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Abstract 
Early detection of Alzheimer’s Disease (AD) is vital to reduce the burden of dementia and for 
developing effective treatments. Neuroimaging can detect early brain changes, such as 
hippocampal atrophy in Mild Cognitive Impairment (MCI), a prodromal state of AD. However, 
selecting the most informative imaging features by machine-learning requires many cases. 
While large publically-available datasets of people with dementia or prodromal disease exist 
for Magnetic Resonance Imaging (MRI), comparable datasets are missing for 
Magnetoencephalography (MEG). MEG offers advantages in its millisecond resolution, 
revealing physiological changes in brain oscillations or connectivity, before structural changes 
are evident with MRI. We introduce a MEG dataset with 324 individuals: patients with MCI 
and healthy controls. Their brain activity was recorded while resting with eyes closed, using a 
306-channel MEG scanner at one of two sites (Madrid or Cambridge), enabling tests of 
generalization across sites. A T1-weighted MRI is provided to assist source localisation. The 
MEG and MRI data can be formatted according to international BIDS standards, and analysed 
freely on the DPUK platform (https://portal.dementiasplatform.uk/Apply). 
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Background & Summary 
 
Alzheimer’s disease (AD) is an age-related neurodegenerative disorder that is characterised by 
progressive dementia, from mild memory impairment to global cognitive dysfunction and 
eventually death 1. According to the World Alzheimer report in 2019, there are 50 million 
people in the world with dementia, which is likely to rise to 152 million people by 2050 2. This 
prevalence accentuates the need for reliable biomarkers that are sensitive to early stages of the 
disease. Although there is currently no cure for AD, early detection may enable more effective 
management and the ability to prevent or delay dementia. Biomarkers that are accurate, safe, 
and sensitive to the specific brain changes in dementia are required to accelerate and increase 
power for early phase clinical trials.  
 
Here we consider the challenge of Mild Cognitive Impairment (MCI), which is commonly a 
prodromal state of AD, with a high probability of progression to dementia 3,4. MCI is defined 
by cognitive symptoms and performance on cognitive tests, with or without specific biomarker 
evidence of underlying AD pathology 5. Although a prodromal disorder, patients may have 
subtle brain changes that are identifiable with neuroimaging. The dominant form of 
neuroimaging is Magnetic Resonance Imaging (MRI), which is most often used clinically to 
measure brain structure, particularly the volume of grey-matter in brain regions susceptible to 
AD, such as in the medial temporal lobes 6. However, atrophy is a late pathological stage of 
neurodegenerative disease, occurring potentially many years after molecular and physiological 
changes. While functional change can be quantified by functional-MRI, the latter is subject to 
neurovascular confounds, motion artifacts and low reliability. 
 
Magnetoencephalography (MEG) has been proposed as a valuable alternative tool for 
functional biomarkers of early stage AD. MEG has better temporal resolution to measure brain 
function, is reliable across sessions 7–9 and is not confounded by neurovascular variance. While 
Electroencephalography (EEG) can also measure neural activity directly like MEG, it does not 
offer the same spatial resolution for early, localised effects of disease or changes in functional 
connectivity (see 10,11, for more detailed discussion of the potential advantages of MEG for 
detecting AD). 
 
MEG offers a large set of potential data features that might differentiate individuals with MCI 
from healthy controls. These features may be limited to specific frequencies of oscillatory 
activity, specific brain regions, or the functional connectivity between brain regions. The 
spatiotemporal complexity of MEG is well suited for machine learning techniques to identify 
the features that enable classification of MCI 12. However, these techniques typically need large 
number of cases to train and test the classifiers. While large datasets of MRI scans of MCI 
cases have been made available to the community (e.g, 13,14), comparable datasets of MEG are 
required. Following the recent “BioFIND” project funded by the European Union’s Joint 
Programming For Neurodegenerative Research initiative 15, we combined 168 MEG datasets 
from a number of ongoing dementia projects at the University of Cambridge, England, and the 
Centre for Biomedical Technology, in Madrid, Spain. Since then, we have added further data, 
bringing the total to 324 participants, approximately half of whom had MCI (according to NIA-
AA criteria  16) while the rest were healthy controls. Most participants had 10 minutes of 
resting-state MEG (minimum 2 minutes), plus a T1-weighted structural MRI scan (for 309 
participants). The MRI can be used to help localise the cortical sources of the MEG data, and 
also to compare classification based on MEG with that based on the more commonly used 
structural MRI.  
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Here we describe this extended BioFIND17 dataset of MEG, in the hope that it will allow others 
to investigate aspects of brain function that differ in MCI patients versus controls, so as to 
identify potential biomarkers for early AD. We will continue to expand the dataset in future, 
as new cases are tested at our laboratories, and welcome requests to contribute MEG datasets 
from other MEG laboratories. 
 

Methods 

 

Participants 

 
The 324 participants consist of 158 people with clinically diagnosed MCI and 166 controls, 
recorded at one of two sites: 1) the MRC Cognition & Brain Sciences Unit (CBU) at the 
University of Cambridge, and 2) the Laboratory of Cognitive and Computational Neuroscience 
(UCM-UPM) at the Centre for Biomedical Technology (CTB), Madrid. The participants were 
pooled over a number of different projects, each approved by local Ethics Committees and 
following the 1991 Declaration of Helsinki. Participants consented to de-identified data 
collection and sharing for research purposes. 
 
The 68 MCI patients scanned at Cambridge were recruited from specialist memory clinics at 
Cambridge University Hospitals NHS Trust; the 91 controls were selected as those with similar 
age and sex distribution from the population-derived CamCAN cohort of healthy people from 
the same geographic region 18; www.cam-can.org). The 90 patients and 75 controls from 
Madrid were recruited from the Neurology and Geriatric Departments of the University 
Hospital San Carlos. The MCI diagnosis was determined with intermediate probability 
according to the National Institute on Aging–Alzheimer Association criteria 16, i.e., given by a 
clinician based on clinical  and cognitive tests, self- and informant-report, and in the absence 
of full dementia or obvious other causes (e.g., psychiatric). For some patients, there was 
additional biomarker evidence of atrophy from MRI or long term follow up and genotyping for 
the APOE ε4 allele. Note that the MRI (and MEG) data provided here were research scans 
following diagnosis, and were not used to inform the diagnosis, though other similar (T1-
weighted) clinical MRIs may have been used by the diagnosing clinician. For a subset of MCI 
patients, we indicate whether or not they subsequently progressed to dementia (probable AD), 
according to their managing clinician. 
 
The distributions of participant sex, age, education, and score on a cognitive test for dementia 
- the Mini-Mental State Examination (MMSE) - are shown in Table 1. While MMSE may lack 
sensitivity to MCI, its widespread use, approval as a clinical trial outcome, and multiple 
language versions make it a suitable as a screening tool. While t-tests confirmed that the MCI 
group was slightly older and less well educated on average, there was considerable variance 
across patients and appreciable overlap between them and the controls, enabling subgroup 
matching where relevant to future analyses. The MCI group scored lower on the MMSE, with 
most below the common clinical threshold of 27 19. The data were acquired about a year earlier 
for the patients than controls, though again there was overlap in the acquisition year. A 
Wilcoxon rank sum test showed that the duration of the median MEG recording duration was 
longer in controls. It is therefore recommended that data are trimmed so that the same duration 
is used for all participants. While there is no obvious reason why data quality should change 
over years, we also provide empty-room data for each year and site, to enable estimation of 
changes in ambient noise levels. There was no significant difference between groups in the 
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time of day of the scan, nor in the mean or standard deviation of their head motion during the 
scan. 
 
Note that comparable resting-state MEG data (and T1-weighted MRIs) acquired at the CBU 
site are also available for approximately 600 healthy participants (aged 18-88 years) via the 
CamCAN website: https://camcan-archive.mrc-cbu.cam.ac.uk/dataaccess/. These data could 
be used with machine learning to characterise healthy MEG data, or predict age, which could 
then be tested on the present patient data. 
 
Table 1 Participant characteristics 

Data Characteristic Groups T/χ2-test
Controls MCI T/χ2 and p value

1 Site (CBU/CTB) 91/75 68/90 χ² = 4.04   p = 0.04 
2 Sex (M/F) 82/84 80/78 χ² = 0.01   p = 0.91 
3 Age (years) 71.3 (7.0) 72.9 (6.7) T = -2.07  p = 0.04 
4 Education (years) 14.5 (4.4) 10.8 (5.3) T =  6.70  p <.001 
5 MMSE (/30) 28.8 (1.2) 26.1 (2.8) T = 11.11 p <.001 
6 Recording Year 2013.8 (2.4) 2012.4 (2.5) T = 5.37   p <.001 
7 Recording Hour (24h) 12.8 (2.4) 12.6 (2.1) T = 1.13   p = 0.26 
8 Mean of head translation 

(mm) 
1.9 (1.8) 2.3 (2.1) T = -1.59  p = 0.11 

9 
 

Standard deviation of head 
translation (mm) 

1.1 (1.1) 1.2 (1.1) T = -1.03  p = 0.30 

10 Recording Duration 
(seconds) 

481.5 (262) 180.0 (305) Z = 4.19   p <.001 

 
Means have standard deviation in parentheses for items 1 to 9. Medians have interquartile 
range in parentheses for item 10. Abbreviations: CBU, Cognition & Brain sciences Unit; 
CTB, Centre for Biomedical Technology; MMSE, Mini-Mental State Examination; MCI, Mild 
Cognitive Impairment; M, Male; F, Female. 
 

Resting-state Protocol 

The MEG data were recorded while participants were asked to keep their eyes closed, 
instructed to think of nothing specific but not fall asleep. The duration of these recordings 
varied from 2 to 13.35 minutes. Some of the corresponding data-files were extracted from 
longer raw files, recorded while participants performed other tasks. The time of day and year 
of the recordings are also provided in the participants.tsv file, but the precise date of the 
recording was stripped from the raw data file using “mne_anonymze”, in order to further 
protect participant identity. 
 

M/EEG data acquisition  

MEG recordings were collected continuously at 1 kHz sample rate in magnetically shielded 
rooms using an Elekta Neuromag Vectorview 306 MEG system (Helsinki, FI). This system 
includes two orthogonal planar gradiometers and one magnetometer at each of 102 locations 
around the head. For most participants, bipolar electrodes were used to record the electro-
oculograms (EOG), for vertical and/or horizontal eye-movements (though such movements are 
less common with eyes closed), as well as the electro-cardiogram (“ECG”). When present, 
these correspond to EEG channels EEG061 (HEOG), EEG062 (VEOG) and EEG063 (ECG); 
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see ‘Data records’ section). For a smaller subset of CBU participants, an additional 70 channels 
of nose-referenced, unipolar EEG were recorded, but we do not analyse these data here. 
 
To monitor head position throughout the scan, head position indicator (HPI) coils were attached 
to the scalp and detected by the MEG machine (energized at frequencies above 150 Hz in CTB 
and above 300Hz in CBU). Prior to the scan, a Fastrak digitizer (Polhemus Inc., Colchester, 
VA, USA) was used to record locations of the HPI coils, in addition to three anatomical 
fiducials, for the Nasion, Left and Right Pre-Auricular points (LPA and RPA respectively), 
plus approximately 100 points across the scalp (to help coregistration with the MRI).  
 
Additional “empty-room” recordings are available for the CBU and CTB without the 
participant present, which can be used to extract information about the typical environmental 
magnetic noise. We do not present analyses of these data here. 
 

MEG pre-processing 

In addition to the raw data, we also provide versions that have been de-noised using MaxFilter 
2.2.12 (Elekta Neuromag). This entailed: (i) fitting a sphere to the digitized head points, 
excluding those on the nose, and using the centre of this sphere, together with location of 
sensors, to define a spherical harmonic basis set for Signal Space Separation (SSS) in order to 
remove environmental noise (using default number of basis functions), ii) calculation of head 
position every 1s (though motion was not corrected), and (iii) interpolation of bad channels. 
The log files produced by MaxFilter are also provided for each participant (see ‘Data Records’ 
section). 
 

MRI data acquisition 

T1-weighted MRIs for participants tested at the CBU were acquired on either a Siemens 3T 
TIM TRIO or Prisma using a magnetization-prepared rapid gradient echo (MP-RAGE) pulse 
sequence. The T1-weighted MRI for participants tested at the CTB were acquired on a General 
Electric 1.5 Tesla MRI using a high-resolution antenna with a homogenization PURE filter. 
These images were converted to NIfTI format, and de-faced to protect the participant’s identity.  
 

Data Records  
 
The data are summarised on the DPUK cohort website 
(https://portal.dementiasplatform.uk/CohortDirectory/Item?fingerPrintID=BioFIND or 
https://doi.org/10.48532/007000) and the full set of files can be accessed via the DPUK’s 
analysis platform: https://portal.dementiasplatform.uk/Apply. There is an application form in 
order to apply for cohort data access, which once submitted, enables access and analysis 
through the portal1. Within a few days after submission, an instruction email with a necessary 
credentials will be sent to users by DPUK. 
 
DPUK required the files to be originally uploaded in XNAT format (https://www.xnat.org/). 
However, we subsequently converted them to the BIDS format using the script called 
Xnat2Bids.m, which can be found in the GitHub repository that accompanies this paper 
(https://github.com/delshadv/BioFIND-data-paper/). The Brain Imaging Data Structure 

                                                 
1 For more information, please see application guidance in https://portal.dementiasplatform.uk/Apply. 
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(BIDS) format (version 1.4.1; http://bids.neuroimaging.io; see 20,21) is an international, 
community-effort that is more specifically designed for MEG (and MRI) data.  
 
BIDS describes a way of organizing neuroimaging data by defining directory structures, a file 
naming scheme and file formats. The current version of BIDS does not specify how to handle 
multi-centre studies, so we simply combined data from both sites into the same directory and 
identified the site for each participant in the ‘participants.tsv’ file.  The present data passed the 
BIDS validator (https://bids-standard.github.io/bids-validator/). 
 
According to BIDS, data are stored in their native format, and meta-data are stored in “sidecar” 
text files (.json, .txt, .tsv, etc.) for both human- and computer-readable format.  
 
The top-level directory contains two separate BIDS directory: ‘MCIControls’ (approximately 
319GB) and ‘TravelBrains’ (approximately 11GB) (Figure 1a). The ‘MCIControls’ directory 
includes 324 separate sub-directories (Figure 1b), one per participant, coded ‘sub-Sub’ 
followed by four digits for the unique participant number, matching the ‘participants.tsv’ file 
(see below). These directories contain the raw MEG+MRI data; the additional maxfiltered 
MEG data (see above) are stored in a mirrored format in the ‘derivatives’ sub-directory; 
furthermore, empty room data are placed within a directory called ‘sub-emptyroom’.  

 
Figure 1. a) Content of Top-level directory b) Organization of MCIControls directory; c) 
Content of participant-specific directories; d) Content of MRI and MEG data directories for 
each participant; e) Content of maxfiltered-MEG data directories; f) Content of sub-
emptyroom directory 
 

MCIControls BIDS directory 

 
The MCIControls directory also contains the following files: 
 
The ‘participants.tsv’ file is a tab-separated text file that lists all the participants and associated 
information, as described in Table 2. Missing data are indicated by ‘n/a’. 
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Table 2. Fields in participants.tsv file  
Column title Description 
participant_id  Name of participant sub-directory, eg “sub-Sub0001” 
group Either ‘control’ or ‘patient’ (MCI) 
site Either ‘CTB’ (Madrid site) or ‘CBU’ (Cambridge site) 
sex Either ‘F’ (Female) or ‘M’ (Male) 
age Integer years (ranging from 52 to 95) 
MMSE Mini-Mental State Examination 
sImaging ‘MRI’ if MRI available (‘n/a’ if not). Note that 15 participants did 

not have MRIs available. 
Converters Only applies to patients: those who later progressed to AD: ‘1’ = 

converted, ‘0’ = not converted, ‘n/a’ = data unavailable 
Recording_year MEG Recording year  
Recording_time MEG data acquisition time of day (hour) 
Edu_years Total years in education (primary, secondary, and tertiary)  
Move1 Mean of head translation during MEG scan (from MaxFilter), 

relative to initial position 
Move2 Standard deviation of head translation during MEG scan (from 

MaxFilter) 
 
The ‘dataset_description.json’ is a JSON text file describing the dataset including the name, 
license, authors and how to acknowledge. 
 

Participant directories 

As required by BIDS, within each participant’s ‘sub-Sub####’ directory (where # means one 
digit) is a sub-directory with a session name and number, in this case always ‘ses-meg1’ (since 
there is currently only one scanning session per participant). In this session directory are two 
further sub-directories, ‘anat’ and ‘meg’, which contain the anatomical MRI and MEG data 
respectively (Figure 1c).  
 
The ‘anat’ folder contains the T1-weighted MRIs, stored in compressed (using GNU zip) NIfTI 
files, i.e, ‘*.nii.gz’ (where * represents some number of text characters). The international 
NIfTI format is read by many free software packages. The file name codes the participant 
number (‘sub-Sub####’), session (‘ses-meg1’) and data type (‘T1w’). Note that the faces on 
the MRIs imagers were removed using a FreeSurfer 22 function 
(https://surfer.nmr.mgh.harvard.edu/fswiki/mri_deface). There is also a sidecar *.json file, 
created by hand, which is a text file containing useful meta-data about the T1 image, such as 
the anatomical MRI coordinate system, and in particular for MEG coregistration, the manually-
defined MRI indices for the Nasion, left peri-auricular (LPA) and right peri-auricular (RPA) 
fiducials. For CBU data the LPA and RPA refer to pre-auricular points; For CTB data the LPA 
and RPA refer to a point anterior to the tragus. Photographs provided in BIDS directory (Figure 
1b). 
 
The ‘meg’ folder contains the raw MEG data, in the native “FIFF” format developed by 
Neuromag (Elekta Instrumentation AB Stockholm). This format can be read by many free 
software packages. This file contains data from all the MEG channels, and additional EEG, 
EOG, ECG and several other miscellaneous channels (of no interest). Note that the precise date 
and time of recording were scrambled in the FIFF file using the “mne_anonymize” function 
(https://mne.tools/dev/generated/commands.html#mne-anonymize) of the MNE software 23. 
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Prior to this, the time of day and recording year were extracted and added to the 
‘participants.tsv’ file, in case of relevance to the MEG data.  
 
In addition, there are three accompanying sidecar files: *event.tsv, *channel.tsv and *meg.json 
(Figure 1d). Although resting-state does not have any events, the *event.tsv is included to 
specify onset and duration of resting state recordings. The *channel.tsv file lists all the channels 
present in the data, while the *meg.json file encompasses other information about MEG 
acquisition parameters. These sidecar files were created by the ‘data2bids’ function 
(http://www.fieldtriptoolbox.org/reference/data2bids/) of the FieldTrip software 24. 
 

Derivatives directory  

The BIDS ‘derivatives’ sub-directory contains versions of the data that have been processed in 
some way. Because MaxFilter 25 (https://imaging.mrc-cbu.cam.ac.uk/meg/Maxfilter_V2.2) is 
proprietary software, we provide versions of the MEG data that have been run through 
MaxFilter to remove common MEG noise sources (see “MEG pre-processing” section above). 
The maxfiltered version of each subject’s MEG data is present in a FIFF file (sub-
Sub####_ses-meg#_task-Rest_proc-sss_meg.fif) in the corresponding participant directory 
(Figure 1e). The files have the same name as the original raw MEG data, except for the addition 
element “proc-sss”, which indicates that the data have been processed with Signal-Space 
Separation (the method implemented in the MaxFilter software). 
 
In addition to the *proc-sss_meg.json, *proc-sss_channel.tsv and *proc-sss_event.tsv files 
described above for the raw data, we also provide some additional text files that contain meta-
data from the MaxFilter software. These are: 
 
sub-Sub####_ses-meg1_task-Rest_hpi.txt – the 3D locations (in MEG space) of the digitized 
headpoints 
 
sub-Sub####_ses-meg1_task-Rest_proc-sss_org.txt – coordinate of the centre of a sphere (in 
MEG space, relative to [0 0 0] as the origin of the helmet) fit to the above headpoints (after 
excluded points on the nose) 
 
sub-Sub####_ses-meg1_task-Rest_proc-sss_bad.txt – lists MEG channels determined as 
“bad” for each 10s segment of the data (and subsequently corrected by MaxFilter) 
 
sub-Sub####_ses-meg1_task-Rest_proc-sss_headpos.txt – lists the location of the centre of the 
head every 1s in quaternions, capturing head motion throughout the scan. The mean and 
standard deviation of head motion (relative to the initial location) have been extracted and put 
in the ‘participants.tsv’ file. 
 
sub-Sub####_ses-meg1_task-Rest_proc-sss_meg.log – the full log file output by MaxFilter, 
containing other information relevant to SSS. 

Empty room directory 

Empty room MEG files capture the environmental and system noise, and are located in a 
directory called ‘sub-emptyroom’ in top level of MCIControls. This directory comprises 
different sessions for different years and acquisition sites, using the coding ‘ses-
YYYYCBU/CTB’ (where YYYY means year of recording) followed by site name, which can 
be CBU or CTB. In each session’s directory, there is a separate *scans.tsv sidecar file (sub-
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emptyroom_ses-YYYYCBU/CTB_scans.tsv) containing the date and time of the acquisition 
expressed in ISO8601 date-time format (YYYY-MM-DDThh:mm:ss); the additional ‘meg’ 
directory within each session includes corresponding *meg.fif, *channels.tsv and *meg.json 
files (Figure 1f). 
 

Travelling Brains 
Because of the potential importance of differences between scanners/recording sites, which 
affects multi-site datasets, we also scanned 7 people on both scanners. These were young, 
healthy controls (not included in Table 1). Note that MRIs are only available for 4 of these 
travelling participants, and those MRIs come from different sites. Their MEG data are located 
in a separate BIDS directory named “Travel Brains”, which includes a participant.tsv file 
including, sex, age, move1CBU/CTB, move2CBU/CTB, Recording_timeCBU/CTB, 
Recording yearCBU/CTB. Note that in this case, the ‘site’ refers to the laboratory in which 
MRI scan was acquired (since the MEG data were acquired in both sites). Because each 
participant has two FIFF files, one per site, there are now two session directories within each 
participant directory: ‘ses-megCBU’ and ‘ses-megCTB’. Each session directory holds ‘anat’ 
directory (when available) and ‘meg’ directory, like for main BIDS repository described above.  
 
BioFIND data are accessible in DPUK data access portal at 
https://portal.dementiasplatform.uk/AnalyseData/AnalysisEnvironment, following completion 
of the application process (see above).  
 

Technical Validation 
 
To check data quality, we applied a simple classifier to some example MEG data features, and 
examined its ability to distinguish MCI patients from controls, adjusting for age, sex, site, mean 
and standard deviation of head translation during MEG scan and recording time. We focused 
on the “alpha” frequency band (8-12Hz) that has previously been associated with ageing and 
dementia 26, and examined: 1) power over the 306 MEG channels, 2) power over 38 cortical 
brain regions and 3) correlation between the amplitude envelopes of each pair of the 38 ROIs 
(one measure of functional connectivity 27). 
 
Figure 2 illustrates the path of each analyses to train classifier. The full code is available here 
on GitHub repository https://github.com/delshadv/BioFIND-data-paper/, specifically the 
Matlab files: feature_extraction_test.m, preproc_beamform_ROI.m and repeated_CV.m. 
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Figure 2. Paths from raw data to classifier trained to distinguish MCI vs Control. 
Abbreviations: ROI, Region Of Interest; SVM, Support Vector Machine; AEC, Amplitude 
Envelope Correlation; PSD, Power Spectral Density 
 
The maxfiltered data (in the derivatives directory) were read into MATLAB 2018a 
(MathWorks, Natick, MA, USA) using the SPM12 software. First, the same length of MEG 
data for all participants was trimmed to 2 mins to match the lengths of MEG recordings. Data 
from the 102 magnetometers and 204 gradiometers were then down-sampled to 500 Hz and 
band-passed filtered from 0.5-150 Hz. The continuous data were then epoched into 2s 
windows, and epochs that were atypical were marked as bad using the artefact detection 
function in the OSL toolbox (https://ohba-analysis.github.io/osl-docs/). The remaining epochs 
were then used to calculate power spectral density (PSD) for each channel every 0.5Hz (using 
MATLAB’s ‘periodogram’ function) and averaged over epochs. Given the different scaling of 
the magnetometers and gradiometers, and the fact that the absolute power depends on the 
position of the cortical sources relative to the sensors (i.e, head position), we calculated relative 
power by dividing each channel’s PSD by its summed power across frequencies. We then 
averaged the relative power over frequencies in the range 8-12Hz, to produce 306 features per 
participant, reflecting the distribution over the scalp of alpha power (relative to total power). 
 
Given that the MEG signal depends on the position and geometry of the head, a more accurate 
method to estimate brain activity is (in principle) to construct a “forward” model of how the 
magnetic fields produced by electrical dipoles in the cortex appear at the sensors, based on the 
shape of the cortex and skull (extracted from an MRI) and information about the position of 
each sensor relative to the head, and then “invert” that model (with additional assumptions to 
constrain this ill-posed inverse problem). The first step in this method is to coregister the MRI 
to the MEG data, which we did by minimising the error between the digitised head-points and 
the scalp surface extracted from the MRI. We did this using SPM12, after excluding points on 
the nose since the nose is not always captured in the MRI (the residual error in the 3 
anatomically-defined fiducials can be used as an independent measure of coregistration 
accuracy). Note that this meant excluding the 15 participants for whom no MRI is available. 
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Once coregistered, we constructed a grid of 3559 cortical sources every 8mm within the brain 
and estimated how a dipolar source at each location would appear to each sensor using a single-
shell forward model. We then estimated those sources using a scalar, Linear-Constrained 
Miniumum Variance (LCMV) beamformer implemented in the OSL toolbox. Each grid point 
was then assigned to one of 38 regions of interest (ROIs) based on 9, and principal component 
analysis used to extract a single representative timeseries per ROI. Relative alpha power was 
then calculated for each ROI, in the same way as for the sensor above, to produce 38 features 
per participant. 

For the final measure of functional connectivity, the resulting 38-node time series were first 
orthogonalized to avoid spurious correlations using symmetric orthogonalization 28. A Hilbert 
transform from 8-12 Hz was then applied to the ROI timeseries, and the amplitude envelope 
calculated. This was then downsampled to 1 Hz, and the Pearson correlation coefficient 
estimated between all pairs of ROIs, producing (38ൈ37)/2=703 unique estimates of functional 
connections. 

The resulting 3 types of MEG data feature are shown in Table 3. These were used to train and 
test a Support Vector Machine (SVM) 29 using cross-validation with 10-folds and performance 
averaged over 100 permutations. The data features were first adjusted for the covariates of age, 
sex, site, mean and standard deviation of head translation during MEG scan and recording time 
by regressing out linear effects of each covariate (missing values of these covariates were 
imputed using their mean value). Accuracy for the source power measures was approximately 
67%, but slightly lower for the sensor power and connectivity measure (possibly due to the 
greater number of features). Note that one would not expect 100% accuracy, because not all of 
the MCI group are likely to have AD pathology 30. In addition, a proportion of older controls 
may have latent AD pathology without symptoms. Therefore, this accuracy of 67% provides a 
benchmark for future work on these data, for example using other types of MEG features (e.g., 
different frequency bands, different measures of connectivity), other types of machine learning 
(e.g., random forest, advanced ensemble classifiers, deep learning approaches), and possibly 
improved methods for pre-processing (de-noising) the MEG data (e.g., using ICA to remove 
cardiac and other artefacts). Future studies could also distinguish between the subset of MCI 
patients who subsequently developed probable AD, or explore the role of potential confounds 
like education. 

 
Table 3. Mean 10-fold cross-validation performance across 100 permutations 

Feature/Level No. of 
Participants 

No. of 
Features

Accuracy 

Sensor Relative Power 324 306x2 65.60 (1.40) 
Sensor Relative Power 309 306x2 65.39 (1.37) 
Source Relative Power 309 38x2 66.92 (1.39) 
Source Connectivity (AEC) 309 703x2 63.02 (1.49) 

Means have standard error of mean in parentheses. Three examples of MEG features and 
their classification performance. AEC = Amplitude Envelope Correlation; Support Vector 
Machine (SVM). C-V= Cross-validation 
 

Known exceptions and issues 
As noted above, the dataset contains some missing data on some participants, most important 
of which are: 15 participants missing MRI data; 41 patients without information about 
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subsequent AD progression; 2 participants who only had 2 minutes of data. If such data become 
available, the dataset will be updated. Moreover, we continue to test new patients and controls 
in ongoing projects, and when such new data becomes available, we plan to add to the present 
dataset in future releases. 
 

Usage Notes 
Some of the most common software packages for analysing these data are freely available: 
SPM (http://www.fil.ion.ucl.ac.uk/spm/) 
OSL (https://ohba-analysis.github.io/osl-docs/)  
FieldTrip (http://fieldtrip.fcdonders.nl/) 
FreeSurfer (http://surfer.nmr.mgh.harvard.edu/) 
MNE (http://martinos.org/mne/) 
 
We request only that researchers acknowledge the authors in any publication arising from these 
data, and cite this paper and data citation for the source of the data. 
 

Code Availability 
The custom written code to implement all validation analyses is available on GitHub 
(https://github.com/delshadv/BioFIND-data-paper).  
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