRI scans is easier for a hospital and less invasive for a patient compared to
repeated tumor sequencing (genomics) or mass spectrometry (proteomics). Therefore, it would be quite valuable if persistent
homology could uncover additional meaning from imaging data. We show that even after controlling for tumor stage, age,
sex, and image size, the first moment of the 0D topological feature curve is a significant predictor of survival. This effect was
significant across two independent data sets indicating a resilience of our methodology to batch effect. We considered tumor
image size as a confounding possibility since the number of topological features would be expected to increase with image
size. However, the effect of moment 1 of the OD feature curve on survival remained significant in the multivariate model, and
about 30% of the variance in moment 1 of the OD topological feature curve was not explainable by tumor image size alone
(Supplemental Figure 5).

It is hard to describe biological correlations of the 0D feature curve at this point. Images with a greater number of 0D
features would have a more heterogenous distribution of gray scale values compared to images with a fewer number of 0D
features. We conjecture that increased OD features correlate with a tumor that is heterogeneous in tissue composition since
different tissue types results in different gray scale values in a CT scan. In addition, a patchy disconnected tumor may also be
reflective of an increased number of OD features as disconnected foci of gray scale values would result in more features even if
the whole tumor volume is the same compared to a well localized tumor.

Despite these promising results, there remain limitations in our study. Though the pipeline worked on a combined set of
tumor scans from two separate research studies, the imaging parameters across the two sets were similar. It remains unknown
how sensitive this technique is to imaging parameters such as CT machine model, which has been shown to affect calculation
of standard radiomic features'®. While we controlled for some important clinical variables as potential confounders, there
are other relevant clinical variables such as EGFR gene status we were unable to test due to lack of data. We could only
control for relevant clinical variables common to both data sets. In addition, while we know the analyzed scans were for
planning radiotherapy or surgery, all of the patients’ prior clinical history is a black box, which is a common limitation of public
databases'”- 18

We only explored 0D topological feature curves in our analysis. We had found similar trends using other topological
features curves in predicting survival. However, adding the moments of distribution of the other three feature curves would add
up to 12 additional variables to consider, which we do not believe our study is adequately powered to assess. We chose to limit
our focus to OD features as they had the strongest association with survival.

Most of the aforementioned issues can be resolved by extending our pipeline to study additional CT scans from NSCLC
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Figure 1. Methodology to generate cubical complexes. (A) An example slice from the Radiomics dataset. Each pixel value in a CT scan is described by
a Hounsfield unit, which typically range from —1024 to 3071. A cubical complex is created by selecting a Hounsfield value as a filter. Any pixel below or
equal to this filter is colored black, and any pixel above is colored white, creating a binary image which becomes the cubical complex. Topological features can
then be counted from each binary image. An example of a OD feature is indicated by the red asterisk. An example of a 1D feature is indicated by the green
asterisk. Two-dimensional features are not shown as they only appear when considering the cubical complexes of all the slices together as a three-dimensional
structure. (B) We plot a barcode diagram representing the persistent homology of each topological feature. Color represents dimension, and the range
represents the Hounsfield filtration unit range during which the feature existed. The colored vertical lines represent the Hounsfield units from the filtration
values shown in the binary images. (C) We create three topological feature curves by summing the number of topological features by dimension at each
Hounsfield unit filtration value. A fourth topological feature curve is generated by summing the total number of topological features regardless of dimension.
The 0D topological feature curve is highlighted as we specifically use the moments of distribution of this curve for our survival analysis.
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Figure 2. Survival forest plot shows moment 1 predicts poorer survival even after controlling for known tumor prognosticators such as stage.
The horizontal axis is log transformed for better data visualization. Span of each data point represents the 95% CI. The Stage IV vs Stage I data point had a
very wide CI, so it was removed from this plot for data visualization. The Stage IV vs Stage I Hazard Ratio is shown in Table 2. Bolded predictor variables are
significant in both the univariate and multivariate models. Italicized predictor variables are only significant in the univariate model.
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Figure 3. Patients with larger moment 1 values of the 0D feature curve had poorer survival. Patients were divided into quartiles based on the
moment 1 value of the 0D topological feature curve. Q1 through Q4 represent Quartile 1 through Quartile 4. The exact quartile values and median survival of
each quartile is shown in the figure legend. On each survival curve, the black vertical line represents a right censored event or the survival time of a patient who
was still alive at last follow up. Vertical colored lines represent median survival. The result of the log-rank comparing all survival curves are shown in the
bottom left. Post hoc log-rank analysis with Bonferroni correction was performed on survival curve pairs. The significant results are shown as horizontal lines
connecting the median survival of the groups with significant differences.
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patients and additional clinical covariates across different databases. This would allow us to control for other clinical confounders
and provide greater statistical power to assess moments of distribution of higher dimensional topological feature curves.

After initial therapy, patients with lung cancer obtain follow-up CT scans to survey tumor recurrence. Local and regional
failure occur respectively when the primary tumor site and nearby lesions regrow after therapy. As many of the curative intent
therapies include primary-tumor directed therapy (radiation or surgery), it would be worthwhile in the future to also consider
local control or local progression free survival in addition to overall survival. Long term, we envision predictive modeling that
incorporates relevant clinical and radiomics variables to personalize anticancer therapy for each patient. The topological feature
curve summary statistics may be appropriate variables to include in such models. Since our variable only requires a CT scan
and appropriate segmentation, this tool would provide universal benefit to all healthcare practice types.

5 Methods

The goal of this pipeline is to determine whether calculated variables describing the topology of a tumor are associated with
survival in a Cox Proportional Hazards model. Four topological variables representing 0D features or connectedness of a
tumor’s CT scan were used in this Cox model. Derivation of these variables are further described in section 2

All images and segmentation objects were obtained from The Cancer Imaging Archive'?. Within TCIA, the NSCLC-
Radiomics (n = 422) and NSCLC Radiogenomics (n = 211) cohorts provided CT scans and clinical data'*!>-17-18 Of the 633
total scans, 565 also had segmentation data, which was necessary for our pipeline. Figure 4 shows the exclusion and inclusion
criteria for each analysis.

TCIA NSCLC-Radiomics Dataset TCIA NSCLC Radiogenomics Dataset

n =422 CT scans n =211 CT scans
Scans with Segmentation Data Scans with Segmentation Data
n=421 n=144

N7

Total Scans Analyzed n=565
Performed Discrete Analysis
Performed UV Cox Models*

i

Excluded Missing age (n=22)
Excluded Missing stage (n=1)
Excluded Stage 0 scans (n=6)**

i

Total Scans Analyzed n=536
Performed MV Cox Models

Figure 4. Flowchart of tumor scan inclusion and exclusion. 565 tumors had both segmentation data and CT scans allowing for computation of cubical
complexes in our pipeline. *The Univariate Cox models excluded patients with missing variables. **The multivariate Cox model excluded 6 additional patients
who were stage 0 since the models did not converge (Supplemental Table 3.

Figure 5 shows an overview of the publicly available data pipeline using R (v3.6.1) and Python (v3.7.6) '°~2!. Within R, a
cubical region that encapsulated the primary tumor was delineated using the segmentation file coordinates of the gross tumor
volume, which had been manually delineated by radiation oncologists from the original datasets. This data object was exported
to Python to compute cubical complex persistence homology (functionality in R not present at time of analysis). Within R, the
raw persistence homology from Python was transformed into topological feature curves, which plot the topological features
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against each Hounsfield filtration value. The first four moments of the 0D topological feature curve were used as predictor
variables alongside clinical covariates in our survival analysis.
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Figure 5. Overview of data pipeline. (1) Using the tumor segmentation data’s coordinates, we computed the persistent homology. (2) Persistent
homology was computed using cubical complexes and (3) transformed into a feature curve as described in Figure 1. (4) The raw moments of the OD feature
curve were calculated and (5) used as predictor variables in our survival analysis (KM Curves and Cox Proportional Hazards). The pink and green asterisks in
the second panel point to an example of a 0D and 1D feature in the filtered image.

For the survival analysis, univariate and multivariate Cox proportional hazard modeling was performed for the moments,
tumor image size, cancer stage, age, and sex. These were all the clinical variables common to both the Radiomics and
Radiogenomics datasets. Increasing the number pixels of an image likely increases the topological feature count without
necessarily changing the overall topological structure of the tumor image. For this reason, we included tumor image size (pixels
per slice x number of slices) as a covariate in the multivariable Cox Hazard model to control for potential confounding with our
0D topological feature curve. All survival times were directly provided in the NSCLC-Radiomics data set. This survival time
was not directly provided in the NSCLC-Radiogenomics data set, but the date of imaging and date of death or last follow-up
were provided. Survival times in the NSCLC-Radiogenomics were calculated by subtracting the date of death/last follow-up
from date of imaging. The stage 0 predictor variable did not converge since none of the 6 patients with stage 0 cancer died
during the study, so these patients were excluded (Supplemental Table 3).

Log-rank test was used to compare all four moment 1 quartiles in the Kaplan Meier curves, and a post hoc log-rank test
was used to make pairwise comparisons. Unpaired t-test statistics (for normally distributed data) and Wilcoxon rank sum tests
(for non-normally distributed data) were used to descriptively compare patient characteristics between the Radiomics and
Radiogenomics data sets. Chi-squared test was used to compare categorical variables.

An open-source, reproducible pipeline is available on GitHub with detailed instructions. All packages and libraries
used were open source. In R, we used oro.dicom v0.5.3, oro.nifti v0.10.3, and RNifti v1.1.0 to read and process
the CT DICOM scans and NIfTI segmentation objects’>>*; dplyr v1.0.0, plyr v1.8.6, and reshape v0.8.8, for data
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wrangling®2’; reticulate v1.1.6 to convert R data structures to compatible .npy files for the Python scripts?®; survival

v3.2-3, rstatix v0.6.0, and survminer v0.4.7 for survival analysis and statistics?*>!; tableone v0.11.2 to generate
table one data’?; and ggplot2 v3.3.2, TDAstats v0.4.1, grid v3.6.3, png v0.1-7, ggplot ify v0.0.5, ggpubr v0.4.0,
gt v0.2.2, paletteer v1.2.0, DiagrammeR v1.0.6.1, DiagrammeRsvqg v0.1, ggfortify v0.4.10, rsvg v2.1, and
gridExtra v2.3 for data visualization and export*>—>.

In Python, we used the built in glob and pathlib libraries to recursively read in the file objects produced from the R
code; numpy v1.18.5 to create data structures that represented the processed tumor scans numpy objects from R*®; gudhi
v3.0.0 to compute the persistent homology using cubical complexes*’; and csv v1.0 library to output the computed persistent
homology as csv files to be processed again in R.

We used the demgi open source Bash library*® to convert segmentation files into a more compatible NIfTI file format. We
used ITK-SNAP v3.8.0 as the DICOM viewer to visually ensure our cubical segmentation properly highlighted the tumor
region of interest*.
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Supplemental Information

Median OD Feature Curves For Survival Groups
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Supplemental Figure 1. Median 0D feature curves of survival quartiles. Median 0D feature curves are larger for patients in poorer survival
quartiles. Each survival group had approximately one quarter of the combined study cohorts (n = 145, n = 138, n = 141, n = 141, from worst to best survival).
Within each survival group, the median 0D feature count value for each Hounsfield units was collected into one vector and plotted. The Hounsfield units were

normalized to O to 1.

Moments of Distribution Formulas

Moment Formula

Moment 1 E[X] = %Z{'V:lxz
Moment2 E[X?] = % ):ﬁ'vzl Xi2
Moment3  E[X3] = %Z?’:] X?
Moment4 E[X4] = %Z?’:l X!

Table 1. Formulas to calculate the moments of the 0D feature curve. X refers to the vector of values represented by the vertical axis in our 0D topological

feature curves. N refers to the number of values in that vector. E refers to the expected value of the distribution.
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Box Plot of OD Feature Curve Moments
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Su pplemental Figure 2. Box plots of 0D Feature Curve Moments. 0D feature curve moments are significantly higher for poorer survival
quartiles as shown by box plots. The moments of distribution were analyzed for each survival group’s 0D feature curves. For data visualization, the log of the
moment values are presented in the vertical axis. Each facet’s vertical axis has a different scale. Points on the plot represent outliers. Notches in the box
represent a 95% confidence interval around the median. Kruskal-Wallis H Test was performed to compare median value for each moment among the survival
groups, and post hoc Dunn’s test with Bonferroni correction was performed to compare pairs of survival groups. Exact median moment values and interquartile
ranges are provided in Supplemental Figure 3. Exact Kruskal-Wallis and post hoc Dunn’s test comparisons are found in Supplemental Table 2.
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Comparing 0D Feature Curve Moments by Survival Group

Group 1 Group 2 Dunn’s z-statistic  adjusted p-value
Moment 1, KW H-statistic = 28.25, p = 0.0000032

<303 days 303 to 699 days  -1.72 0.520000
<303 days 699 to 1634 days -4.33 0.000089
<303 days >1634 days -4.51 0.000040
303 to 699 days 699 to 1634 days  -2.57 0.061000
303 to 699 days ~ >1634 days -2.75 0.036000
699 to 1634 days >1634 days -0.17 1.000000
Moment 2, KW H-statistic = 21.03, p = 0.0001

<303 days 303 to 699 days  -1.28 1.000000
<303 days 699 to 1634 days -3.47 0.003100
<303 days >1634 days -4.01 0.000370
303 to 699 days 699 to 1634 days  -2.15 0.190000
303 to 699 days  >1634 days -2.68 0.044000
699 to 1634 days  >1634 days -0.53 1.000000
Moment 3, KW H-statistic = 18.49, p = 0.00035

<303 days 303 to 699 days  -1.05 1.000000
<303 days 699 to 1634 days -3.13 0.011000
<303 days >1634 days -3.77 0.000990
303 to 699 days 699 to 1634 days -2.04 0.250000
303 to 699 days  >1634 days -2.68 0.045000
699 to 1634 days >1634 days -0.64 1.000000
Moment 4, KW H-statistic = 17.64, p = 0.00052

<303 days 303 to 699 days  -0.93 1.000000
<303 days 699 to 1634 days  -3.00 0.016000
<303 days >1634 days -3.66 0.001500
303 to 699 days 699 to 1634 days -2.04 0.250000
303 to 699 days  >1634 days -2.69 0.043000
699 to 1634 days  >1634 days -0.66 1.000000

Table 2. Statistical comparisons between each survival group for each moment. Kruskal-Wallis H test was used to compare survival groups within each
moment variable. Post hoc Dunn’s test was performed to make pairwise comparison between survival groups. Bonferroni adjusted p-values are shown.

Supplemental Cox Proportional Hazard Model

Univariate Model HR p-value Multivariate Model HR p-value
Age 1.018 (1.007-1.029) 0.0018 1.025 (1.013-1.037) 4.0x1073
Male vs Female 1.212 (0.98-1.499) 0.0770 1.128 (0.898-1.417) 0.3000
Scaled Moment 1 1.019 (1.006-1.033) 0.0054 1.118 (1.026-1.218) 0.0110
Scaled Moment 2 1.005 (0.983-1.027) 0.6900 0.766 (0.53-1.106) 0.1600
Scaled Moment 3 0.994 (0.941-1.049) 0.8100 1.282 (0.412-3.991) 0.6700
Scaled Moment 4 0.988 (0.895-1.09) 0.8100 0.995 (0.369-2.681) 0.9900
Scaled Tumor Image Size  1.015 (1.003-1.026) 0.0100 1.014 (0.983-1.046) 0.3800
Stage 0 vs 1 0 (0-Inf) 0.9900 0 (0-Inf) 0.9900
Stage IT vs 1 1.249 (0.884-1.765) 0.2100 1.028 (0.71-1.489) 0.8800
Stage Illa vs 1 1.695 (1.304-2.203) 8.0 x 1073 1.742 (1.317-2.305) 0.0001
Stage I1Ib vs I 1.626 (1.272-2.077) 0.0001 1.483 (1.127-1.951) 0.0049
Stage IV vs 1 1.279 (0.406-4.028) 0.6700 1.825 (0.572-5.818) 0.3100

Table 3. Cox table with stage 0 patients not excluded. Stage 0 patients were excluded in the original analysis as the stage 0 vs stage I variable did not

converge since no stage 0 patients died. Including stage O patients does not impact any of the conclusions of the original analysis.
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Survival Group Moment Distributions

<303 days 303 to 699 days 699 to 1634 days >1634 days

Moment 1

0% 0.644 0.56 0.421 0.326
25% 4.430 4.54 2.000 2.580
50% 23.300 15.00 9.430 6.700
75% 52.100 38.60 26.100 23.300
100%  214.000 411.00 195.000 378.000
Moment 2

0% 4.590 3.69 2.840 0.596
25% 645.000 830.00 194.000 213.000
50% 1.4 x 10°

75%
100%
Moment 3
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Supplemental Figure 3. Exact raw moment values for each survival group. Groups were divided into quartiles based on survival. Each 0D

feature curve was analyzed for the first four moments of distribution. The range of the moment values for each group is provided here. Color depth represents
magnitude of moment value.
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Schoenfeld Individual Test p: 0.0157
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Schoenfeld Individual Test p: 0.3397
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Su pplemental Figure 4. Schoenfeld residuals plot. Schoenfeld residuals were visually appraised to ensure assumptions of proportionality were
met. While moment 1’s Schoenfeld residuals in the figure are significant, this is likely a chance result as visually there does not seem to be a trend in the
residuals over time. The global Schoenfeld residuals were also nonsignificant

Image Size vs Moment 1
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Su pplemental Figure 5. Correlation plot comparing tumor image size and moment 1 of 0D topological feature curves. Increasing the image
size is expected to increase the topological features. Tumor image size was calculated by multiplying the number of pixels per CT scan slice by the number of
slices. Both variables were linearly scaled to 0 to 50. We generated a correlation plot to check how much variance provided by moment 1 of the 0D feature
curve was unexplained by tumor image size. About 30% of the variance in moment 1 is unexplained by tumor image size. Despite the large overlap, moment 1
remained significant even after controlling for tumor image size in our Cox model.
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